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Abstract

Recent developments in deep learning have led
to great success in various natural language
processing (NLP) tasks. However, these appli-
cations may involve data that contain sensitive
information. Therefore, how to achieve good
performance while also protecting the privacy
of sensitive data is a crucial challenge in NLP.
To preserve privacy, Differential Privacy (DP),
which can prevent reconstruction attacks and
protect against potential side knowledge, is be-
coming a de facto technique for private data
analysis. In recent years, NLP in DP mod-
els (DP-NLP) has been studied from different
perspectives, which deserves a comprehensive
review. In this paper, we provide the first sys-
tematic review of recent advances in DP deep
learning models in NLP. In particular, we first
discuss some differences and additional chal-
lenges of DP-NLP compared with the standard
DP deep learning. Then, we investigate some
existing work on DP-NLP and present its re-
cent developments from three aspects: gradient
perturbation based methods, embedding vec-
tor perturbation based methods, and ensemble
model based methods. We also discuss some
challenges and future directions.

1 Introduction

The recent advances in deep neural networks have
led to significant success in various tasks in Natu-
ral Language Processing (NLP), such as sentiment
analysis, question answering, information retrieval,
and text generation. However, such applications
always involve data that contains sensitive infor-
mation. For example, a model of aid typing on a
keyboard which trained from language data might
contain sensitive information such as passwords,
text messages, and search queries. Moreover, lan-
guage data can also identify a speaker explicitly by
name or implicitly, for example, via a rare or unique
phrase. Thus, one often encountered challenge in
NLP is how to handle this sensitive information. To

overcome the challenge, privacy-preserving NLP
has been intensively studied in recent years. One of
the commonly used approaches is based on text
anonymization (Pilán et al., 2022), which iden-
tifies sensitive attributes and then replaces these
sensitive words with some other values. Another
approach is injecting additional words into the orig-
inal text without detecting sensitive entities in order
to achieve text redaction (Sánchez and Batet, 2016).
However, removing personally identifiable infor-
mation or injecting additional words is often unsat-
isfactory, as it has been shown that an adversary can
still infer an individual’s membership in the dataset
with high probability via the summary statistics
on the datasets (Narayanan and Shmatikov, 2008).
Moreover, recent studies claim that deep neural net-
works for NLP tasks often tend to memorize their
training data, which makes them vulnerable to leak-
ing information about training data (Shokri et al.,
2017; Carlini et al., 2021, 2019). One way that
takes into account the limitations of existing ap-
proaches by preventing individual re-identification
and protecting against any potential data recon-
struction and side-knowledge attacks is designing
Differentially Private (DP) algorithms. DP (Dwork
et al., 2006) provides provable protection against
identification and is resilient to arbitrary auxiliary
information that might be available to attackers.
Thanks to its formal guarantees, DP has become
a de facto standard tool for private statistical data
analysis.

Although there are numerous studies on DP
machine learning and DP deep learning, such as
(Abadi et al., 2016; Bu et al., 2019; Yu et al., 2019;
Xiang et al., 2023; Xiao et al., 2023; Hu et al.,
2023a,b), most of them mainly focus on either the
continuous tabular data or image data, and less at-
tention has been paid to adapting variants of DP
algorithms to the context of NLP and the text do-
main. On the other side, while there are several
surveys on DP and its applications, such as (Ji et al.,

478



2014; Dankar and Emam, 2013; Xiong et al., 2020;
Wang et al., 2020b; Desfontaines and Pejó, 2020),
none of them study its applications to the NLP do-
main. Recently, Klymenko et al. (2022) gave a
brief introduction to applications of DP in NLP, but
the reviewed work is not exhaustive, and it lacks
a technical and systematic view of DP-NLP. Thus,
to fill in this gap, in this paper, we provide the first
technical overview of the recent developments and
challenges of DP in language models.

Specifically, we give a survey on the most recent
701 papers on deep learning based approaches for
NLP tasks under DP constraints. First, we show
some specificities of DP-NLP compared with the
general deep learning with DP. Then we discuss
current results from three perspectives via the ways
of adding randomness to ensure DP: the first one
is gradient perturbation based methods which in-
cludes DP-SGD and DP-Adam; the second one
is embedding vector perturbation based methods
which includes DP auto-encoder; the last one is
ensemble model based methods which includes
PATE. For each type of approach, we also consider
its applications to different NLP tasks. Finally, we
present some potential challenges and future direc-
tions.

