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Abstract

Data Augmentation (DA) is frequently used
to provide additional training data without ex-
tra human annotation automatically. However,
data augmentation may introduce noisy data
that impairs training. To guarantee the qual-
ity of augmented data, existing methods either
assume no noise exists in the augmented data
and adopt consistency training or use simple
heuristics such as training loss and diversity
constraints to filter out “noisy” data. However,
those filtered examples may still contain use-
ful information, and dropping them completely
causes a loss of supervision signals. In this pa-
per, based on the assumption that the original
dataset is cleaner than the augmented data, we
propose an on-the-fly denoising technique for
data augmentation that learns from soft aug-
mented labels provided by an organic teacher
model trained on the cleaner original data. To
further prevent overfitting on noisy labels, a
simple self-regularization module is applied
to force the model prediction to be consistent
across two distinct dropouts. Our method can
be applied to general augmentation techniques
and consistently improve the performance on
both text classification and question-answering
tasks'.

1 Introduction

The development of natural language understand-
ing (NLU) comes along with the efforts in curating
large-scale human-annotated datasets (Brown et al.,
2020; Srivastava et al., 2022). The performance
of NLP models usually highly correlates with the
quantity and quality of training data. However,
human data annotations are usually expensive to
acquire and hard to scale (Paulheim, 2018). To
address this challenge, automatic data augmenta-
tion becomes an attractive approach to effectively

* Work done when visiting USC.
'Our code is available at https://github.com/
luka-group/ODDA-Data-Augmentation
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Figure 1: An example in a sentiment classification task
about the noise brought by text-editing data augmenta-
tion. The noisy augmented text has the probability of
being a “positive” attitude due to the removal of “not”.

increase the scale of training data, and improve the
performance of neural models, particularly in low-
resource scenarios (Wei and Zou, 2019; Xie et al.,
2020a; Yang et al., 2020; Feng et al., 2021).

However, automatic data augmentation tech-
niques, regardless of token-level (Wei and Zou,
2019; Xie et al., 2020a) or sentence-level (Sennrich
et al., 2016; Yang et al., 2020) ones, may intro-
duce noise to the augmented data. For example, in
text classification or sentiment analysis tasks, alter-
ing or removing some decisive words can change
the original label (Troiano et al., 2020). In addi-
tion, automatic data augmentation may distort the
core semantic meaning or impair the fluency of
the original text, leading to meaningless data in-
stances (Bayer et al., 2021).

To improve the quality of augmented data, var-
ious filtering techniques have been developed to
select a subset of high-quality data. Typical filter-
ing paradigms design an uncertainty- or diversity-
based metric to select data examples, for which the
metric could be the loss of the task model trained
on the original data (Zhao et al., 2022; Kamalloo
et al., 2022), diversity of the augmented data (Zhao
et al., 2022; Yang et al., 2020; Kim et al., 2022), in-
fluence functions (Yang et al., 2020), and logit con-
sistency across multiple trained models (Li et al.,
2020; Zhou et al., 2021). However, data filtering
mechanisms set a discrete threshold and potentially
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discard examples that the model can still acquire
signals from using properly designed denoising
objectives (Li et al., 2020). Alternative solutions
to continuously re-weighting (Yi et al., 2021) aug-
mented data or adopting consistency training (Xie
et al., 2020a) often focus solely on the learnability
of data or assume noisy examples should have the
same label as the original ones, rather than mitigat-
ing their noise.

In this paper, we address the problem of learning
from noisy augmented data without (1) the effort of
producing extra augmentations for filtering and (2)
the risk of losing useful supervision signals from
examples that are discretely filtered out. Noisy data
augmentation does not necessarily lead to a hard
flipped label but a soft change in the original la-
bel distribution, as illustrated in Fig. 1. Therefore,
we propose a soft noisy label correction framework
called On-the-fly Denoising for Data Augmentation
(ODDA), which distills task signals to noisy aug-
mented instances and proactively mitigates noise.
Different from the learning from noisy label (LNL)
setting in fully supervised (Wang et al., 2019a,b;
Zhou and Chen, 2021) or distantly supervised train-
ing (Meng et al., 2021), in data augmentation, the
original dataset is cleaner and offers a natural dis-
tributional prior for estimating the noise level of
augmented data, since the purpose of training data
creation always involves approximating the data
distribution in test time. This assumption is also
used in other works such as NoisyStudent (Xie
et al., 2020b). To leverage such signals, we pro-
pose an Organic Distillation” module that uses a
teacher model finetuned on the cleaner original
dataset to provide soft labels for augmented data,
where noisy data are softly relabeled to prevent
the student model from overfitting to wrong labels.
Besides augmentation noise, the original data and
organic distillation may also bring the noise. To ad-
dress this issue, we further add a dropout-enabled
self-regularization objective to force the predicted
label distributions to be similar across two different
dropout masks. It is based on the observations that
noisy labels may be forgotten during training or
by perturbations, and self-regularization will force
the consistency between perturbations and improve
noise robustness (Aghajanyan et al., 2021).

