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Abstract

Despite the widespread adoption, there is a
lack of research into how various critical as-
pects of pretrained language models (PLMs)
affect their performance in hate speech detec-
tion. Through five research questions, our find-
ings and recommendations lay the groundwork
for empirically investigating different aspects
of PLMs’ use in hate speech detection. We
deep dive into comparing different pretrained
models, evaluating their seed robustness, fine-
tuning settings, and the impact of pretraining
data collection time. Our analysis reveals early
peaks for downstream tasks during pretraining,
the limited benefit of employing a more recent
pretraining corpus, and the significance of spe-
cific layers during finetuning. We further call
into question the use of domain-specific models
and highlight the need for dynamic datasets for
benchmarking hate speech detection.

1 Introduction

The transformer-based language models (LMs)
(Vaswani et al., 2017; Devlin et al., 2019; Liu et al.,
2019) have been a game-changer in NLP. Conse-
quently, researchers have adopted pretrained lan-
guage models (PLMs) to detect hate speech. How-
ever, the choice of the PLM employed for hate de-
tection is often arbitrary and relies on default hyper-
parameters (Sun et al., 2019). Despite PLMs being
prone to variability in performance (Sellam et al.,
2022), there is limited research comparing training
settings for subjective tasks like hate speech detec-
tion. Note, this study follows the definition of hate
speech provided by Waseem and Hovy (2016) – “a
language targeted at a group or individual intended
to derogatory, humiliate, or insult.”

Research questions. Figure 1 provides an
overview of our research questions (RQ). We
broadly study two critical elements of PLMs by
analyzing (i) the impact of different pretraining

* Equal Contribution

Figure 1: Research Overview: The study comprises
five research questions (RQs) to empirically analyze the
pretraining and finetuning strategies for PLM variants
employed for hate detection. A typical PLM-inspired
pipeline involves working with one or more checkpoints,
i.e., PLM model weights obtained after pretraining. The
checkpoint is then finetuned for downstream tasks by
keeping one or more layers of PLM trainable along with
a trainable classification head (CH). Finally, the PLM +
CH generates predictions on incoming test samples.

strategies and (ii) the impact of different finetuning
strategies. Section 4 primarily focuses on whether
there is a significant performance difference in
downstream hate speech detection w.r.t variability
in pretraining seeding (RQ1), checkpoints (RQ2),
and training corpus (RQ3). Meanwhile, Section
5 deals with layer-level training and its impact on
hate speech detection (RQ4). We further exam-
ine these setups across five different BERT-based
PLMs (RQ5) widely employed for hate detection.
While these RQs have been studied in some other
aspects of NLP (Sellam et al., 2022; van Aken
et al., 2019), their employment for hate speech de-
tection is a unique perspective given the subjective
nature of the task. Each selected question targets a
fundamental yet taken-for-granted aspect of PLM
through the lens of hate speech detection. We hope
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Dataset Source Labels Platform of origin Time of collection Dataset size
Train Dev Test

Waseem Waseem and Hovy (2016) H, NH Twitter Prior to Jun ’16 6077 2026 2701
Davidson Davidson et al. (2017) H, NH Twitter Prior to Mar ’17 13940 4647 6196
Founta Founta et al. (2018) H, NH Twitter March ’17 - April ’17 33293 11098 14798
OLID* Zampieri et al. (2019) OFF, NOT Twitter Prior to Jun ’19 9930 3310 860
Hatexplain Mathew et al. (2021) H, NH Twitter & Gab Jan ’19 - June ’20 11303 3768 5024
Dynabench Vidgen et al. (2021) H, NH Synthetic (human-generated) Sept ’20 - Jan ’21 23143 7715 10286
Toxigen Hartvigsen et al. (2022) H, NH Synthetic (LLM generated) Prior to Jul ’22 141159 47054 62738

Table 1: Datasets employed in this study. Abbreviation: H: Hate, NH: Not Hate, OFF: Offensive, NOT: Not
Offensive. Datasets with * have a predefined train-dev-test split. For others, we take a 75-25% split for train-test
sets, with another 25% of the train reserved as a development set.

this study helps researchers make informed choices,
from selecting the underlying PLMs, trainable lay-
ers, and classification heads.

Contributions. While previous studies on hate
speech modeling perform hyperparameter tuning,
they examine either a single architecture (Founta
et al., 2019), a single PLM (Vidgen et al., 2021), or
a single dataset (Mathew et al., 2021). One of our
work’s core contributions is to examine different
PLMs, seeds, and datasets under one study. Con-
sequently, we observe that the dynamics of PLMs
for hate detection differ significantly from the other
use cases (Sellam et al., 2022; Durrani et al., 2022).
There are interesting trends in pretraining learning
dynamics, with peaks at early checkpoints. We
find pretraining over newer data unhelpful. Con-
sequently, on the pretraining end, we observe that
general-purpose PLMs with a complex classifica-
tion head can be as efficient as domain-specific
PLMs (Caselli et al., 2021). Unlike BERT (Sun
et al., 2019), for mBERT finetuning, the last layer
is not the most effective for hate detection. To the
best of our knowledge, we are the first to evaluate
PLMs’ learning dynamics for hate speech detec-
tion1. Overall, the study examines seven datasets
under diverse settings. The aim is not to derive a
consistent pattern but rather to examine whether
any pattern exists among the datasets w.r.t. differ-
ent settings discussed in the RQs.

2 Related Work

Early attempts at hate speech detection employed
linguistic features (Waseem and Hovy, 2016) and
recurrent architectures (Founta et al., 2019; Bad-
jatiya et al., 2017). However, with the arrival of
the transformer architecture (Vaswani et al., 2017),
hate speech tasks also gained a significant boost
(Mathew et al., 2021; Caselli et al., 2021; Masud
et al., 2022). However, most studies adopted the
default setting to finetune PLMs.

1Source Code of our work is available at https://github.
com/LCS2-IIITD/HateFinetune

Meanwhile, deep learning models are criticized
to be black boxes. While heuristics such as LIME
(Ribeiro et al., 2016) and SHAP (Lundberg and
Lee, 2017), among others, attempt to make these
models interpretable, they are limited to perturba-
tions in the input space rather than the latent space.
More recently, work on mechanistic interpretability
(Elhage et al., 2021) attempts to understand how
transformers build their predictions across layers.
Control over high-level properties of the generated
text, such as toxicity, can be obtained by tweak-
ing and promoting certain concepts in the vocab-
ulary space (Geva et al., 2022). Interpretability
(Vijayaraghavan et al., 2021), finding best practices
(Khan et al., 2023) and sufficiency (Balkir et al.,
2022) in hate speech have always been open re-
search areas. While toxicity and biases encoded
by pretrained PLMs (Ousidhoum et al., 2021) is an
essential area of research, our work focuses on the
downstream finetuning of PLMs for hate detection.

3 Experimental Setup

Dataset. As this research focuses on classify-
ing hateful text, we utilize seven publicly avail-
able hate detection datasets in English (Table 1).
Waseem, Founta, Davidson & OLID are chosen
based on their prominence in literature. OLID is
obtained from a shared task, and we employ task
A of OLID. More recently curated datasets, such
as Hatexplain as well as synthetically generated
ones (either by humans, like Dynabench or by
LLMs, like Toxigen), are also picked.

Note on Dataset Characteristics. During our
preliminary analysis, we performed data drift exper-
iments to see how distinguishable the HS datasets
are from each other (Kulkarni et al., 2023). From
Table 2, we observe that, on average, the datasets
are differentiable on the latent space with a macro
F1 of 60-80%. Toxigen was more distinguishable
than the rest, with a macro F1 of 85-90%, yet it
does not show major deviations in patterns for the
RQs. As Hatexplain provides multiple annota-
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Dataset Davidson Dynabench Founta Hateexplain OLID Toxigen Waseem
Davidson 0.00
Dynabench 62.60 0.00
Founta 70.26 59.47 0.00
Hateexplain 66.23 64.12 71.91 0.00
OLID 63.66 74.21 80.82 80.82 0.00
Toxigen 91.09 85.88 80.86 91.70 94.76 0.00
Waseem 69.47 79.06 84.59 67.70 57.20 96.00 0.00

Table 2: Data drift experiment measuring the lexical
difference between the dataset corpora in macro F1 %.

tor responses for each sample, we consider those
samples as hateful, where a majority of annotators
labeled them as either hateful or offensive, and the
rest are considered non-hateful.

Backbone PLMs We provide an overview of the
various PLMs (aka backbone models) employed
in this study in Table 32. As the work focuses on
finetuning the most commonly employed LMs for
hate speech detection, we focused on the BERT
and RoBERTa family of models (PLMS), the same
as previous studies on hate speech (Antypas and
Camacho-Collados, 2023). Trends common across
these models are likely relevant to a broader set of
PLMs employed for hate detection. Further note
that for RQ1, 2, and 3, only English variants of the
PLM are available, necessitating the study to focus
on English datasets for uniform comparison.