Due to space limits, in Appendix C, we give a
preliminary introduction to DP to readers who are
unfamiliar with DP.

2 Specificities of NLP with DP

We first discuss some specificities for DP-NLP
compared with the standard DP deep learning. Gen-
erally speaking, there are two aspects: one is pri-
vacy notations, and another is privacy levels.

2.1 Variants of DP Notions in NLP

Recall that DP ensures data analysts or adversaries
will get almost the same information if we change
any single data sample in the training data, i.e., it
treats all records as sensitive. However, such an
assumption is quite stringent. On the one side, un-
like image data, for text data, it is more common
that only several instead of all attributes need to be
protected. For example, for the sentence "My cell
phone number is 1234567890", only the last token
with the actual cell phone number needs to be pro-
tected. On the other side, canonical DP requires

1Note that we did not cover all related works, see the
Limitations and Future Directions sections for the works that
are not included in this paper.

that the log of the ratio between the distribution
probabilities is always upper bounded by the pri-
vacy parameter ϵ for any pair of neighboring data.
However, such a requirement is also quite restric-
tive. For example, for the sentence "I will arrive
at 2:00 pm", we want the adversary not to distin-
guish it from the sentence "I will arrive at 4:00
pm". However, DP also can ensure the adversary
cannot distinguish it from the sentence "I will ar-
rive at 100:00 pm", which is meaningless. Thus,
for language data, besides the canonical DP, it is
also reasonable to study its relaxations for some
specific scenarios. Actually, this is quite different
from the existing work on DP deep learning, which
mainly focuses on standard DP definitions. In the
following, we will discuss some commonly used
relaxations of DP for language models.

SDP. As we mentioned above, in some scenarios,
the sensitive information in text data is sparse, and
we only need to protect some sensitive attributes
instead of the whole sentence. Based on this, Shi
et al. (2021) propose a new privacy notion, namely
selective differential privacy (SDP), to provide pri-
vacy guarantees on the sensitive portion of the data
to improve model utility. From the definition as-
pect, the main difference between SDP and DP is
the definition of neighboring datasets. Informally,
in SDP, two datasets are adjacent if they differ in at
least one sensitive attribute. However, it is hard to
define such neighboring datasets directly as there
are some correlations between sensitive and non-
sensitive attributes, indicating that we can still in-
fer information on sensitive attributes (Kifer and
Machanavajjhala, 2011). To address the issue, Shi
et al. (2021) leverage the Pufferfish framework in
(Kifer and Machanavajjhala, 2014).

Metric DP. To relax the requirement that the log
probability ratio is uniformly bounded by ϵ for
all neighboring data pairs, Feyisetan et al. (2020)
first adopt the Metric DP (or dχ-privacy) to the
problem of private embedding, which is proposed
by (Chatzikokolakis et al., 2013) for location data
originally. In particular, a Metric DP mechanism
could report a token in a privacy-preserving manner
while giving a higher probability to tokens that
are close to the current token, and a negligible
probability to tokens in a completely different part
of the vocabulary, where we will use some distance
function d to measure the distance between two
tokens.
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Definition 1. For a data domain (vocabulary) X ,
a randomized algorithm A : X 7→ R is called
(ε, δ)-Metric DP with distance function d if for any
S, S′ ∈ X l and T ⊆ R we have

Pr[A(S) ∈ T ] ≤ ed(S,S
′)εPr[A(S′) ∈ T ] + δ.

From the above definition, we can see the prob-
ability ratio of observing any particular output y
given two possible inputs S and S′ is bounded by
eεd(S

′,S) instead of eϵ in DP. Motivated by Metric
DP and local DP, (Feyisetan et al., 2020) provides
the Local Metric DP (LMDP) and uses it for pri-
vate word embeddings (see Section 4 for details).
Motivated by Utility-optimized LDP (ULDP) (Mu-
rakami and Kawamoto, 2019) rather than LDP, re-
cently Yue et al. (2021) propose Utility-optimized
Metric LDP (UMLDP). It exploits the fact that
different inputs have different sensitivity levels to
achieve higher utility. By assuming the input space,
such as the set of tokens is split into sensitive and
non-sensitive parts, UMLDP achieves a privacy
guarantee equivalent to LDP for sensitive inputs.