To summarize, the contributions of this paper are
three-fold. First, we cast light on the problem of

2We call it organic as the teacher model for distillation is
trained on the original dataset.

learning from noisy augmented data with soft label
correction instead of discretely filtering them out.
Second, we propose a simple yet effective on-the-
fly denoising technique that continuously distills
useful task signals to noisy augmentations, coupled
with a self-regularization loss to reduce overfitting
to noise in general. Third, we conduct extensive
experiments on two NLU tasks, text classification
and question answering, and show the effectiveness
of our method for denoising both representative
token-level and sentence-level data augmentation
techniques.

2 Related Works

Data Augmentation and Filtering Recent stud-
ies on data augmentation for NLP have led to two
main paradigms: token-level augmentation and
sentence-level augmentation (Chen et al., 2021).
Token-level augmentation conduct text editing on
tokens from the input text. Such techniques include
using synonym replacement (Zhang et al., 2015;
Wang and Yang, 2015; Kobayashi, 2018) and word
replacement with contextualized embedding or a
masked language model (Yi et al., 2021; Kumar
et al., 2020), etc. Particularly, EDA (Wei and Zou,
2019) combines paraphrasing and random dele-
tion, insertion, and swapping to perturb the text
for augmentation. Sentence-level augmentation,
on the other hand, modifies the whole sentence
at once. Methods include paraphrase-based aug-
mentation techniques such as back-translation (Sen-
nrich et al., 2016; Yu et al., 2018) and paraphrase
generation (Prakash et al., 2016). Another popu-
lar approach is to use conditional text generation
models finetuned on the task dataset to automat-
ically synthesize more training data. It has been
applied to tasks such as text classification (Anaby-
Tavor et al., 2020; Kumar et al., 2020), machine
reading comprehension (Puri et al., 2020) , rela-
tion extraction (Hu et al., 2023), commonsense
reasoning (West et al., 2022; Yang et al., 2020),
and dialogue systems (Kim et al., 2023). An-
other line of research operates on the embedding
space. MIXUP-related augmentation generates
augmented samples based on interpolating word
embedding and label embedding vectors (Chen
et al., 2020; Si et al., 2021). Instead of focusing on
concrete augmentation techniques, our paper study
denoising synthetic data provided by any data aug-
mentation method.
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Figure 2: Overview of our ODDA framework.

Learning with Noisy Labels In the field of NLP,
particularly in low-resource settings, it is necessary
to address the challenge of handling noisy labels de-
rived from inaccurate annotations (Zhou and Chen,
2021), pseudo labels (Li et al., 2020), weak la-
bels (Zeng et al., 2022), augmented data (Kamalloo
et al., 2022), and other sources. Various techniques
have been developed to combat labeling noise in
NLP datasets. Filtering-based techniques identify
noisy examples through training dynamics or latent
space features and then filter them out to produce a
cleaner and more selective training dataset. Such
techniques are based on prediction consistency of
different models (Zhou et al., 2021), loss-based
uncertainty estimation (Han et al., 2018), and fea-
ture or representation-based outlier detection (Wu
et al., 2020; Feng et al., 2021; Wang et al., 2022a).
Besides noise filtering, an alternative approach to
learning from noisy labels is to add an auxiliary
learning objective to improve the noise robustness
of a supervised model. Techniques of this kind
include mixing up noisy examples (Zhang et al.,
2018), consistency training (Xie et al., 2020a,b), co-
regularization (Zhou and Chen, 2021), curriculum
loss (Lyu and Tsang, 2020), and semi-supervised
training on noisy data (Li et al., 2020).

In data augmentation, recent studies have sug-
gested using a filtering mechanism to select high-
quality synthetic data from potentially noisy ones.
Typical filters include diversity (Zhao et al., 2022),
task loss (Fang et al., 2022), consistency between
two models (Wang et al., 2022b), influence func-
tion (Yang et al., 2020), similarity with original
data (Avigdor et al., 2023), and the alignment of the
fully augmented Jacobian with labels/residuals (Liu
and Mirzasoleiman, 2022). Instead of filtering,
our method continuously learns from noisy labels
with a cleaner teacher model and a denoising ob-
jective without discarding noisy instances, thus can
more sufficiently acquire supervision signals from
all augmented instances. Our work also differs
from consistency training, which assumes that aug-

mented data, even if noisy, should have similar
predictions to the original instances. In contrast,
we aim to mitigate such noise, which runs counter
to the objective of consistency training.

3 Method

This section introduces the problem formulation
(§3.1) and our ODDA framework (§3.2-§3.3).

3.1 Problem Formulation

We consider the problem formulation of general
text classification tasks. We denote the dataset as
D = {(zi,vi)},i =1, ,n, where z; is the input
text, y; € ) is the label of z; from the pre-defined
label set ), and n is the number of instances in the
dataset. A data augmentation algorithm derives an
augmented dataset D' = {(z},y/)},i=1,--- ,kn
from the original dataset D, with an amplification
factor k£ denoting that for each data instance we
generate k augmentations. We use both the orig-
inal dataset D and the augmented dataset D’ to
train the classifier. Other NLU tasks, such as sen-
timent analysis, multiple-choice question answer-
ing, and natural language inference, can be easily
converted to a text classification paradigm. For
example, multiple-choice question answering can
be converted to text classification by treating each
question-answer pair as an input instance.