Classification Head. We use three seeds
hereby referred to as the MLP seeds (ms =
{12, 127, 451}) to initialize the classification head
(CH) of varying complexity:
1. Simple CH: A linear layer followed by Softmax.
2. Medium CH: Two linear layers with intermediate

dim = 128 and intermediate activation function
as ReLU followed by a Softmax.

3. Complex CH: Two linear layers with an interme-
diate dim = 512, ReLU activation, and an inter-
mediate dropout layer with a dropout probability
of 0.1, followed by a softmax layer. We borrow
this setup from Ilan and Vilenchik (2022).
Hyperparameter All experiments are run with

NVIDIA RTX A6000 (48GB), RTX A5000 (25GB)
& Tesla V100 (32GB) GPUs. Significance tests are
run with a random seed value of 150. We employ
the two-sided t-test and Cohen-d for measuring the
effect size. We remove emojis, punctuations, and
extra whitespaces to preprocess the textual con-
tent. URLs and usernames (beginning with ’@’)
are also replaced with <URL> and <USER>, re-
spectively. We train the classifiers for two epochs
for all our experiments. The setups employ PLMs
that are publicly available on HuggingFace (Wolf

2For some models, the release date is not publicly available
and is taken to be the publication date of its research.

Model YoR Dataset used Training strategy
BERT (Devlin et al.,
2019)

2018 Book Corpus & English Wikipedia MLM + NSP

mBERT (Devlin
et al., 2019)

2018 BERT Pretrained on all Wikipedia
data for 104 languages with the
most representation in Wikipedia

MLM + NSP

HateBERT (Caselli
et al., 2021)

2020 RAL-E (Reddit Comments) - 1.5M
Comments

Retrained BERT with
MLM Objective

BERTweet (Nguyen
et al., 2020)

2020 850M Tweets Only MLM

RoBERTa (Liu et al.,
2019)

2019 Book Corpus, Common Crawler,
WebText & Stories

Dynamic MLM + NSP

Table 3: Overview of PLMs employed in this study.
YoR is the year of release (either the public model or the
source research paper). We also enlist the data source
employed for training. The systems use masked lan-
guage modeling (MLM) and next-sentence prediction
(NSP) as pretraining strategies.

et al., 2020). The classifiers use AdamW optimizer
(Loshchilov and Hutter, 2019) with a batch size
of 16 and sentences padded to a max length of the
respective PLM. We keep the learning rate (LR) at
0.001 (for all RQs) to be in line with the default
Adam-W optimizer setting in Huggingface’s imple-
mentation. We also use a linear scheduler for the
optimizer with a warmup.

4 Analysis of the Pretrained Backbones

Variability in pretraining strategies should lead to
variability in the performance of downstream tasks.
To explore this for hate speech detection, we start
with analyzing pretraining weight initialization on
the final checkpoint and then move to investigate
intermediate checkpoints and pretraining corpus.

RQ1: How do variations in pretraining weight
initialization of PLMs impact hate detection?

Hypothesis. With no guarantee of attaining global
minima via gradient descent, some seed initializa-
tion of weights during pretraining could lead to
better performance downstream. On the one hand,
in a study over multiple seeded BERT (Sellam et al.,
2022), it was observed that the GLUE benchmark
(Wang et al., 2018) is susceptible to randomness in
finetuning and especially pretraining seed strategy.
Meanwhile, for auto-regressive models, it has been
observed that the order of training samples during
pretraining has a very low correlation with what
the final model memorizes (Biderman et al., 2023).
We hypothesize that hate detection should follow
the former patterns.

Setup. We utilize the publicly available 25 dif-
ferent final checkpoints of BERT (Sellam et al.,
2022), each trained under the same architecture
and hyperparameters but with different random
weight (random seed) initializations and shuffling
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Dataset Min F1 Max F1 ES
Waseem S451,0: 0.675 S12,10: 0.731 0.446*
Davidson S451,0: 0.745 S12,15: 0.792 0.582**
Founta S12,5: 0.872 S127,20: 0.888 0.473**
OLID S451,0: 0.647 S451,10: 0.731 0.287*
Hatexplain S127,5: 0.630 S451,10: 0.680 0.676**
Dynabench S451,15: 0.625 S12,20: 0.660 0.724**
Toxigen S451,5: 0.767 S127,10: 0.771 0.226

Table 4: RQ1: Comparison of minimum and maximum
macro F1 obtained under varying seed combinations
by each dataset. Sms,ps represents the combination of
MLP seed (ms) and pretraining seed (ps). ES stands
for effect size. ** and * indicate whether the difference
in minimum and maximum macro F1 is significant by
≤ 0.05 and ≤ 0.001 p-value, respectively.

of the training corpus. We randomly picked
five pretrained checkpoints for our analysis. The
seeds employed for selecting the five checkpoints
will be referred to as the pretraining seed set
(ps = {0, 5, 10, 15, 20}). To better capture the
impact of pretraining weight randomization, the
PLM is frozen, and only the classification head is
trained. Further, to control for the randomness in
the MLP layer, we use the MLP seeds (ms) and
run differently-seeded (ms, ps) combination.

Findings. At the macro level, as outlined in Ta-
ble 4, the performance appears to be significantly
impacted by different seed (ms, ps) combinations.
We perform a p-test on each dataset’s overall min-
imum and maximum macro F1 seed pairs to es-
tablish the same. The difference in performance
is significant for 5 out of 7 datasets with medium
to high effect sizes. Similar to prior work (Sellam
et al., 2022), we look at the variability in perfor-
mance when considering one set of seeds to be
fixed. Keeping ms constant at the micro-level pro-
duces more variability than ps (Appendix A.1). It
follows from the fact that in finetuning settings, the
MLP layer initialized with ms is trainable, while
the pretrained model initialized with ps may be
fully or partially set to non-trainable (fully in our
case). In this investigation, the machine-generated
dataset (Toxigen) is the only one immune to vari-
ation in seeding. However, due to randomness in
weight initialization, the PLMs encode subjectivity
across different datasets for hate detection.

RQ2: How do variations in saved checkpoint
impact hate detection?
Hypothesis. In RQ1, we examine the variability
only at the last checkpoint. Meanwhile, in RQ2,
we analyze the trends these models may follow for
hate detection over intermediate checkpoints. To

Dataset
Simple Complex

S12 S127 S451 S12 S127 S451

Waseem C3: 0.660 C3: 0.668 C2: 0.691 C2: 0.734 C2: 0.738 C2: 0.756
Davidson C2: 0.739 C2: 0.740 C2: 0.775 C2: 0.824 C3: 0.810 C2: 0.764
Founta C3: 0.870 C2: 0.861 C3: 0.869 C2: 0.879 C2: 0.880 C2: 0.878
OLID C2: 0.660 C2: 0.649 C2: 0.654 C2: 0.667 C2: 0.693 C2: 0.672
Hatexplain C2: 0.646 C2: 0.666 C4: 0.647 C2: 0.694 C2: 0.672 C2: 0.700
Dynabench C2: 0.626 C2: 0.629 C2: 0.625 C2: 0.627 C2: 0.623 C2: 0.631
Toxigen C2: 0.733 C2: 0.732 C2: 0.733 C2: 0.764 C2: 0.763 C2: 0.764

Table 5: RQ2: We report the nth checkpoint (Cn) which
leads to maximum macro F1 obtained for simple and
complex classification head respectively. For each head,
we analyze MLP seeds (Si ∈ ms).

study the impact of intermediate checkpoints on
downstream tasks, Elazar et al. (2023) released 84
intermediate pretrained checkpoints, one for each
training epoch of the RoBERTa. This question is
necessary as we hypothesize the model’s perfor-
mance will grow during the early checkpoints and
then saturate. It should allow one to find a sweet
spot to pretrain task-specific PLMs for a shorter
duration, saving compute resources.

Setup. Provided by Elazar et al. (2023), we
employ the 84 RoBERTa pretraining checkpoints
(Cn ∈ C1, C2, . . . , C84). In our analysis, each pre-
trained checkpoint PLM is frozen, and simple and
complex classification heads are trained. We train
a classification head for each pretrained checkpoint
separately for all MLP seeds (ms).