2.2 Variants Levels of Privacy in NLP

When we consider using DP, the first question is
what kind of information we aim to protect. In the
previous studies on DP deep learning, we always
wanted to protect the whole data sample. However,
in the NLP domain, such one data sample could be
either a word, a sentence, a paragraph, etc. If we
ignore the concrete privacy level and directly apply
the previous DP methods, we may have mediocre
results. Thus, unlike the sample level privacy in DP
deep learning, researchers in NLP consider differ-
ent levels of privacy. Especially, they focus on the
word level and sentence level, which aims to pro-
tect each word and sentence respectively (Meehan
et al., 2022; Feyisetan et al., 2019).

In the federated learning setting, there is a cen-
tral server and several users each of them has a
local dataset, the sample level of DP may be insuf-
ficient. For example, in language modeling, each
user may contribute many thousands of words to
the training data, and each typed word makes its
own contribution to the RNN’s training objective.
In this case, just protecting each word is unsatis-
factory, and it is still possible to re-identify users.
Thus, besides the sample level, we also have the
user level of privacy, which aims to protect users’
histories. After discussing some specificities of
DP-NLP. In the following, we categorize its recent

studies into three classes based on their methods
to ensure DP: gradient perturbation based methods,
embedding vector perturbation based methods, and
ensemble model based methods. See Tab. 1 for an
overview.

3 Gradient Perturbation Based Methods

Generally speaking, a gradient perturbation method
is based on adding noises to gradients of the loss
during training the network to ensure DP. As the
baseline and canonical algorithm for this type of ap-
proach, Differentially Private Stochastic Gradient
Descent (DP-SGD) (Abadi et al., 2016) is a DP ver-
sion of SGD. Its main idea is to use the noisy and
clipped subsampled gradient gt to approximate the
whole gradient ∇L(θt, D). In fact, besides SGD,
we can use this idea for any optimizer, such as
Adam (Kingma and Ba, 2015), whose private ver-
sion DP-Adam is proposed and applied in BERT by
(Anil et al., 2021). In the past few years, there has
been a long list of work on DP-SGD from differ-
ent perspectives, such as the subsampling strategy,
faster clipping procedures, private clipping param-
eter tuning, and the selection of batch size. In the
following, we will only discuss the previous work
on using DP-SGD-based methods for variants of
NLP tasks. See Appendix A for an introduction to
DP-SGD.

3.1 DP Pre-trained Models

Recent developments in NLP have led to successful
applications in large-scale language models with
the appearance of transformer (Devlin et al., 2019).
It combines the contextual information into lan-
guage models with a more powerful ability of rep-
resentation. These models are called pre-trained
models, which train word embedding in large cor-
pora targeting various tasks and gain the knowledge
for downstream tasks (Peters et al., 2018). In this
section, we review some papers that focus on pre-
trained NLP models under DP constraints.

The workflow of BERT (Devlin et al., 2019) is
pre-training the unlabeled text using some large cor-
pora first. Then, the downstream tasks first initial-
ize the model using the same parameters and fine-
tune the parameters according to different tasks.
Despite the benefits of powerful representation abil-
ity given by the pre-training process, it also has
privacy issues since the model would memorize
sensitive information such as words or phrases.

In order to solve this privacy leakage issue, there
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are several studies on how to train BERT privately.
Hoory et al. (2021) successfully trained a differ-
entially private BERT model by modifying the
WordPiece algorithm to satisfy DP, and conducted
experiments on the problem of entity extraction
tasks from medical text. They construct a tailored
domain-specific DP-based trained vocabulary de-
signed to generate a new domain-specific vocabu-
lary while maintaining user privacy and then use
the original DP-SGD in the training process. For
the DP vocabulary part, they first construct a word
histogram by dividing the text into a sequence of
N -word tuples and then add Gaussian noise to the
histogram to ensure (ϵ, δ)-DP. Finally, they clip the
histogram with some threshold. For the training
phase, they use the original DP-SGD to meet pri-
vacy guarantees. Besides, they also use the parallel
training trick to make the training faster. Very re-
cently, Yin and Habernal (2022) applied DP-BERT
to the legal NLP domain. While DP-BERT can
achieve good performance with privacy guarantees
in language tasks. There are still two problems: a
large gap between non-private accuracy and private
accuracy, and computation inefficiency of clipping
every sample gradient in DP-SGD. In order to miti-
gate these issues, Anil et al. (2021) later privatizes
the Adam optimizer to improve the performance.
Instead of adding noise and clipping every entry
in every batch in DP-SGD, it selects a pre-defined
number of samples randomly and sums the clipped
gradients of these selected samples, then it updates
average gradients with Gaussian noise adding the
sum in each batch. Besides, it also uses an increas-
ing batch size schedule instead of a fixed one. It
finds that large batch size can improve accuracy,
and the increasing batch size schedule can improve
training efficiency. (Senge et al., 2022) recently
studied five different typical NLP tasks with vary-
ing complexity using modern neural models based
on BERT and XtremeDistil architectures. They
showed that to achieve adequate performance, each
task and privacy regime requires special treatment.