3.2 On-the-fly Denoising

This subsection introduces the details of our On-
the-fly Denoising for Data Augmentation (ODDA)
framework. ODDA first trains an (organic) teacher
model on the original dataset and then uses this
teacher model to assign soft labels to the aug-
mented dataset. During the learning process of aug-
mented data, the model is jointly trained with two
denoising objectives, where one is a cross-entropy
loss on the distilled soft labels, and the other is
a self-regularization loss to encourage robustness
and consistency across two different dropout masks
to automatically correct the noisy labels. The latter
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is important as the teacher model may also bring
the noise to the soft labels, and self-regularization
can serve as a general denoising channel for both
forms of noise. An overview illustration of ODDA
is shown in Fig. 2.

Organic Distillation (OD). The first component
of our framework is Organic Distillation. We
first train a teacher model on the original train-
ing dataset D. The resulting model (the organic
teacher), denoted as T', uses the same model ar-
chitecture as the later student model. Denote
z = fr(x) as the function that produces logits
z given input z using the teacher model 7'. For an
instance z, the teacher model can predict the soft
probability over the label set )V with a temperature-
controlled softmax g(z, 7):

exp (2y/7)

.
o

Ay :g(sz)y = Z

where g, is a predicted probability of a class y
from ), 7T is a temperature hyperparameter where
a larger temperature results in a smoother distribu-
tion. Specifically, we omit 7 = 1 in g(-,7), and
use g(x) to represent the standard softmax function.
We denote f(x) as the student model that produces
logits, and the loss function as cross-entropy loss
lce(p, q) = —(qlogp+ (1 —q)log(1—p)), where
p denotes the ground labels and ¢ denotes the pre-
dicted probabilities.

Organic distillation distills knowledge from the
organic teacher model to the augmented data. As
the original dataset is inherently of better quality
than the augmented data, it can be used to provide a
distributional prior on the level of noisiness in aug-
mented data, thus calibrating the learning process
of data augmentation and preventing overfitting the
labeling noise. For an augmented data instance
(', y), we first compute the soft probabilities pre-
dicted by the organic teacher as ¢’ = g(fr(z), 1),
as in equation (1). Then p’ = g(f(x)) is the prob-
ability distribution over the label set ) predicted by
the student model when training on synthetic data.
Then the corresponding loss function of organic
distillation on the augmented example z’ is:

Lop(z") =lce(p’, q)
=ice(9(£@)), 9(fr@),7)). @

Algorithm 1 On-the-fly DA Denoising (ODDA)

Input: Teacher model fr(-), student model f(-), original
dataset D = {(zi,y:)},i = 1,- -+, n, augmented
dataset D’ = {(zj,yi)},i =1, -+, kn, OD tem-
perature 7, SR coefficient «. Max training steps
for the organic teacher st and the student ss.

Output: The trained student model f(-)

1: Initialize the teacher model fr(-)

2: 50 > Training steps for OD
3: while s < s7 do

4 Sample a batch B from {(z;,y:)}

5: Train fr(-) with cross-entropy loss on B

6: end while

7: s+ 0 > Training steps for Denoising
8 D+ {(z0 )} U{(2h ) > Mix D & D'
9: while s < ss do

10:  Sample a batch B’ from D™

11 Train f(-) with loss in Eq. (4) on B’ with Organic
Distillation and Self-Regularization to do deonising

12: end while

Self-Regularization (SR). As the OD module
may also introduce noise to the learning process,
we introduce another general denoising channel.
Recent studies have shown that noisy instances
generally tend not to be “memorized” easily by
machine learning models, and are frequently “for-
getten” given small perturbations (Xie et al., 2020a;
Aghajanyan et al., 2021) and along with the train-
ing steps (Zhou and Chen, 2021). The often incon-
sistent characteristics of noisy instances over the
learning curve is mainly attributed to their contra-
diction to the model’s overall task inductive bias
represented coherently by the clean data. To mit-
igate the impact of noise from individual data in-
stances, inconsistent outputs resulting from small
perturbations should be corrected." Instead of fil-
tering noisy examples out with the risk of losing
useful information, we learn from noisy (and clean)
examples with an additional objective by bounding
the model’s output to be consistent under small per-
turbations. Following R-Drop (Liang et al., 2021),
the perturbations are introduced with dropout, and
a regularization loss forcing the model prediction
to be consistent across two different dropout out-
puts is adopted®. Denote d(f(x)) as the function
that outputs the predicted probability distribution
under a dropout mask d, and d; is the ¢-th dropout
mask. Then the self-regularization loss is defined as
the Kullback-Leibler (KL) divergence between the
average probability distribution of the m dropout
operations and the output of each dropout:

3A detailed explanation and theoretical analysis to self-
regularization is presented in Appx. §B.
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3.3 Joint Training

In the end, the model is jointly trained with the OD
and SR objectives on the original dataset {(z;,v;)}
and the augmented dataset {(z}, y}) }:

Z ESR (l’;) . (4)

The overall loss function is the sum of the cross-
entropy loss on the original data with hard labels,
the cross-entropy loss of the augmented data with
soft labels distilled with the organic teacher, and
the KL divergence between the average probabil-
ity across m different dropouts and each of the
m dropouts. Here [cg(+) is the cross-entropy loss
function, n is the number of original examples and
k is the amplification factor for data augmentation,
and « is a hyper-parameter to control the effect
of self-regularization. In the third term, the SR is
applied to both the original and augmented data,
where the number of instances n + kn indicates
the collection of both the original and augmented
data. Though we derive these formulations based
on the text classification task, in multiple-choice
QA tasks, the formulation can be accordingly con-
verted to a c-class classification task, where c is the
number of choices per question. The algorithm is
outlined in Alg. 1.