Findings. Contrary to our hypothesis, we ob-
serve the performance peaks early (mostly around
checkpoint 2) and then rapidly falls. This trend is
consistent across different datasets, seeds, and CH
complexity as captured by the highest macro F1
reported in Table 5 and Appendix A.2. The trends
in performance indicate that each checkpoint pos-
sesses hate detection capacity to varying degrees.
We extend our analysis of the superiority of early
checkpoints, especially checkpoint #2 over #3, with
varying learning rates (LR), – 0.001 (default), 0.01,
and 0.1. Averaged across the three MLP seeds, we
observe that for a given quadruple <dataset, learn-
ing rate, checkpoint, classifier complexity> triplet,
checkpoint #2 is consistently at par with checkpoint
#3, as highlighted by the difference (diff) row in Ta-
ble 6. The analysis suggests that a fully pretrained
model may not be necessary for hate-related tasks.
We concur this may be due to a mismatch between
the model’s training on well-written datasets such
as Wikipedia and Book Corpus and the noisy na-
ture of hate speech. When the model has not yet
fully learned the English language syntax, it could
be better suited to capture the noisy information in
the hate speech text.
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CH Checkpoints LR Davidson Dynabench Founta Hateexplain OLID Toxigen Waseem
Simple C2 0.001 0.75 0.63 0.867 0.657 0.653 0.73 0.637

C3 0.001 0.547 0.553 0.86 0.62 0.517 0.72 0.653
Diff (C2-C3) 0.203 0.077 0.007 0.037 0.136 0.01 -0.016

Complex C2 0.001 0.78 0.627 0.88 0.687 0.677 0.76 0.743
C3 0.001 0.763 0.577 0.857 0.613 0.55 0.74 0.69
Diff (C2-C3) 0.017 0.05 0.023 0.074 0.127 0.02 0.053

Simple C2 0.01 0.813 0.493 0.827 0.683 0.657 0.73 0.743
C3 0.01 0.76 0.52 0.843 0.543 0.623 0.72 0.72
Diff (C2-C3) 0.053 -0.027 -0.016 0.14 0.034 0.01 0.023

Complex C2 0.01 0.837 0.593 0.863 0.623 0.617 0.73 0.753
C3 0.01 0.643 0.517 0.867 0.617 0.597 0.72 0.723
Diff (C2-C3) 0.194 0.076 -0.004 0.006 0.02 0.01 0.03

Simple C2 0.1 0.75 0.52 0.777 0.62 0.577 0.72 0.75
C3 0.1 0.76 0.543 0.823 0.517 0.567 0.717 0.68
Diff (C2-C3) -0.01 -0.023 -0.046 0.103 0.01 0.003 0.07

Complex C2 0.1 0.76 0.35 0.487 0.543 0.527 0.447 0.677
C3 0.1 0.45 0.35 0.57 0.467 0.42 0.433 0.71
Diff (C2-C3) 0.31 0 -0.083 0.076 0.107 0.014 -0.033

Table 6: RQ2: Macro F1 for checkpoints 2 and 3 with varying LR (0.001,0.01,0.1) and classification head (CH) as
simple and complex. Diff (C2-C3) depicts the difference in performance of two checkpoints.

RQ3: Does newer pretraining data impact
downstream hate speech detection?

Hypothesis. Hate speech is evolving and often
collected from the web in a static/one-time fashion.
Pretraining/continued training PLMs on more re-
cent data should capture the emerging hateful world
knowledge and enhance the detection of hate.

Setup. We use checkpoints released by the On-
line Language Modeling Community3 (details on
OLM provided in Appendix A.3) for RoBERTa
variants trained on more recent data from October
(RO22) and December 2022 (RD22) respectively.
We compare these variants against RoBERTa ini-
tially released in June 2019 (RJ19).

Findings. To assess the impact of differently
updated PLMs on downstream hate detection, the
performance should be interpreted at the individual
dataset level and not across datasets. Figure 2 re-
veals that only three datasets register a sharp jump
in performance. We attribute this to the fact that
most of the datasets employed in this study were
collected years ago (Table 1). Consequently, events
present in these datasets were already sufficiently
represented in the original model (RJ19). Inter-
estingly, the 25 macro F1 jump for Founta may
indicate that the models may have seen the data
before. Previous literature hypothesized the same
when they observed a substantial improvement in
NLP performance (Zhu et al., 2023). The findings

3https://huggingface.co/olm

in RQ3 shed light on the problem of stale hate
speech datasets and highlight the need to address
the dynamic nature of hate speech.

5 Analysis of the Finetuning Schemes

During finetuning, the PLM layers closer to the
classification head capture the maximum task-
specific information (Durrani et al., 2022). Hence,
setting the lower layers parameters untrainable is
a standard finetuning practice. While layer-wise
analyses have been explored in various NLP tasks
(de Vries et al., 2020; van Aken et al., 2019), a com-
prehensive examination across models, datasets
and finetuning scenarios has been notably absent
in the hate speech domain. Experiments in this
section are run on four BERT variants – BERT (De-
vlin et al., 2019), BERTweet (Nguyen et al., 2020),
HateBERT (Caselli et al., 2021), and Multilingual-
BERT (mBERT) (Devlin et al., 2019).

RQ4: What impact do individual/grouped
layers have on hate detection?

Different layers or groups of layers in the PLM
will be of varying importance for hate detection.
Borrowing from the popular finetuning settings
(Sun et al., 2019), one expects training the last few
(higher) layers to yield better than training earlier
(lower) layers. Further, the setting where more lay-
ers are trainable is likely better, giving the model
more ability to learn the latent space.
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Figure 2: RQ3: Macro F1 on different datasets finetuned with an MLP classifier on RoBERTa variants. The variants
employed are from June 2019 (RJ19), October 2022 (RO22), and December 2022 (RD22). Each variant is trained
on a training corpus from Wikipedia, and Common-Crawl is curated and updated before the date associated with the
model. RJ19 is the original RoBERTa model and RO22 and RD22 are its more recent variants.
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Figure 3: RQ4: (a) Dynabench and (b) OLID – Descriptive statistics of macro F1 when finetuning on top of
individual layers of the BERT-variant highlighting the layer (Li) that on average over MLP seeds (ms) leads to
minimum and maximum macro F1. Here, the Li is trainable while other layers are frozen. (c) Dynabench and (d)
OLID – Descriptive statistics of macro F1 when finetuning while constraining a region of layers to be frozen (Suffix
F) or non-frozen while all others are frozen (Suffix NF) for different BERT-variant highlighting the region (Ri) that
on average over MLP seeds (ms) leads to minimum and maximum macro F1.

Dataset
BERT BERTweet HateBERT mBERT
Min F1 Max F1 ES Min F1 Max F1 ES Min F1 Max F1 ES Min F1 Max F1 ES

waseem S12, L6: 0.758 S12, L11: 0.806 0.484** S127, L6: 0.758 S127, L11: 0.810 0.944** S451, L1: 0.752 S127, L10: 0.813 0.619** S451, L9: 0.732 S127, L5: 0.793 0.617**
davidson S12, L11: 0.887 S451, L4: 0.931 0.854** S12, L6: 0.899 S12, L5: 0.935 1.824** S12, L10: 0.904** S127, L5: 0.932 0.561** S12, L10: 0.852 S451, L4: 0.922 1.367**
founta S12, L7: 0.916 S127, L5: 0.929 0.485** S127, L0: 0.918 S451, L3: 0.930 0.486** S12, L2: 0.915 S12, L9: 0.928 0.484** S12, L11: 0.890 S12, L4: 0.924 1.120**
olid S127, L0: 0.732 S451, L11: 0.802 0.420* S12, L0: 0.747 S127, L9: 0.817 0.438* S451, L0: 0.738 S127, L8: 0.806 0.383* S127, L10: 0.624 S451, L4: 0.764 0.595**
hatexplain S451, L11: 0.639 S12, L10: 0.766 1.807** S12, L6: 0.586 S12, L9: 0.770 2.616** S12, L7: 0.638 S12, L4: 0.766 1.671** S451L9: 0.615 S12, L7: 0.739 1.796**
dynabench S127, L6: 0.665 S451, L9: 0.756 2.082** S12, L0: 0.705 S127, L11: 0.783 1.824** S127, L0: 0.706 S451, L11: 0.770 1.564** S12, L0: 0.635 S451, L4: 0.720 1.737**
toxigen S12, L0: 0.767 S12, L11: 0.806 2.126** S12, L1: 0.0.786 S12, L11: 0.827 2.621** S127, L0: 0.775 S127, L11: 0.816 2.386** S451, L0: 0.746 S12, L4: 0.777 1.821**

Table 7: RQ4: Comparison of Lth
i layer which leads to minimum and maximum macro F1. Note the layers for the

BERT-variant may come from different MLP seed values (Sms). ES stands for effect size. ** and * indicate whether
the difference in minimum and maximum macro F1 is significant by ≤ 0.05 and ≤ 0.001 p-value, respectively.

Setup. We freeze (set to non-trainable) all pa-
rameters except the probed layer and the classi-
fication head initialized with MLP seeds (ms).
We probe the impact of layers beginning with
the analysis of setting (un)trainable individual lay-
ers L1, L2, . . . , L12 and then setting (un)trainable
groups of layers, aka region. A 12 layer PLM com-
prises 4 regions (R1, R2, R3, R4) of 3 consecutive

layers with R1 = {L1, L2, L3} and so on. For the
layer-wise case the classification head is placed on
top of the trainable layer.