Besides BERT, Ponomareva et al. (2022) pri-
vately pre-train T5 (Raffel et al., 2020) via their pro-
posed private tokenizer called DP-SentencePiece
and DP-SGD. They show that DP-T5 does not suf-
fer a large drop in pre-training utility, nor in train-
ing speed, and can still be fine-tuned to high accu-
racy on downstream tasks.

3.2 DP Fine-tuning

Besides training pre-trained models using DP al-
gorithms, another direction is how to fine-tune pre-
trained models privately. Here, the main difference
is that we assume the pre-trained models, such as
BERT have been trained with some public data,
and our goal is to privately fine-tune targeting spe-
cific downstream tasks that involve sensitive data.
It is noted that in this section, we also include some
related work on training shallow neural networks
in DP such as RNN or LSTM such as (Li et al.,
2022; Amid et al., 2022) as these methods can be
directly applied to DP fine-tuning.

In this topic, the first direction is to investigate
different tasks in the DP model and to compare
its performance compared to the non-private one
for studying the utility-privacy trade-off. Yue et al.
(2022) consider the task of synthetic text genera-
tion and show that simply fine-tuning a pre-trained
GPT-2 with the vanilla DP-SGD enables the model
to generate useful synthetic text. Mireshghallah
et al. (2022) recently extended to generating latent
semantic parses in the DP model and then generat-
ing utterances based on the parses. Carranza et al.
(2023) use DP-SGD to fine-tune a publicly pre-
trained LLM on a query generation task. The result-
ing model can generate private synthetic queries
representative of the original queries which can
be freely shared for downstream non-private rec-
ommendation training procedures. Very recently,
Lee and Søgaard (2023) adopted the DP-SGD to
the meeting summarization task and showed that
DP can improve performance when evaluated on
unseen meeting types. Aziz et al. (2022) use GPT-
2 and DP-SGD based methods to generate syn-
thetic EHR data which can de-identify sensitive
information for clinical text. Wunderlich et al.
(2021) study the hierarchical text classification task,
and they use DP-SGD to Bag of Words (BoW),
CNNs and Transformer-based architectures. They
find that Transformer-based models achieve bet-
ter performance than CNN-based models in large
datasets, while CNN-based models are superior to
Transformer-based models in small datasets.

The second direction is to reduce the huge
memory cost of storing individual gradients and
decrease the added noise, which suffers notori-
ous dimensional dependence in DP-SGD. Specif-
ically, the studies in this direction always pro-
pose a general method for DP-SGD and then per-
form the method for different NLP tasks. Yu
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et al. (2021) propose a variant of DP-SGD called
the Reparametrized Gradient Perturbation (RGP)
method. The framework of RGP parametrizes each
weight matrix with two low-rank carrier matrices
and a residual weight matrix, which will be used
to approximate the original one. Such a way can
reduce the memory cost for computing individual
gradient matrices and can maintain the optimiza-
tion process via forward/backward signals. Later,
based on RGP, Yu et al. (2022) show that advanced
parameter-efficient methods such as (Houlsby et al.,
2019; Karimi Mahabadi et al., 2021) can lead
to simpler and significantly improved algorithms
for private fine-tuning. Instead of DP-SGD, Du
and Mi (2021) propose a DP version of Forward-
Propagation. Specifically, it clips representations
followed by noise addition in the forward propaga-
tion stage.