4 Experiments

This section introduces experimental settings and
results analysis. ~We evaluate on two repre-
sentative tasks in NLU, few-shot text classifica-
tion (Section §4.1) and multiple-choice (common-
sense) question answering (Section §4.2). We use
EDA (Wei and Zou, 2019) as a representative token-
level based augmentation method for text classifi-
cation, and use Generative Data Augmentation (G-
DAUG) (Yang et al., 2020) to explore task-aware

sentence-level augmentation methods for hard QA
tasks that require commonsense reasoning abili-
ties. In Section §4.3, we provide ablation studies to
show the effect of ODDA under synthetic noise on
augmented data, the influence of hyperparameters,
and the effect of denoising modules.

4.1 Text Classification

Setup. Following the previous work (Zhao et al.,
2022), we use five text classification datasets:
TREC (Li and Roth, 2002) (Question classifica-
tion, n=5,452), Irony (Hee et al., 2018) (Tweets
Irony Classification, n=3,817), AGNews (Zhang
et al., 2015) (News Classification, n=120,000),
Sentiment (Rosenthal et al., 2017) (Tweets Senti-
ment Analysis, n=20,631), and Offense (Founta
et al., 2018) (Tweets Offense Detection, n=99,603).
We randomly sample different proportions of each
dataset for experiments to fully demonstrate the ef-
fect of data augmentation, where the percentage in
Tab. 1 (%) indicates the percentage of data sampled
for training, leading to around 100 and 1000 exam-
ples sampled for the two few-shot proportions, re-
spectively. BERT-base (Devlin et al., 2019) is used
as the backbone model for all the text classification
experiments, which is incorporated with EDA (Wei
and Zou, 2019) for data augmentation. The aug-
mentation probability of the four edit operations in
EDA is equally set as 0.05. We report the average
macro-F1 across five different random seeds and
the standard deviation in subscripts. Each original
data example is associated with £ = 3 augmented
data. The OD temperature 7 is searched within
{0.5, 1, 2, 3}, and the SR « is searched within {5,
10, 20, 50, 100}. Early stopping is used to select
the model with the best performance. More hyper-
parameters are shown in Appx. §A.1.

Baselines. We compare three types of base-
line denoising techniques, which are filtering, re-
weighting, and consistency training. For filtering,
we use EPiDA (Relative Entropy Maximization
+ Conditional Entropy Minimization, Zhao et al.
(2022)), Glitter (selecting augmented data with
higher task loss, Kamalloo et al. (2022)), Large-
loss (select augmented data with small loss, Han
et al. (2018)), to filter out low-quality augmented
training data. For re-weighting, we use the re-
weighting factors in Yi et al. (2021), where ex-
amples with larger training loss are given larger
weights. For consistency training (denoted as Con-
sist.), we use the idea in Unsupervised Data Aug-
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Method TREC Trony AGNews Sentiment Offense
1% 10% 1% 10% 0.05% 0.1% 1% 10% 0.1% 1%
Sup. 60.64 1060 90.531047 55481105 63.141099 84.051047 86.431007 54.104120 65.56102 51911953 64.3540.12
Data Augmentation

EDA 61.681029 93.831063 57.071066 64.551+052 84.01 1018 86.43 1007 56.57+075 65.80+0.14 51.861037 64.6110.15
EPiDA 64.92 1050 93.9640.18 58.251095 64.721058 84.511031 86.6810.19 57.204032 65.58 1024 51.551049 64.4510.16
Glitter 64.164020 93.551006 58.761044 64.73 1095 84.841032 87.004+029 57.734031 65.524020 51.694042 64.451015
Large-loss 62.21+171 94.064+190 57.07 4213 64.424128 83.484097 86.43 1028 57.134127 65.66+049 51.784077 64.49+0.41
Re-weight 64.37+160 95284097 58.144234 64.564173 84.45+1.12 86.821050 56.814+150 65.55+150 51.7041.10 64.54+1043
Consist. 65.551081 95.154090 58.324171 64.504124 84.34 1078 86.451026 57.104126 65.64 1046 51.861908 64.6640.43

Denoising Data Augmentation (EDA as the DA algorithm)
Ours (OD) 65.17+125 95.024142 58.514267 64.7310.18 84.911044 86.84 1026 57.094+163 65.68+051 52.134143 65.164064
Ours (SR)  65.87£122 95.504068 57.51 L1020 64241061 84.801057 86.751057 57.4241.00 65. 741027 52.011099 65.061049
Ours (both) 67.16+037 96.041003 60.66.+ 43 65.54.1037 86.301013 87.1410.17 57.17 1037 65.901019 52.341 053 65.431029

Table 1: Performance of different filtering and re-weighting methods on the five text classification datasets, where
EDA is used as the base data augmentation algorithm for all methods. 1% means using 1% of the original training
data for training. We report the average f1 score across five different random seeds.

mentation (UDA; Xie et al., 2020a) to add a con-
sistency loss between original examples and the
corresponding augmented examples. More details
are provided in Appx. §A.1.