Findings. Table 7 shows that trainable higher
layers (closer to the classification head) lead to
higher macro-F1 for most BERT-variants. How-
ever, no single layer emerges as a clear winner
across all datasets and models, as illustrated in Fig-
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ure 3(a,b). When examining specific datasets, such
as Dynabench in Figure 3a, it appears that layer
#9 is quite dominant, while layer #0 consistently
performs poorly across all models. On the other
hand, in the case of OLID (Figure 3b), no such
trend is observed. The variation in macro F1 when
keeping the same MLP seed (ms) across BERT-
variants is enlisted in Appendix A.4. Here, we
observe that, on average, Davidson and Founta
seem to be favoring the lower layer for max F1;
however, looking at Table 11, we again see that
across seeds, Davidson is the only dataset that sig-
nificantly reaches Max F1 via lower layers. How-
ever, overall, the trend for higher layers leading to
substantially better performance holds significantly
for 5 out of 7 datasets and partially for Founta.

Interestingly, we also observe that layer-wise
trends for generating maximum macro F1 are
more similar for BERT and BERTweet than BERT-
HateBERT or BERTweet-HateBERT comparisons
(Table 7). Further, the notion of higher layers be-
ing important applies to BERT, HateBERT, and
BERTweet; the results do not hold for mBERT.
As we observe from Table 7 for mBERT, layer #4
seems to dominate across datasets. While obtain-
ing the best performance from the middle layers of
PLMs is counterintuitive in a general setup, simi-
lar behavior regarding mBERT has been reported
earlier (de Vries et al., 2020). We hypothesize that
this behavior stems from mBERT’s need to be si-
multaneously equally generalized vs. informative
for all languages. Thus, the higher dependence on
mBERT’s lower layers may stem from training on
a corpus of multiple languages.

Our findings on region-wise analysis indicate
that training the last region performs better than the
other settings where only other regions is trained
(as shown in Figure 4), i.e., the latter regions are
more likely to be better than earlier regions (Fig-
ure 4a). Also, when the last region is frozen, it
is never the best combination for any dataset or
model (Figure 4b), further validating the status quo.
However, no clear region dominates significantly
across all datasets (Appendix A.4). In the case
of Dynabench (Figure 3c), when R4 is not frozen,
it performs the best consistently, while R1 being
frozen performs the worst consistently. This is not
so black and white for all datasets, as seen in the
case of OLID (Figure 3d), where there is no one best
scheme across models. In general, layers closer
to the classification head appear more critical for
hate detection, except in the case of mBERT.

RQ5: Does the complexity of the classifier head
impact hate speech detection?

Hypothesis. There is an increasing trend in obtain-
ing domain-specific PLMs that are continuously
pretrained on domain corpus. Meanwhile, when
finetuning, most downstream tasks employ a sim-
ple classification head to retain maximum latent
information from the pretrained PLMs. In repro-
ducing the work by (Ilan and Vilenchik, 2022),
we observed their use of a complex classification
head for HateBERT outperformed a simple one.
It prompts the study of the relationship between
PLMs and CHs. We hypothesize that employing a
relatively complex classification head should per-
form better than its simpler counterpart.

Setup. We run our experiments on three clas-
sification heads (CH) of three complexity levels –
simple, medium, and complex (described in Sec-
tion 3). The pretrained model is frozen for this set
of experiments to capture the variability introduced
by the trainable CH’s complexity.

Findings. We observe from Figure 5 that com-
pared to a simple classification head (CH), a more
sophisticated one (either medium or complex) is
better. Full dataset results and analysis are en-
listed in Appendix A.5 and reflect similar patterns.
Surprisingly, BERTweet, a relatively lesser-used
PLM for hate speech detection, outperforms its
supposedly superior domain-specific counterpart,
HateBERT. Additionally, BERT with a complex
classification head demonstrates comparable per-
formance to domain-specific PLMs and even out-
performs them in several cases. We also note that
mBERT’s performance is lost on English-specific
datasets. It would be interesting to see how this
compares to non-English hate speech datasets that
employ mBERT. We further note that HateBERT’s
performance is highly dependent on the classifi-
cation head used, with a more complex one often
needed to enhance its performance to bring it to
part with its coevals. Interestingly, we observe that
a general-purpose pretrained model with a com-
plex classification head may mimic the results of
a domain-specific pretrained model. If true for
other tasks, it questions the resource allocation for
curating domain-specific PLMs.

6 Takeaways and Recommendations

This section summarises the major takeaways that
would allow practitioners to make effective choices
when modeling PLMs for hate speech detection.
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(b) Worst region distribution.

Figure 4: RQ4: Percentage distribution of best and worst performing regions across datasets. The divisions on
each bar enlist the % of datasets where the given configuration performs best (a) or worst (b) for a BERT-variant.
Combined captures the overall trend across all BERT-variants and datasets. Region R1 includes layers L1 to L3, R2

from L4 to L6, R3 from L7 to L9 and R4 from L10 to L12. Suffix F implies that the region was frozen while other
regions were trainable, and the NF suffix implies all other regions were frozen while only that region was trainable.
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Figure 5: RQ5: Macro F1 scores (averaged over MLP seeds ms) for (a) Dynabench and (b) OLID datasets employing
BERT-variants (BERT, BERTweet, HateBERT, and mBERT). Classification heads of varying complexity (simple,
medium, and complex) are utilized to capture their effect on BERT-variants employed for hate detection.

1. In RQ1, we established that different seed ini-
tializations of the classification head and the un-
derlying pretrained model (during its training)
could significantly affect PLMs’ performance
on hate speech detection. However, finding the
best-suited hyperparameters is sub-optimal and
resource-intensive. Therefore, we recommend
reporting results averaged over more than one
seed for the hate detection tasks.

2. In RQ2, while analyzing the training dynamics
of PLMs concerning downstream tasks, we ob-
served early peaks w.r.t hate speech detection.
We hypothesize that different NLP tasks may
display different peak patterns. Our first recom-
mendation is to make intermediate checkpoints
available if pretraining is involved. An open re-
search direction is the intermediate-evaluation
test cases to record the PLM’s finetuning per-
formance and early stopping if desired thresh-

olds are obtained. For instance, if we assume
the same training setup as used by Elazar et al.
(2023) and if the training was stopped just af-
ter 8-10 epochs noticing the performance drop
on the downstream task, 8-10× compute, could
have been saved. Though their use case differed,
this can hold for training models for tasks such
as sentiment analysis.

3. In RQ3, we found that pretraining of PLMs
on newer data does not help hate speech de-
tection. This is counter-intuitive as one would
expect newer data to enhance a model’s world
knowledge. However, most datasets employed
in this study are older than the models being re-
leased. Further, the datasets are on the side of ex-
plicit hate, and any hateful event regarding them
should already be captured in the world knowl-
edge gained by the PLM via the training corpus.
Throughout examination in this work, the two
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Test
Train

OLID Min OLID Max Dynabench Min Dynabench Max
OLID 0.747 0.817 0.435 0.520
Dynabench 0.435 0.491 0.705 0.783

Table 8: RQ4: Macro F1 based on BERTweet cross-
dataset generalization. The min and max define the
seed+layer combination that led to min and max macro
F1 in the in-domain experiments, as reported in Table 7.
In each row, two columns with the same dataset name as
the one in the row correspond to in-domain evaluation,
the others correspond to out-of-domain evaluation.

synthetically generated datasets, Dynabench and
Toxigen, do not record any significant devia-
tion from overall trends, even though Dynabench
is human-generated while Toxigen is machine-
generated. The only notable difference is that
Dynabench is less prone to the complexity of
classification heads, as we observe in both RQ2
and RQ5. Whether it is a function of its syn-
thetic nature or large test size is not apparent.
We recommend that benchmark datasets must be
regularly updated for subjective tasks like hate
speech detection.
As the use of generative AI tools for crowdsourc-
ing is on the rise (Gilardi et al., 2023; Liu et al.,
2023), it is imperative to equip hate speech re-
searchers to deal with a broader AI-assisted sys-
tem than just finetuning PLMs. Moreover, us-
ing computational methods at every step of the
hate detection pipeline should always be human-
aided.

4. In RQ4, we reinstated the status quo of finetun-
ing the last few layers to obtain the best perfor-
mance to largely hold for hate detection. Yet, in
the case of mBERT, we observed that the mid-
dle and lower layers are much more critical. We
recommend that tasks employing multilingual or
non-English hate speech detection using mBERT
should start with keeping the middle layers un-
frozen for finetuning. By comparing four BERT
variants on seven datasets and three seeds, it ap-
pears that the region-wise performance of PLMs
is a characteristic of the underlying PLM and
the task domain at hand and is less impacted by
variation in datasets. Such intuitions can help
narrow the experiments one has to run to obtain
better classification configurations.
Further, based on the best seed, layer, and PLM
combinations obtained in RQ4 (Table 7), we ran-
domly picked Dynabench and OLID to perform
a cross-dataset generalization experiment and
examine the impact of hyperparameters associ-

ated with minimum and maximum in-domain
PLM (BERTweet in this case) on cross-domain
testing. From Table 8, in line with previous
studies (Fortuna et al., 2021) on cross-dataset
generalization, we observe a poor performance
on out-of-domain testing. Our results do hint
that the best finetuning setting may also corre-
spond to the best out-of-domain generalization.
Such settings can be useful to narrow down the
hyperparameter search in balancing in-domain
vs. out-of-domain performance gains.