Besides adapting the optimization method in
vanilla DP-SGD, there are also some works on
modifying the clipping operation or the fine-tuning
method directly to save the memory cost. Li et al.
(2021) propose a memory-saving technique that
allows clipping in DP-SGD for fine-tuning to run
without instantiating per-example gradients for any
linear layer in the model. The technique enables
private training Transformers with almost the same
memory cost as non-private training at a modest
run-time overhead. Dupuy et al. (2021) propose
another variant of DP-SGD via micro-batch com-
putations per GPU and noise decay and apply it to
fine-tuning models. Specifically, they scale gradi-
ents in each micro-batch and set a decreasing noise
multiplier with epoch. Then, they add scaled Gaus-
sian noise to gradients. In this way, they can make
the training faster and adapt it for GPU training.
Bu et al. (2023) develop a novel Book-Keeping
(BK) technique that implements existing DP op-
timizers, with a substantial improvement on the
computational cost while also keeping almost the
same accuracy as DP-SGD. Gupta et al. (2023)
propose a novel language transformer finetuning
strategy that introduces task-specific parameters in
multiple transformer layers. They show that the
method of combining RGP and their novel strat-
egy is more suitable for low-resource applications.
Bu et al. (2022) privatize the bias-term fine-tuning
(BiTFiT) and show that DP-BiTFiT matches the
state-of-the-art accuracy for DP algorithms and the
efficiency of the standard BiTFiT (Zaken et al.,
2022). Igamberdiev and Habernal (2022) apply

DP-Adam in Graph Convolutional Networks to per-
form the private fine-tuning for text classification.
Specifically, they first split the graph into discon-
nected sub-graphs and then add noise to gradients.

Rather than reducing the memory cost, there are
some papers considering developing variants of the
DP-SGD method to improve performance. For ex-
ample, Xia et al. (2023) propose a per-sample adap-
tive clipping algorithm, which is a new perspective
and orthogonal to dynamic adaptive noise and co-
ordinate clipping methods. Behnia et al. (2022)
use the Edgeworth accountant (Wang et al., 2022)
to compute the amount of noise that is required
to be added to the gradients in SGD to guaran-
tee a certain privacy budget, which is lower than
the original DP-SGD. Li et al. (2022); Amid et al.
(2022) propose new private optimization methods
under the setting where there are some public and
non-sensitive data.

The last direction is to relax the definition of
DP and propose new DP-SGD variants. Shi et al.
(2021) tailor DP-SGD to SDP. Their method SDP-
SGD first splits the text into the sensitive and non-
sensitive parts, and applies normal SGD to the non-
sensitive part while applying DP-SGD to the sensi-
tive part respectively. Later, Shi et al. (2022) extend
to large language models and propose a method,
namely Just Fine-tune Twice to private fine-tuning
with the guarantee of SDP.

3.3 Federated Learning Setting

In the previous parts, we reviewed the related work
on DP pre-trained models and DP fine-tuning mod-
els. Note that all the previous work only considers
the central DP setting where all the training data
samples are already collected before training, in-
dicating that these methods cannot be applied to
the federated learning (FL) setting. Compared to
central DP, there are fewer studies on DP Federated
Learning for NLP. McMahan et al. (2018) apply
DP-SGD in the FedAvg algorithm to protect user-
level privacy for LSTM and RNN architectures in
the federated learning setting. Specifically, they
first sample users with some probability, and then
add Gaussian noise to model updates of the sam-
pled users on the server side. Based on this, Ra-
maswamy et al. (2020) develop the first consumer-
scale next-word prediction model.

Rather than adopting DP-SGD, Kairouz et al.
(2021) provides a new paradigm for DP-FL by us-
ing the Follow-The-Regularized-Leader (FTRL)
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algorithm, which achieves state-of-the-art perfor-
mance, and it is recently improved by Choquette-
Choo et al. (2022); Koloskova et al. (2023);
Denisov et al. (2022); Agarwal et al. (2021).

It is notable that all the previous studies only
consider shallow neural networks such as RNN
and LSTM and do not consider the large language
model. Until very recently, there have been some
papers studying DP-FL fine-tuning. For example,
Wang et al. (2023) consider the cross-device setting
and use DP-FTRL to privately fine-tune. Moreover,
they propose a distribution matching algorithm that
leverages both private on-device LMs and public
LLMs to select public records close to private data
distribution. Xu et al. (2023) deploy DP-FL ver-
sions of Gboard Language Models (Hard et al.,
2018) via DP-FTRL and quantile-based clip esti-
mation method in Andrew et al. (2021).