Results and Analysis. The main experimental
results of text classification are presented in Tab. 1.
First, we can see that ODDA can provide remark-
able improvements over EDA, the base data aug-
mentation method without any filtering or denois-
ing. The notable improvement of F1 2.5% increase
in average for the smaller few-shot split and 1.0%
F1 increase in average for the larger few-shot split
over EDA indicate the importance of addressing
the noise issue in augmented data.

Second, ODDA outperforms filtering-based
baselines (EPiDA, Glitter, and Large-loss) in all
datasets and splits except for the 1% Sentiment.
Note that these baselines need to select & = 3
augmented examples per original example from a
candidate pool of 50 EDA-generated augmented ex-
amples per original example, while in our method
directly generates the kK = 3 augmented examples
per original instance. Those filtering baselines are
more costly and require generating 16 times more
augmentations than our method to perform filtering.
We can conclude that learning with a denoising ob-
jective for data augmentation can be far more data
efficient than filtering by exploiting the denoising
training signals from noisy examples without filter-
ing them out.

Third, ODDA outperforms re-weighting and
Consist. by a large margin. These two methods
adopt an opposite idea of denoising to some ex-

tent. For re-weighting, augmented examples with
larger training loss, which can be regarded as more
noisy (Shu et al., 2019), will be up-weighted dur-
ing training, while in our Organic Distillation and
Sefl-regularization, examples identified noisier will
be down-weighted to rectify the effect of noisy
augmented instances. For Consistency training,
it assumes that the original and its corresponding
augmented example should share the same label
and train them with a consistency loss, which is
also opposite to our assumption that augmented
data may be noisy. From the comparison of those
two methods, we can conclude that the denoising
objective better suits the scenario of data augmen-
tation than both the learnability-based re-weighting
and the consistency training with label-preserving
assumption.

4.2 Commonsense Question Answering

Setup. We follow the setups in G-DAUG (Yang
et al., 2020) to conduct commonsense QA exper-
iments. We study a full-shot setting here for the
QA tasks as a supplement to the few-shot text clas-
sification experiments, and select two representa-
tive multiple-choice commonsense QA datasets,
WinoGrande (Sakaguchi et al., 2020) and Com-
monsenseQA (CSQA; Talmor et al. 2019). Other
datasets are not selected as they either adopt a
few-shot setting, or the augmented data is not
publicly available. We use the released version
of augmented data by Yang et al. (2020)* pro-
duced with finetuned GPT-2 (Radford et al., 2019).

*https://github.com/yangyiben/G-DAUG-c-Generative-
Data-Augmentation-for-Commonsense-Reasoning

771



WinoGrande
XS S M L XL AUC CSQA
Supervised | 60.28+152  62.23+206 66.00+128 74.68+028 79.09+0s6 68.12 | 76.35+031
G-DAUG 60.494044 66.041048 72.224043 76.79+077 80.094+053 71.32 77.384036
Ours (OD) | 61.184059 67451047 72382073 77.351022 80.751036 72.01 78.41 4040
Ours (SR) 60.68+072 67.064+060 72.34+068 77.09+038 80.57+056 71.76 77.6240.41
Ours (bOth) 61.30:{:0,55 67.623:0443 72.68:&0,70 77.65:|:0,21 80.80:|:0,51 72.23 78.69:&0,31

Table 2: Performance of commonsense question answering.

B, AGNews 86 TREC o without data augmentation. We also check the ef-

g : 000; 1S / E fect of each channel (OD and SR).

S 8451 f 86.5 H95S

§ 4.0 T""\}/ 6514 b | g Results and Analysis. The QA results are shown

g B e S £ LR B ) ' 10% 4 in Tab. 2. When we apply ODDA to the augmented
0305 3D 203050 10n o agh 10t data generated by G-DAUG filtered with influence

Figure 3: (1) The effect of OD temperature 7 on the
classification performance for AGNews dataset. (2) The
effect of SR coefficient o on the classification perfor-
mance for TREC dataset.

RoBERTa-large (Liu et al., 2019) is used as the
backbone QA model, and the hyperparameters are
the same as in Yang et al. (2020). We evaluate
the model performance using accuracy for each
subset in WinoGrande, and an AUC calculated
with the curve of the logarithm of the number of
instances of each subset against the correspond-
ing accuracy, to present an overall performance on
WinoGrande across the five subsets. Accuracy is
used for CSQA as the evaluation metric. As linear
learning rate decay is applied during the training,
we report the performance of the last checkpoint
during training. Different from the original paper
of G-DAUG (Yang et al., 2020), which reports the
performance of only one run, we report the average
and standard deviation across five different random
seeds. More details about models and datasets are
presented in Appx. §A.2.