5. In RQ5, we uncovered that finetuning a general-
purpose model, like BERT, with a more complex
classification head can mimic the performance
of a domain-specific pretrained model, like Hate-
BERT. Our analysis also brought out the su-
periority of BERTweet over HateBERT. While
HateBERT is continued-pretrained on offense
subreddits, BERTweet is continued-pretrained
on Tweets. Given that most datasets are either
directly drawn from Twitter or synthesized in
a short-text fashion, BERTweet could be indi-
rectly capturing both short-text syntax and of-
fense from the Tweet corpus. Hence, we rec-
ommend practitioners employing HateBERT to
report their findings on BERTweet as well. Fur-
ther, we observe a slight decrease in performance
across datasets comparing mBERT and BERT
for English datasets. Given that mBERT has
more parameters than BERT (178M vs. 110M
in base version), we suggest not using mBERT
unless the hate speech is itself multilingual.
When even a random set of test samples can help
steal model weights (Krishna et al., 2020) in
NLP tasks, it points to limited domain-specific
learning in light of the adversary. Thus, more
experiments are needed to establish their superi-
ority over general-purpose models.

7 Conclusion

Due to the subjective nature of hate speech, no
standard benchmarking exists. We take this oppor-
tunity to explore the patterns in finetuning PLMs
for hate detection through a series of experiments
over five research questions. We hope each experi-
ment in this study lays the ground for future work
to improve our understanding of how PLMs model
hatefulness and their deployment to detect hate.
In the future, we would like to extend our analy-
sis against adversarial settings, bias mitigation, a
broader language set, and auto-regressive LLMs.
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9 Limitations

Despite examining multiple pretraining and fine-
tuning settings in this study, there are certain lim-
itations that we would like to highlight. First and
foremost, the parameters evaluated in this study
regarding PLMs, random seeds, and classification
heads are not exhaustive due to constraints on com-
puting resources. Secondly, due to BERT and
ROBERTA checkpoint variants (Sellam et al., 2022;
Elazar et al., 2023) employed in RQ1-RQ3 being
available only in English, we were constrained to
pick hate speech datasets only in English. While
non-English datasets can be utilized to some ex-
tent in RQ4 and RQ5, there are again constraints
of BERTweet and HateBERT variants being avail-
able in those languages. However, results should
hold on to other hate speech datasets curated from
Twitter. Lastly, we acknowledge that hate speech
datasets (Madukwe et al., 2020) and automatic hate
speech detection (Schmidt and Wiegand, 2017), es-
pecially those derived from PLMs, are not without
flaws. Blind-sided usage of PLM in hate speech de-
tection can further the stereotypes already present
in PLMs (Ousidhoum et al., 2021).

10 Ethical Considerations

Hate speech is a severe issue plaguing society and
needs efforts beyond computational methods from
different factions of researchers and practitioners.
Our aim with this study is not to spread harmful
content, nor do we support the hateful content an-
alyzed in this study. In this regard, we hope our
experiments help build better and more robust hate
speech systems. Further, note that we do not create
any new dataset or model in this study and instead
employ existing publicly available open-sourced
datasets and HuggingFace PLMs in agreement with
their data-sharing licenses. The datasets and mod-
els are duly cited. Further, given the computation-
ally expensive nature of probing and the carbon
footprint incurred, we hope our experiments help
narrow the parameter search for future research.
During our experimentation, care was taken to in-
oculate the code against memory leakage, and early
stopping, where applicable, was invoked.
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A Appendix

A.1 RQ1: Extended Experiments
Table 9 and Table 10 provide a seed-wise
breakdown comparing minimum and maximum
macro F1 scores when employing the multiple-
checkpoints BERT (Sellam et al., 2022) model. In
Table 9, the MLP seed (ms) is constant, but the
pretraining seed (ps) varies and vice-versa in Table
10. It appears that keeping ms constant leads to
more variability in performance than ps.

A.2 RQ2: Extended Experiments
In Figure 6, we showcase the trends for macro
F1 on each dataset when the underlying model is
picked from one of the 84 (x-axis) intermediate
checkpoints (Elazar et al., 2023). While simple and
complex classification heads follow the same pat-
tern overall, a significant difference in maximum
macro F1 is obtained at each checkpoint (compar-
ing simple and complex). The same is recorded in
Table 11. On the one hand, we observe that OLID
and Dynabench have similar performances irrespec-
tive of the CH. On the other hand, Dynabench is a
relatively new human-synthesized and much larger
compared to OLID (10k vs. 800), which is ob-
tained from Twitter. Further, we observe that for
5 datasets, there is a significant improvement in
macro F1 score when employing complex CH in-
stead of simple. In RQ5, we also study this CH’s
effect on other PLM variants.

A.3 RQ3: Extended Experiments
The Online Language Modelling 4 initiative by
Hugging Face is a repository of updated PLM mod-
els and tokenizers that are pretrained on regular
and latest Internet snapshots obtained via Common
Crawl and Wikipedia. The initiative aims to induce
explicit knowledge of newer concepts and updated
factual information in the PLMs. At the time of
compiling this research, the OLM project had 6
models and 19 datasets snapshots contributed to
the repository. Out of these, the two RoBERTa
models released in October 2022 and December
2022 are employed in our research.

A.4 RQ4: Extended Experiments
Figure 7 (a-e) provides an overview of the individ-
ual layer’s contribution to performance when only
the layer under consideration is trainable. Addi-
tionally, Table 12 enlist the per-seed comparison of

4https://huggingface.co/olm

performance, respectively. We observe that there is
no lottery ticket to the best/most critical layer when
examined from the point of view of MLP seeds,
BERT-variants, and datasets.

While in the layer-wise analysis so far, we
looked at trainable layers one at a time, we also
looked at regions of results in a (un)frozen manner
in Figure 8 (a-e) and Table 13.

A.5 RQ 5: Extended Experiments
Figure 9 (a-e) provides an overview of the impact
of classification head architecture on the finetuning
performance. Granular results controlling for MLP
seeds (ms) are enlisted in Table 14.
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Dataset
12 127 451
Min F1 Max F1 ES Min F1 Max F1 ES Min F1 Max F1 ES

Waseem S0: 0.676 S10: 0.731 0.426* S5: 0.709 S15: 0.726 0.131 S0: 0.675 S10: 0.723 0.390*
Davidson S20: 0.759 S15: 0.791 0.441** S10: 0.755 S20: 0.776 0.273* S0: 0.745 S15: 0.786 0.491**
Founta S5: 0.872 S10: 0.886 0.402* S5: 0.876 S20: 0.888 0.356* S0: 0.874 S0: 0.885 0.360*
OLID S20: 0.672 S10: 0.718 0.207 S0: 0.675 S15: 0.725 0.169 S0: 0.647 S10: 0.731 0.287*
Hatexplain S20: 0.634 S15: 0.679 0.687** S5: 0.630 S20: 0.674 0.637** S5: 0.636 S10: 0.680 0.588**
Dynabench S5: 0.653 S20: 0.660 0.153 S5: 0.637 S15: 0.659 0.468** S15: 0.623 S20: 0.654 : 0.600**
Toxigen S20: 0.767 S10: 0.771 0.180 S5: 0.767 S10: 0.771 0.218 S5: 0.767 S10: 0.771 0.228

Table 9: RQ1: Comparison of minimum and maximum macro F1 obtained when the MLP seed (ms) is constant but
the pretraining seed varies (ps). ES stands for effect size. ** and * indicates whether the difference in minimum and
maximum macro F1 is significant by ≤ 0.05 and ≤ 0.001 p-value, respectively.

Dataset
0 5 10 15 20
Min F1 Max F1 ES Min F1 Max F1 ES Min F1 Max F1 ES Min F1 Max F1 ES Min F1 Max F1 ES

Waseem S451: 0.675 S127: 0.709 0.261 S12: 0.691 S127: 0.709 0.126 S127: 0.714 S12: 0.731 0.142 S12: 0.711 S127: 0.726 0.123 S12: 0.686 S127: 0.714 0.217
Davidson S451: 0.745 S127: 0766. 0.232 S127: 0.757 S12: 0.763 0.090 S127: 0.755 S12: 0.772 0.221 S127: 0.757 S12: 0.791 0.435* S451: 0.755 S127: 0.776 0.291*
Founta S12: 0.879 S451: 0.885 0.204 S12: 0.872 S127: 0.876 0.123 S451: 0.884 S127: 0.887 0.093 S12: 0.885 S127: 0.887 0.087 S12: 0.884 S127: 0.888 0.121
OLID S451: 0.647 S127: 0.675 0.089 S451: 0.661 S12: 0.689 0.106 S12: 0.718 S451: 0.731 0.056 S451: 0.692 S127: 0.725 0.141 S12: 0.672 S451: 0.703 0.113
Hatexplain S127: 0.658 S12: 0.674 0.215 S127: 0.630 S12: 0.6664 0.483** S127: 0.640 S451: 0.680 0.504** S127: 0.660 S12: 0.679 0.300* S12: 0.634 S127: 0.674 0.591**
Dynabench S451: 0.648 S127: 0.656 0.181 S127: 0.637 S12: 0.653 0.347* S451: 0.654 S127: 0.657 0.06 S451: 0.625 S127: 0.659 0.701** S127: 0.634 S12: 0.660 0.142
Toxigen S12: 0.769 S127: 0.769 0.034 S451: 0.767 S12: 0.768 0.075 S12: 0.771 S127: 0.771 0.050 S127: 0.770 S12: 0.770 0.032 S12: 0.767 S127: 0.768 0.059

Table 10: RQ1: Comparison of minimum and maximum macro F1 obtained when the pretraining seed (ps) is
constant but the MLP seed (ms) varies. ES stands for effect size. ** and * indicate whether the difference in
minimum and maximum macro F1 is significant by ≤ 0.05 and ≤ 0.001 p-value, respectively.