4 Embedding Vector Perturbation Based
Methods

Generally speaking, this type of approach consid-
ers privatizing the embedding vector for each to-
ken. Specifically, in this framework, the text data
is first transformed into a vector (text representa-
tion) via some word embedding method such as
Word2Vec (Mikolov et al., 2013) and BERT. Then
we use some DP mechanism to privatize each rep-
resentation and train NLP models based on these
privatized text representations. Due to the post-
processing property of DP, we can see the main
strength of this approach is any further training on
these private embeddings also preserves the DP
property, while gradient perturbation based meth-
ods heavily rely on the network structure. We can
see that the main step of this method is to design
the best private text representation. Note that since
we need to privatize each embedding representation
separately, the whole algorithm could be consid-
ered as an LDP algorithm, and thus, it can also be
used in the LDP setting. It is also notable that dif-
ferent studies may consider different notions and
levels of privacy. In fact, most of the existing work
considers the word level of privacy.

4.1 Vanilla DP

The most direct approach is to design private em-
bedding mechanisms that satisfy the standard DP.
Lyu et al. (2020b) first study this problem and they
propose a framework. Specifically, firstly, for each
word, the embedding module of such framework

outputs a 1-dimensional real representation with
length r, then it privatizes the vector via a variant
of the Unary Encoding mechanism in (Wang et al.,
2017). In order to remove the dependence of dimen-
sionality in the Unary Encoding mechanism, they
propose an Optimized Multiple Encoding, which
embeds vectors with a certain fixed size. Their post-
processing procedure was then improved by (Plant
et al., 2021). In (Plant et al., 2021), it first gets the
final layer representation of the pre-trained model
for each token, then normalizes it with sequence
and adds Laplacian noise, and finally trains this
classifier with adversarial training. To further im-
prove the fairness for the downstream tasks on pri-
vate embedding, later Lyu et al. (2020a) propose to
dropout perturbed embeddings to amplify privacy
and a robust training algorithm that incorporates
the noisy training representation in the training pro-
cess to derive a robust target model, which also
reduces model discrimination in most cases.

Krishna et al. (2021); Habernal (2021); Alnasser
et al. (2021) also study privatizing word embed-
dings. However, instead of using the Unary Encod-
ing mechanism or dropout, Krishna et al. (2021);
Alnasser et al. (2021) propose ADePT, which is an
auto-encoder-based DP algorithm. Let u be the in-
put, an auto-encoder model consists of an encoder
that returns a vector representation r = Enc(u)
for the input u, which is then passed into the de-
coder to construct an output v = Dec(r). In (Kr-
ishna et al., 2021), it first normalized the word
embedded vector by some parameter C i.e., w =
Enc(u)min{1, C

∥Enc(u)∥2 }, then it adds Laplacian
noise to the normalized vector w and get r. Unfor-
tunately, Habernal (2021) points out that ADePT
is not differentially private by thorough theoretical
proof. The problem of ADePT lies in the sensitiv-
ity calculation and could be remedied by adding
calibrated noise or tighter bounded clipping norm.
Later, Igamberdiev et al. (2022) provides the source
code of DP Auto-Encoder methods to improve re-
producibility. Recently, Maheshwari et al. (2022)
proposed a method that combines differential pri-
vacy and adversarial training techniques to solve
the privacy-fairness-accuracy trade-off in local DP.
In their framework, first, the input text will be fed
into encoders, then it will be normalized and pri-
vatized by using the Laplacian mechanism. Next,
it will be fed into a normal classifier and adver-
sarial training separately to combine a loss that
contains normal classification loss and adversar-
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ial loss. They find that the model can improve
privacy and fairness simultaneously. To further im-
prove the performance, (Bollegala et al., 2023) pro-
pose a Neighbourhood-Aware Differential Privacy
(NADP) mechanism considering the neighborhood
of a word in a pre-trained static word embedding
space to determine the minimal amount of noise
required to guarantee a specified privacy level.