Baselines. As in G-DAUG, the augmented in-
stances are already filtered with an influence func-
tion (Koh and Liang, 2017) and diversity heuristics,
we do not conduct further filtering as baselines.
And as no direct mapping exists between the orig-
inal and augmented examples, the re-weighting
and consistency training baseline does not fit the
sentence-level data augmentation setting. Hence,
we only compare the performance of adding our on-
the-fly denoising technique on top of the already-
filtered augmented dataset against the performance
of G-DAUG and the supervised learning baseline

function and a diversity heuristic defined in Yang
et al. (2020), the performance can be consistently
improved across different few-shot splits of Wino-
Grande and full-shot CSQA. These experiments
first demonstrate that besides token-level data aug-
mentation, where each augmented example can
be aligned with its original example, ODDA can
also work well for sentence-level data augmenta-
tion, where there is no explicit mapping between
augmented data and original data. This is an advan-
tage as some data augmentation boosting methods
need to leverage the mapping between original and
augmented examples to select semantically similar
augmentations (e.g., EPiDA) or use consistency
training, while our method is not restricted by this
precondition. Second, we show that our method
can not only be used for boosting text classification,
but can work well for more complex commonsense
reasoning tasks.

4.3 Ablation Study

Organic teacher distillation. The Organic Distil-
lation (OD) module distills the knowledge from the
relatively cleaner original dataset to the augmented
data with soft labels, preventing overfitting on hard
noisy labels. We check the influence of the dis-
tillation temperature 7 on the model performance,
shown in Fig. 3 (1) for the AGNews dataset as
an example. Specifically, the model performance
reaches its best when the temperature 7 = 2, indi-
cates a softer label distribution. For other datasets
such as TREC, Irony, and Offense, the variance
of different temperatures is relatively minor, and
we select 7 = 1 as the default. While for AG-
News and Sentiment, the model can benefit from
larger temperature, which may indicate that there
is more noise in the augmented data from those
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Irony 10%
Method =56 pn = 0.1 pn =03 pn = 05
EDA 64.55 63.27 63.26 60.41
EPiDA 64.72 64.57 63.94 63.24
Glitter 64.73 65.04 62.99 61.85
Large-loss  64.42 63.42 63.27 61.56
Re-weight  64.56 64.38 64.53 63.79
Ours (both)  65.54 65.54 65.54 65.54

Table 3: Experiments on adding synthetic noise to aug-
mented data for the Irony dataset (10%), when original
data remain still. p,, indicates the probability that the la-
bel of an augmented example is flipped. As our method
learns with the soft labels provided by the clean origi-
nal dataset, it is not affected by noise on labels in the
augmented dataset.

two datasets, and softer distribution help reduce
overfitting on the augmented data.

Self-regularization. The self-regularization (SR)
module in our framework serves as a general de-
noising channel to minimize the discrepancy of
model outputs between two dropouts. The « in
Equation (4) is the hyperparameter measuring the
importance of the denoising effect. We take the
TREC dataset as an example to show the effect of
« on the model performance as in Fig. 3 (2). We
can see that for TREC 1%, the performance reaches
the maximum when o« = 100, and for TREC 10%,
the model performs the best when oo = 20. Such a
difference indicates that in TREC 1%, which con-
tains only fewer than 100 training examples, it can
benefit more when the effect of self-regularization
out-weight the original cross-entropy loss. Simi-
lar results are shown in other datasets under the
smaller few-shot training set.

Adding synthetic noise. We further show the
effect of our denoising method by introducing syn-
thetic noise of different levels to augmented data.
The original dataset remains unchanged to show the
effect of a cleaner original dataset. To better demon-
strate the effect of denoising in augmented data, we
control the noise level by setting a probability p,
of flipping the label of augmented data. We select
the dataset Irony (with 10% training data) as an
example, as Irony is a binary classification task and
flipping the label will definitely lead to an opposite
label (for other datasets such as AGNews, there
may be slight overlaps between different labels).
The results are presented in Tab. 3. We can see
that EDA and all filtering methods suffer from per-
formance degradation along with increased noise

TREC Irony AGNews
1% 10% 1% 10% 0.05% 0.1%

Iter. Teacher 66.89 95.56 58.73 64.49 84.15 86.17
EMA 64.10 95.26 57.37 64.40 84.16 86.36
Co-Reg 65.19 95.08 58.29 64.86 84.81 86.54
Co-Teaching 64.62 94.69 57.39 65.51 84.83 86.91
Ours (SRx3) 66.19 95.54 58.31 64.56 84.44 86.56
Ours (SRx4) 65.88 95.69 58.95 64.62 84.67 86.33

Ours (OD)  65.17 95.02 58.51 64.73 84.91 86.84
Ours (SR)  65.87 95.50 57.51 64.24 84.80 86.75
Ours (both) 67.16 96.04 60.66 65.54 86.30 87.14

Method

Table 4: Ablations on the effect of Organic Distillation
(OD) and Self-Regularization (SR), compared to their
counterparts. SRxn means dropouts are done n times.

proportions, while our method is not influenced by
such synthetic noise as we do not rely on the hard
label of augmented data but the soft label provided
by the organic teacher model. The performance
degradation is not too drastic when p,, increases
as the labels of original data are retained. Such an
experiment further consolidates the effectiveness
of our denoising method for data augmentation.