Dataset
12 127 451
Sim. F1 Com. F1 ES Sim. Max F1 Com. F1 ES Sim. Max F1 Com. F1 ES

Waseem C3: 0.660 C2: 0.734 0.581** C3:0.668 C2:0.738 0.547** C2: 0.691 C2:0.775 0.580**
Davidson C2: 0.739 C2: 0.824 0.953** C2:0.740 C3:0.810 0.852** C2: 0.775 C2:0.764 0.113
Founta C3: 0.871 C2: 0.879 0.278* C2:0.861 C2:0.880 0.613** C3: 0.869 C2:0.878 0.269
OLID C2: 0.661 C2: 0.667 0.110 C2:0.649 C2:0.694 0.242 C2: 0.654 C2:0.672 0.164
Hatexplain C2: 0.640 C2: 0.687 0.599** C2:0.659 C2:0.665 0.088 C4: 0.640 C2:0.694 0.751**
Dynabench C2: 0.626 C2: 0.628 0.010 C2:0.629 C2:0.623 0.123 C2: 0.625 C2:0.631 0.118
Toxigen C2: 0.733 C2: 0.764 1.810** C2:0.732 C2:0.763 1.772** C2: 0.733 C2:0.764 1.835**

Table 11: RQ2: Comparison of maximum macro F1 obtained under varying MLP seed (ms) for the simple (Sim.)
and complex (Com.) classification heads. ES stands for effect size. ** and * indicates whether the difference in
maximum macro F1 is significant by ≤ 0.05 and ≤ 0.001 p-value, respectively.

Dataset Seed
BERT BERTweet HateBERT mBERT
Min F1 Max F1 ES Min F1 Max F1 ES Min F1 Max F1 ES Min F1 Max F1 ES

waseem 12 L6: 0.758 L11: 0.806 0.484** L7: 0.723 L10: 0.786 0.620** L0: 0.758 L10: 0.813 0.558** L4: 0.736 L11: 0.788 0.523**
127 L5: 0.760 L4: 0.806 0.463 L6: 0.700 L11: 0.810 0.944** L1: 0.778 L10: 0.813 0.392* L8: 0.744 L5: 0.793 0.500**
451 L6: 0.760 L4: 0.799 0.379* L1: 0.727 L11: 0.788 0.528** L1: 0.752 L10: 0.813 0.614** L9: 0.732 L5: 0.790 0.582**

davidson 12 L11: 0.887 L1: 0.930 0.837** L6: 0.887 L5: 0.936 0.895** L7: 0.908 L3: 0.932 0.512** L10: 0.852 L2: 0.920 1.36**
127 L2: 0.903 L5: 0.928 0.480** L7: 0.900 L3: 0.935 0.782** L10: 0.904 L5: 0.932 0.561** L8: 0.888 L5: 0.918 0.576**
451 L10: 0.889 L4: 0.931 0.788** L7: 0.905 L3: 0.935 0.671** L7: 0.906 L4: 0.930 0.461** L11: 0.893 L4: 0.923 0.618**

founta 12 L7: 0.916 L4: 0.929 0.488** L8: 0.921 L4: 0.930 0.378* L2: 0.916 L9: 0.928 0.484** L11: 0.890 L4: 0.924 1.121**
127 L0: 0.920 L5: 0.929 0.334* L0: 0.918 L11: 0.928 0.401* L9: 0.923 L4: 0.928 0.232 L10: 0.908 L5: 0.922 0.503**
451 L3: 0.921 L4: 0.928 0.280* L6: 0.920 L3: 0.930 0.441* L11: 0.916 L2: 0.928 0.453 L2: 0.904 L4: 0.918 0.489**

olid 12 L1: 0.742 L9: 0.799 0.359* L0: 0.747 L6: 0.805 0.388* L0: 0.744 L7: 0.797 0.302* L8: 0.700 L3: 0.750 0.220
127 L0: 0.732 L8: 0.793 0.346* L0: 0.760 L9: 0.817 0.323* L6: 0.750 L8: 0.806 0.287* L10: 0.624 L4: 0.755 0.509**
451 L2: 0.748 L11: 0.802 0.321* L1: 0.764 L5: 0.812 0.307* L0: 0.738 L3: 0.804 0.388* L10: 0.681 L4: 0.765 0.493**

hatexplain 12 L4: 0.695 L10: 0.766 1.054** L6: 0.586 L9: 0.770 2.616** L7: 0.638 L4: 0.766 0.1671** L10: 0.647 L7: 0.739 0.1.33**
127 L9: 0.721 L7: 0.763 0.580** L5: 0.717 L9: 0.757 0.559** L4: 0.658 L3: 0.763 1.470** L7: 0.616 L5: 0.736 1.724**
451 L11: 0.639 L4: 0.754 1.524** L2: 0.691 L5: 0.761 1.024** L1: 0.723 L11: 0.765 0.640** L9: 0.616 L7: 0.737 1.782**

dynabench 12 L0: 0.697 L9: 0.746 1.108** L0: 0.705 L9: 0.781 1.859** L1: 0.706 L9: 0.765 1.414** L0: 0.635 L4: 0.717 1.764**
127 L6: 0.665 L10: 0.754 2.006** L0: .710 L11: 0.783 1.614** L0: 0.706 L10: 0.764 1.394** L7: 0.661 L4: 0.719 1.316**
451 L2: 0.699 L9: 0.756 1.335** L0: 0.711 L9: 0.782 1.716** L0: 0.717 L11: 0.770 1.257** L0: 0.691 L4: 0.720 0.633**

toxigen 12 L0: 0.767 L11: 0.806 2.216** L1: 0.780 L11: 0.812 2.026** L0: 0.780 L11: 0.812 2.026** L0: 0.754 L4: 0.777 1.34**
127 L0: 0.769 L11: 0.803 2.044** L1: 0.788 L11: 0.826 2.313** L0: 0.775 L11: 0.816 2.396** L0: 0.746 L5: 0.774 1.619**
451 L0: 0.768 L11: 0.804 2.263** L1: 0.787 L11: 0.826 2.551** L0: 0.778 L11: 0.813 2.343** L0: 0.746 L7: 0.775 1.619**

Table 12: RQ4: Comparison of minimum and maximum macro F1 obtained per MLP seed (ms) per BERT-variant.
ES stands for effect size. ** and * indicates whether the difference in minimum and maximum macro F1 is
significant by ≤ 0.05 and ≤ 0.001 p-value, respectively.
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Figure 6: RQ2: Macro F1 (averaged over MLP seeds ms) attained when finetuning is done on the nth ∈ 1, · · · , 84
checkpoint (Cn). We report the trends on all datasets for simple (yellow) and complex (blue) classification heads.
Performance peaks with early checkpoints around Cn are clearly visible for all configurations.
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Figure 7: RQ4: Extending from Figure 3(a,b) to rest of 5 datasets – Descriptive statistics of macro F1 when
finetuning on top of individual layers of the BERT-variant highlighting the layer (Li) that on average over MLP
seeds (ms) leads to minimum and maximum macro F1. Here the Li is trainable while other layers are frozen.
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Figure 8: RQ4: Extending from Figure 3(c,d) to rest of 5 datasets – -Descriptive statistics of macro F1 when
finetuning while constraining a region of layers to be frozen (Suffix F) or non-frozen while all others are frozen
(Suffix NF) for different BERT-variant highlighting the region (Ri) that on average over MLP seeds (ms) leads to
minimum and maximum macro F1.
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Dataset BERT SEED R1T R1F R1T/F:ES R2T R2F R2T/F:ES R3T R3F R3T/F:ES R4T R4F R4T/F:ES
Waseem BERT 12 0.815 0.816 0.007 0.840 0.820 0.232 0.821 0.822 0.009 0.816 0.814 0.028

127 0.795 0.822 0.298* 0.833 0.801 0.307* 0.786 0.811 0.245 0.803 0.831 0.297*
451 0.831 0.812 0.189 0.824 0.822 0.015 0.828 0.811 0.186 0.824 0.813 0.078

BERTweet 12 0.836 0.799 0.392* 0.814 0.827 0.130 0.831 0.820 0.086 0.812 0.823 0.085
127 0.842 0.803 0.387* 0.831 0.812 0.279* 0.820 0.821 0.066 0.811 0.842 0.352*
451 0.832 0.426 4.936** 0.844 0.819 0.283* 0.818 0.827 0.064 0.821 0.820 0.001

HateBERT 12 0.799 0.812 0.083 0.831 0.823 0.107 0.817 0.812 0.086 0.818 0.799 0.207
127 0.814 0.767 0.432* 0.809 0.820 0.114 0.815 0.829 0.129 0.818 0.828 0.146
451 0.824 0.820 0.034 0.821 0.805 0.152 0.819 0.821 0.029 0.800 0.822 0.224

mBERT 12 0.802 0.798 0.074 0.790 0.801 0.095 0.806 0.793 0.069 0.826 0.806 0.183
127 0.799 0.805 0.037 0.763 0.802 0.370* 0.813 0.794 0.161 0.788 0.802 0.166
451 0.791 0.786 0.022 0.812 0.738 0.733** 0.802 0.798 0.033 0.786 0.797 0.119

Davidson BERT 12 0.926 0.921 0.116 0.919 0.924 0.096 0.454 0.930 13.303** 0.893 0.922 0.551**
127 0.454 0.905 13.147** 0.454 0.921 13.839** 0.927 0.919 0.159 0.454 0.915 11.960**
451 0.918 0.925 0.114 0.932 0.910 0.454* 0.454 0.932 14.392** 0.454 0.923 12.794**

BERTweet 12 0.454 0.926 12.596** 0.454 0.935 13.664** 0.862 0.929 1.251** 0.454 0.931 14.453**
127 0.454 0.924 12.368** 0.454 0.930 15.046** 0.454 0.933 15.144** 0.506 0.933 7.991**
451 0.454 0.929 14.575** 0.454 0.934 15.645** 0.454 0.926 13.377** 0.454 0.882 9.952**

HateBERT 12 0.454 0.919 12.211** 0.454 0.919 12.672** 0.454 0.920 13.229** 0.454 0.928 13.370**
127 0.924 0.924 0.037 0.454 0.934 13.568** 0.454 0.911 12.876** 0.454 0.922 12.962**
451 0.454 0.454 0.000 0.917 0.917 0.026 0.454 0.920 12.774** 0.454 0.919 13.289**

mBERT 12 0.454 0.913 12.393** 0.454 0.925 12.538** 0.483 0.923 9.358** 0.454 0.923 13.992**
127 0.454 0.902 12.214** 0.454 0.916 13.964** 0.454 0.913 10.779** 0.454 0.923 13.322**
451 0.454 0.921 12.280** 0.476 0.916 9.423** 0.457 0.924 11.758** 0.454 0.920 13.139**

Founta BERT 12 0.435 0.875 16.947** 0.435 0.903 22.165** 0.435 0.435 0.000 0.435 0.906 20.983**
127 0.435 0.435 0.000 0.435 0.435 0.000 0.435 0.435 0.000 0.904 0.435 21.930**
451 0.435 0.901 20.681** 0.435 0.904 21.262** 0.435 0.435 0.000 0.435 0.435 0.000

BERTweet 12 0.435 0.435 0.000 0.435 0.435 0.000 0.435 0.435 0.000 0.435 0.755 9.979**
127 0.435 0.435 0.000 0.435 0.435 0.000 0.435 0.435 0.000 0.435 0.435 0.000
451 0.435 0.435 0.000 0.435 0.435 0.000 0.435 0.435 0.000 0.435 0.553 3.100**

HateBERT 12 0.435 0.435 0.000 0.435 0.435 0.000 0.435 0.910 19.936** 0.435 0.435 0.000
127 0.435 0.435 0.000 0.435 0.915 24.121** 0.435 0.873 16.404** 0.435 0.871 15.600**
451 0.435 0.435 0.000 0.435 0.905 22.709** 0.435 0.794 11.383** 0.435 0.889 19.753**

mBERT 12 0.435 0.834 13.390** 0.758 0.435 9.584** 0.435 0.877 16.618** 0.435 0.435 0.000
127 0.435 0.435 0.000 0.435 0.854 14.137** 0.435 0.435 0.000 0.435 0.435 0.000
451 0.435 0.895 19.070** 0.435 0.435 0.000 0.435 0.435 0.000 0.435 0.909 20.701**

OLID BERT 12 0.737 0.740 0.008 0.773 0.795 0.075 0.777 0.767 0.008 0.778 0.790 0.081
127 0.755 0.762 0.052 0.786 0.765 0.103 0.783 0.775 0.093 0.767 0.785 0.085
451 0.771 0.777 0.019 0.768 0.800 0.186 0.771 0.798 0.061 0.775 0.794 0.134

BERTweet 12 0.774 0.419 1.535** 0.808 0.803 0.020 0.419 0.825 1.950** 0.773 0.815 0.307*
127 0.792 0.419 1.644** 0.419 0.814 1.776** 0.419 0.815 1.846** 0.419 0.812 1.797**
451 0.804 0.419 1.704** 0.810 0.811 0.048 0.790 0.806 0.155 0.419 0.804 1.749**

HateBERT 12 0.787 0.479 1.254** 0.419 0.770 1.409** 0.764 0.765 0.015 0.770 0.795 0.187
127 0.749 0.749 0.042 0.776 0.788 0.047 0.756 0.762 0.050 0.751 0.789 0.239
451 0.769 0.766 0.023 0.795 0.793 0.024 0.783 0.787 0.062 0.419 0.765 1.435**

mBERT 12 0.715 0.735 0.094 0.681 0.678 0.057 0.704 0.775 0.244 0.740 0.769 0.163
127 0.780 0.727 0.230 0.707 0.763 0.266 0.419 0.756 1.276** 0.758 0.761 0.015
451 0.419 0.419 0.000 0.764 0.771 0.035 0.432 0.772 1.343** 0.730 0.736 0.069

Hatexplain BERT 12 0.747 0.746 0.004 0.769 0.776 0.133 0.431 0.753 4.846** 0.762 0.758 0.058
127 0.770 0.393 7.340** 0.718 0.783 0.945** 0.393 0.721 5.729** 0.733 0.750 0.240
451 0.769 0.758 0.180 0.747 0.776 0.400* 0.393 0.779 8.101** 0.759 0.702 0.817**

BERTweet 12 0.775 0.393 7.975** 0.767 0.775 0.137 0.393 0.787 8.366** 0.393 0.769 6.704**
127 0.739 0.393 6.839** 0.393 0.501 2.289** 0.393 0.779 8.771** 0.393 0.794 8.514**
451 0.394 0.393 0.052 0.739 0.778 0.549** 0.393 0.791 8.459** 0.393 0.722 5.741**

HateBERT 12 0.758 0.752 0.099 0.755 0.780 0.406* 0.753 0.771 0.271 0.739 0.751 0.159
127 0.768 0.754 0.144 0.725 0.757 0.411* 0.762 0.770 0.150 0.761 0.760 0.012
451 0.760 0.393 6.310** 0.747 0.776 0.407* 0.768 0.777 0.129 0.737 0.780 0.695**

mBERT 12 0.739 0.719 0.285* 0.393 0.732 7.035** 0.582 0.736 2.129** 0.676 0.721 0.676**
127 0.740 0.393 6.895** 0.593 0.639 0.598** 0.682 0.752 0.934** 0.393 0.738 6.722**
451 0.734 0.745 0.179 0.732 0.737 0.090 0.393 0.746 7.218** 0.719 0.731 0.198

Dynabench BERT 12 0.317 0.349 1.573** 0.349 0.318 1.506** 0.349 0.768 12.256** 0.349 0.760 12.166**
127 0.349 0.349 0.000 0.349 0.732 11.640** 0.349 0.713 12.153** 0.317 0.771 13.692**
451 0.349 0.349 0.000 0.349 0.688 10.104** 0.349 0.349 0.000 0.349 0.771 13.173**

BERTweet 12 0.498 0.349 3.944** 0.349 0.349 0.000 0.349 0.765 14.378** 0.349 0.795 15.670**
127 0.317 0.317 0.000 0.349 0.730 10.885** 0.349 0.349 0.000 0.349 0.813 15.126**
451 0.349 0.349 0.000 0.317 0.349 1.571** 0.349 0.777 14.698** 0.349 0.392 1.469**

HateBERT 12 0.349 0.691 10.451** 0.349 0.349 0.000 0.349 0.775 13.318** 0.349 0.781 14.576**
127 0.349 0.349 0.000 0.349 0.727 11.989** 0.349 0.752 11.896** 0.349 0.785 13.631**
451 0.317 0.349 1.571** 0.349 0.748 12.493** 0.349 0.742 10.092** 0.349 0.787 13.536**

mBERT 12 0.349 0.367 0.673** 0.349 0.349 0.009 0.349 0.666 9.274** 0.349 0.716 10.999**
127 0.349 0.619 7.138** 0.349 0.349 0.000 0.349 0.675 9.671** 0.349 0.723 12.271**
451 0.317 0.349 1.571** 0.349 0.380 1.141** 0.349 0.709 9.804** 0.349 0.724 11.119**