Alternative denoising techniques. We also
study the alternative solutions to our denoising
framework. There are alternative ways to the or-
ganic teacher. For example, we could iteratively
select the best-performed teacher model during the
training with augmented data (denoted as an it-
erative teacher). For the general denoising chan-
nel SR, there are other techniques that perform
denoising, such as using Exponential Moving Av-
erage (EMA) over training steps (Tarvainen and
Valpola, 2017), or using the consistency of two
independently-trained models to perform logits reg-
ularization (Zhou and Chen, 2021). We also study
whether increasing the number of dropouts m to
do regularization will help the model performance.
These experiments are collectively presented in
Tab. 4. We can see that our proposed method
achieves the best among other alternative choices.
For the Iterative Teacher, though the teacher model
is iteratively updated, it may lose the information
by cleaner original dataset when further trained
on the augmented data. For Co-Regularization,
it achieves similar performance when two iden-
tical models are simultaneously trained to im-
prove consistency. However, it doubles the cost
of training. When doing multiple dropouts in self-
regularization, the performance on the 1% split of
TREC and Irony can be improved when m > 2,
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while for others, the improvements are not signif-
icant. Considering that using m = 3 or4 will
lead to 1.5 and 2 times the computational cost, we
choose m = 2 to make the training more efficient
while keeping competitive results.

5 Conclusion

In this paper, we address the problem of improv-
ing data augmentation via denoising, and propose
an efficient on-the-fly data augmentation denoising
framework that leverages a teacher model trained
on the cleaner original dataset for soft label cor-
rection and a self-regularized denoising loss for
general denoising. Such a denoising pipeline can
well benefit the tasks with limited annotated data
and noisy augmented data. Experiments show that
our denoising framework performs consistently bet-
ter than the baselines of filtering, re-weighting,
and consistency training, with both token-level and
sentence-level data augmentation methods on few-
shot text classification and commonsense question-
answering tasks.
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Limitations

We only include one representative token-level and
sentence-level data augmentation technique in our
experiments, while cannot enumerate all others
such as masked language models replacing (Yi
et al., 2021). In addition, we only include two
representative NLU tasks in the experiments while
others such as natural language inference (Bowman
et al., 2015) are missing due to the limited presen-
tation space. As for the method ODDA itself, we
conduct denoising using the training information

within a single training step without considering
longer dependencies and training dynamics across
different training steps or epochs, which can be a
future work of this study.
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Appendices

A More Details about Experiments

A.1 More Details about Text Classification

We use the codebase and experimental settings
from EPiDA> (Zhao et al., 2022) to conduct our
experiments. Table 6 shows the essential hyper-
parameters that are used for each dataset. During
the training, we first train a few epochs on the
original dataset, and then finetune on the union of
augmented data and original data.

For EPiDA (Zhao et al., 2022), we follow the
setting in the original paper to first produce £ = 50
augmented examples per original example using
EDA, and then select top 3 scored by its Relative
Entropy Maximization (REM) and Conditional En-
tropy Minimization (CEM) filter. The trade-off
parameter between REM and CEM is set as 0.5, as
in the original paper.

For Glitter (Kamalloo et al., 2022) and large-
loss, similar with EPiDA, we sample 50 augmented
examples first, and select the top 3 examples with
the largest/smallest loss in the current run. For
Re-weight (Yi et al., 2021), we use the following
re-weighting equation to re-weight the augmented
data in a batch:

exp (e (9(f(2:)). 1))
>y eB CXP (%lcxa(g(f(xj)),yj))

where w, is the re-weighting factor for the ex-
ample x;, B is the current batch, and X is a tempera-
ture parameter. The re-weighting factor is basically
the softmax of the loss of the current batch.

For UDA (Xie et al., 2020a), we leverage the
augmented data in consistency training. In addi-
tion to the cross-entropy loss of the original data,
we jointly train with the objective that minimiz-
ing the consistency loss between original data and
augmented data:

Wy, =

K3

£=3" (lex(o(f (@), u:) 5)
1=1

k
+ a0 KL g(f (@) [ 9(f ()
j=1

where 2 ; is the j-th augmented example de-
rived from z;. a. is the hyper-parameter to control

>https://github.com/zhaominyiz/EPiDA

TREC Irony AGNews
1% 10% 1% 10% 0.05% 0.1%

Back-Trans. (BT) 62.55 93.62 52.29 64.69 85.39 86.35
BT+OD 62.19 94.67 57.50 64.57 85.53 86.74
BT+OD+SR 65.02 95.65 58.10 65.28 86.03 86.83

Method

Table 5: Experiments on using back-translation as the
backbone data augementation method.

the effect of consistency training. It’s set as 10 after
sufficient parameter searching.

Besides using EDA as the backbone data aug-
mentation method, we also test our ODDA frame-
work on back-translation® in Tab. 5. We can find
that the ODDA framework can also work on back-
translation, indicating a good generalizability of
our framework.

A.2 More Details about Question Answering

For question answering tasks, following previous
works (Sakaguchi et al., 2020; Yang et al., 2020),
we use RoBERTa as the base encoder. For each
question-option pair, the input format is then [CLS]
context [SEP] option [SEPJ]. We take the em-
bedding of the [CLS] token as the representation of
the question-option pair. Then an MLP + softmax
layer is put after the embeddings of the c options,
and the model is optimized with cross-entropy loss
given a correct option.

WinoGrande is a commonsense reasoning bench-
mark to explore hard coreference resolutions prob-
lems such as “The fist ate the worm, was tasty”
(choose from “fish” and “worm”). It’s hard as it
requires commonsense knowledge that “the subject
of eat tends to be hungry and the object of eat tend
to be tasty”, while machine learning models may
associate “fish” with “tasty” with larger likelihood
as they frequently co-occur in human corpora. The
WinoGrande dataset is composed of 5 subsets with
different sizes, XS (n = 160), S (n = 640), M
(n = 2558), L (n = 10234), and XL (n = 40398).

CommonsenseQA is a commonsense question
answering dataset constructed from the common-
sense knowledge in ConceptNet (Speer et al., 2017).
It aims to study the commonsense relations among
daily entities within certain context. For example,
the correct answer to “Where would you store a pil-
low case that is not in use?” is “drawer”. There are
some distractor options such as “bedroom”, which

®We use the implementation from the nlpaug package
(https://github.com/makcedward/nlpaug)
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TREC

Irony

AGNews Sentiment Offense

1% 10% 1% 10% 0.05% 0.1% 1% 10% 0.1% 1%
Optimizer AdamW
Weight Decay le-3
Adam € le-8
LR 2e-5
Batch Size 32
Max Length 512
Organic Epoch 40 30 100 20 30 30 30 10 30 30
Augmentation Epoch 40 30 100 30 30 30 30 10 30 30
Evaluation Interval 1 5 1 1 5 5 5 2 1 5
Temperature 7 1 1 1 1 2 2 05 05 1 1
SR 10 10 10 10 10 10 10 10 10 10

Table 6: Hyperparameters for text classification experiments.

is a common place where a pillow locates without
the context “not in use”.

The augmentation method that we use for solv-
ing commonsense question answering is Genera-
tive Data Augmentation (Yang et al., 2020). It uses
three generation models to generate questions, cor-
rect answers, and distractors, respectively. Then in
the data selection phase, influence function and a
specifically designed heuristics that favors diverse
synthetic data are used to select high-quality syn-
thetic data. Then the model is trained with a two-
stage finetuning, where they first finetune the QA
model on the synthetic data, and then finetune on
the original data. We use the released augmented
data from Yang et al. (2020). The number of aug-
mented instances for each dataset is presented in
Table 7. The hyperparameters that are used for the
experiments for QA are presented in Table 8.

B Self-Regularization

We explain the reasons why Self-Regularization
can serve as a denoising channel and yield better
performance. It is shown that the following fine-
tuning method can enhance the robustness of rep-
resentation learning, which provide guarantees for
stochastic gradient descent algorithms by bound-
ing some divergence between model at step ¢ and
t + 1 (Pascanu and Bengio, 2014):

arg minag £(0 + A6)
(6)

Here, f is a function that outputs vector represen-
tations, 6 is the trainable parameters. An approxi-
mation to this computationally intractable equation
is proposed as follows (Aghajanyan et al., 2021):

L(f,9.0) =L(0) + AKLs(g- f(z)llg - f(z +2))
s.it.z ~N(0,0°I)or z ~U(—0,0)

(M

Here g is a function that converts the output em-
bedding of f to a probability distribution. K Lg
is the symmetric KL divergence, and z is sampled
from the corresponding distribution as small pertur-
bations. Instead of providing small perturbations
using a random noise, Self-Regularization pro-
vide such perturbation with two different dropouts,
which has shown to be effective in previous
works (Liang et al., 2021).

Moreover, there are other empirical findings that
favors the effect of self-regularization in terms of
denoising. Noisy examples tend to be frequently
forgotten after training for a long time (Toneva
et al., 2019), since the noise conflict with what
have been learned in the model and the prediction
can vary. Self-regularization can be an alternative
objective that mitigate the importance of the exam-
ple.
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WinoGrande

‘ XS S M L XL ‘ c5QA
#Original | 160 640 2,558 10234 40,398 9,727
#Synthetic | 52,346 97,733 127,509 132,849 136,052 | 50,014

Table 7: Number of training instances for WinoGrande and CommonsenseQA.

WinoGrande

XS S M L XL CSQA
Optimizer AdamW AdamW
Weight Decay 0.01 0.01
Adam € le-6 le-6
LR synthetic Se-6 Se-6
LR organic le-5 le-5
Batch Size 16 16
Max Length 70 70
Synthetic Epoch 1 1 1 1 1 1
Organic Epoch 10 8 5 5 5 5
LR Decay Linear Linear
Warmup Ratio 0.06 0.06
SR Warmup Steps | 2000 5000 5000 7000 7000 2500
T 2 1 1 1 1 1
@ 0.5 0.1 1.0 0.5 0.5 0.5

Table 8: Essential Hyperparameters for WinoGrande and CommonsenseQA.
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