Toxigen BERT 12 0.333 0.333 0.045 0.333 0.333 0.000 0.333 0.333 0.000 0.333 0.333 0.045
127 0.333 0.333 0.000 0.333 0.333 0.045 0.333 0.333 0.000 0.333 0.333 0.000
451 0.333 0.333 0.000 0.333 0.333 0.000 0.333 0.333 0.045 0.333 0.333 0.045

BERTweet 12 0.333 0.333 0.045 0.333 0.333 0.000 0.333 0.333 0.045 0.333 0.333 0.000
127 0.333 0.333 0.000 0.333 0.333 0.045 0.333 0.333 0.000 0.333 0.333 0.045
451 0.333 0.333 0.045 0.333 0.333 0.045 0.333 0.333 0.000 0.333 0.333 0.045

HateBERT 12 0.333 0.333 0.000 0.333 0.333 0.045 0.333 0.599 16.715** 0.333 0.333 0.000
127 0.333 0.333 0.045 0.333 0.333 0.000 0.333 0.333 0.045 0.333 0.333 0.045
451 0.333 0.333 0.000 0.333 0.333 0.000 0.333 0.333 0.045 0.333 0.333 0.045

mBERT 12 0.333 0.333 0.000 0.333 0.333 0.045 0.333 0.333 0.000 0.333 0.333 0.000
127 0.333 0.333 0.000 0.333 0.333 0.000 0.333 0.333 0.000 0.333 0.333 0.045
451 0.333 0.333 0.000 0.333 0.333 0.000 0.333 0.333 0.045 0.333 0.333 0.000

Table 13: RQ4: Comparison of regional-wise macro F1 obtained under varying MLP seed (ms) for the BERT-
variants. We measure the impact on performance when a region R is set to trainable or unfrozen (T ) vs. when it is
non-trainable or frozen. ES stands for effect size. Further ** and * indicates whether the difference in macro F1 is
significant by ≤ 0.05 and ≤ 0.001 p-value, respectively.
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Dataset BERT-variant Seed CHS: F1 CHM: F1 CHC: F1 CCS,M: ES CCM,C: ES CCC,S: ES
Waseem BERT 12 0.703 0.752 0.773 0.481** 0.201 0.667**

127 0.668 0.766 0.776 0.627** 0.066 0.704**
451 0.697 0.765 0.767 0.533** 0.030 0.552**

BERTweet 12 0.455 0.718 0.715 2.514** 0.016 2.463**
127 0.454 0.734 0.731 2.939** 0.070 2.609**
451 0.429 0.689 0.725 2.516** 0.343* 3.200**

HateBERT 12 0.737 0.771 0.783 0.313* 0.119 0.433*
127 0.751 0.781 0.787 0.236 0.073 0.319*
451 0.752 0.775 0.779 0.254 0.019 0.280*

mBERT 12 0.666 0.738 0.742 0.621** 0.014 0.622**
127 0.639 0.742 0.750 0.896** 0.066 0.972**
451 0.644 0.742 0.744 0.832** 0.026 0.858**

Davidson BERT 12 0.781 0.722 0.811 0.800** 1.229** 0.453*
127 0.768 0.789 0.811 0.272 0.290* 0.558**
451 0.771 0.813 0.738 0.551** 0.905** 0.355*

BERTweet 12 0.604 0.693 0.741 0.968** 0.480** 1.472**
127 0.701 0.777 0.821 0.937** 0.602** 1.593**
451 0.626 0.786 0.797 1.802** 0.165 1.979**

HateBERT 12 0.824 0.842 0.850 0.275 0.148 0.423*
127 0.825 0.832 0.818 0.111 0.186 0.070
451 0.813 0.829 0.843 0.195 0.200 0.397*

mBERT 12 0.724 0.759 0.723 0.428* 0.443* 0.018
127 0.698 0.764 0.713 0.850** 0.670** 0.127
451 0.713 0.723 0.754 0.135 0.389* 0.522**

Founta BERT 12 0.891 0.892 0.892 0.030 0.010 0.040
127 0.890 0.894 0.891 0.168 0.128 0.046
451 0.892 0.893 0.894 0.028 0.042 0.069

BERTweet 12 0.861 0.876 0.873 0.383* 0.080 0.301*
127 0.855 0.879 0.873 0.693** 0.157 0.523**
451 0.863 0.870 0.873 0.174 0.078 0.261

HateBERT 12 0.886 0.888 0.890 0.047 0.074 0.126
127 0.883 0.886 0.888 0.086 0.053 0.134
451 0.881 0.884 0.885 0.074 0.040 0.118

mBERT 12 0.840 0.849 0.846 0.224 0.058 0.162
127 0.839 0.849 0.845 0.267 0.108 0.168
451 0.840 0.852 0.848 0.327* 0.108 0.209

OLID BERT 12 0.672 0.685 0.720 0.028 0.154 0.185
127 0.675 0.708 0.672 0.165 0.185 0.023
451 0.640 0.733 0.677 0.311* 0.149 0.145

BERTweet 12 0.419 0.674 0.630 1.051** 0.160 0.817**
127 0.506 0.722 0.608 1.015** 0.530** 0.412*
451 0.453 0.707 0.582 0.966** 0.483** 0.455**

HateBERT 12 0.659 0.742 0.730 0.421* 0.074 0.341*
127 0.623 0.712 0.726 0.388* 0.097 0.503**
451 0.674 0.699 0.726 0.147 0.113 0.260

mBERT 12 0.507 0.555 0.591 0.172 0.162 0.328*
127 0.538 0.617 0.647 0.239 0.117 0.348*
451 0.574 0.614 0.504 0.125 0.353* 0.226

hatexplain label BERT 12 0.661 0.661 0.685 0.010 0.358* 0.363*
127 0.677 0.679 0.676 0.045 0.037 0.009
451 0.674 0.688 0.692 0.230 0.035 0.274

BERTweet 12 0.621 0.663 0.655 0.551** 0.112 0.437*
127 0.616 0.651 0.619 0.478** 0.430* 0.036
451 0.626 0.680 0.683 0.764** 0.031 0.763**

HateBERT 12 0.691 0.697 0.714 0.076 0.228 0.309*
127 0.677 0.705 0.709 0.391* 0.067 0.450*
451 0.708 0.715 0.724 0.097 0.150 0.238

mBERT 12 0.655 0.660 0.663 0.052 0.047 0.101
127 0.658 0.670 0.658 0.163 0.163 0.002
451 0.647 0.654 0.637 0.086 0.240 0.155

Dynabench BERT 12 0.658 0.673 0.663 0.316* 0.219 0.086
127 0.648 0.637 0.681 0.226 0.851** 0.640**
451 0.663 0.663 0.674 0.020 0.201 0.231

BERTweet 12 0.622 0.628 0.564 0.128 1.271** 1.105**
127 0.590 0.607 0.496 0.381* 2.464** 2.076**
451 0.571 0.611 0.608 0.825** 0.065 0.771**

HateBERT 12 0.686 0.707 0.703 0.493** 0.095 0.367*
127 0.681 0.657 0.702 0.512** 0.969** 0.461*
451 0.685 0.709 0.696 0.532** 0.282* 0.232

mBERT 12 0.641 0.644 0.547 0.052 1.894** 1.908**
127 0.577 0.648 0.649 1.621** 0.018 1.514**
451 0.626 0.650 0.648 0.490** 0.036 0.459*

Toxigen BERT 12 0.777 0.800 0.801 1.407** 0.052 1.468**
127 0.776 0.802 0.802 1.450** 0.003 1.509**
451 0.778 0.801 0.801 1.368** 0.000 1.407**

BERTweet 12 0.753 0.770 0.770 0.898** 0.062 0.916**
127 0.753 0.770 0.769 0.723** 0.027 0.670**
451 0.753 0.771 0.772 1.033** 0.045 1.111**

HateBERT 12 0.776 0.806 0.809 1.882** 0.182 1.986**
127 0.777 0.807 0.808 1.557** 0.116 1.989**
451 0.777 0.806 0.807 1.534** 0.070 1.539**

mBERT 12 0.735 0.757 0.758 1.182** 0.061 1.233**
127 0.736 0.757 0.758 1.228** 0.017 1.250**
451 0.736 0.756 0.758 1.134** 0.140 1.329**

Table 14: RQ5: Comparison of maximum macro F1 obtained under varying MLP seed (ms) for the simple (S),
medium (M ) and complex (C) classification heads (CH). CHx,y captures the difference in performance when
comparing the given configuration under heads x and y. ES stands for effect size. ** and * indicates whether the
difference in maximum macro F1 is significant by ≤ 0.05 and ≤ 0.001 p-value, respectively.
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Figure 9: RQ5: Extending from Figure 5 to rest of 5 datasets – Macro F1 scores (averaged over MLP seeds ms)
employing BERT-variants (BERT, BERTweet, HateBERT, and mBERT). Classification heads of varying complexity
(simple, medium, and complex) are utilized to capture their effect on BERT-variants employed for hate detection.
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