Besides the work on word-level privacy we men-
tioned above, recently, there have been some works
studying sentence-level and token-level private em-
beddings. Meehan et al. (2022) propose a method,
namely DeepCandidate, to achieve sentence-level
privacy. They first put public and private sentences
into a sentence encoder to get sentence embed-
dings. Then, they use a method, namely DeepCan-
didate, to choose the candidate sentence embed-
dings that are near to private embeddings. Finally,
they use some DP mechanism to sample from the
candidate embeddings for each private embedding.
This method somehow solves the challenge of the
sentence-level privacy problem by taking advan-
tage of clustering in differential privacy. (Du et al.,
2023b) consider sentence-level privacy for private
fine-tuning and propose DP-Forward fine-tuning,
which perturbs the forward pass embeddings of
every user’s (labeled) sequence. However, it is no-
table that they consider a variant of LDP called
sequence local DP. Chen et al. (2023) propose
a novel Customized Text (CusText) sanitization
mechanism that provides more advanced privacy
protection at the token level.

4.2 Metric DP

In Metric DP for text data, each sample of the in-
put can be represented as a string x with at most l
words, thus, the data universe will be W ℓ where W
is a dictionary. Also we assume that there is a word
embedding model ϕ : W 7→ Rn and its associ-
ated distance d(x, x′) =

∑l
i=1 ∥ϕ(wi)− ϕ(w′

i)∥2,
where x = w1w2 · · ·wl and x′ = w′

1w
′
2 · · ·w′

l are
two samples. Thus, the goal is to design a mecha-
nism for each ϕ(wi) with the guarantee of Metric
DP. Since we aim to randomize each ϕ(wi) for each
sample. The whole algorithm is also suitable for
local metric DP with word-level privacy.

Feyisetan et al. (2020) first study this problem.
Generally speaking, their mechanism consists of
two steps. The first step is perturbation, we add
some noise N to text vector ϕ(wi) to ensure ε-
LDP, where N has the density probability function

pN (z) ∝ exp(−ε∥z∥2). The main issue of this
approach is that after the perturbation, ϕ̂i may be
inconsistent with the word embedding. That is,
there may not exist a word u such that u = ϕ̂i.
Thus, to address this issue, we need to project the
perturbed vector into the embedding space. That is
the second step. Feyisetan et al. (2020) show that
the algorithm is ε-local Metric DP.

Note that the method was later improved from
different aspects. For example, Xu et al. (2020)
reconsider the problem setting and they observe
that the distance used in (Feyisetan et al., 2020)
is the Euclidean norm d(x, x′) =

∑l
i=1 ∥ϕ(wi)−

ϕ(w′
i)∥2, which cannot describe the similarity be-

tween two words in the embedding space. To
address the issue, they propose to use the Maha-
lanobis Norm and modify the algorithm by us-
ing the Mahalanobis mechanism, which can im-
prove performance. To further improve the utility
in the projection step, Xu et al. (2021b) further
propose the Vickrey mechanism in case the first
nearest neighbors are the original input or some
rare words need large-scale noise to perturb and
hard to find the corresponding words. In order to
solve this problem, they use a hyperparameter in
their algorithm to adjust the selection of the first
and second nearest neighbors (words). To further
allow a smaller range of nearby words to be consid-
ered than the multivariate Laplace mechanism, (Xu
et al., 2021a; Carvalho et al., 2021b) propose an
improved perturbation method via the Truncated
Gumbel Noise. To further address the high dimen-
sional issue, Feyisetan and Kasiviswanathan (2021)
uses the random projection for the original text rep-
resentation to a lower dimensional space and then
projects back to the original space after adding ran-
dom noise to preserve DP. Besides, Feyisetan et al.
(2019) define the hyperbolic embeddings and use
the Metropolis-Hastings (MH) algorithm to sample
from hyperbolic distribution. However, it is re-
markable that if we consider the LDP setting, then
all the previous methods need to send real num-
bers to the server, which has a high communication
cost. To address the issue, Carvalho et al. (2021a)
proposes to use the binary randomized response
mechanism by using binary embedding vectors. Re-
cently, Tang et al. (2020) consider the case where
different words may have different levels of privacy.
They first divide the words into two types, and then
add corresponding noise according to different lev-
els of privacy. Imola et al. (2022) recently proposed
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an optimal Meric DP mechanism for finite vocab-
ulary, they then provided an algorithm that could
quickly calculate the mechanism. Finally, they
applied it to private word embedding. Instead of
developing new private mechanisms, there are also
some studies on improving the embedding process.
The previous metric DP mechanisms are expected
to fall short of finding substitutes for words with
ambiguous meanings. To address these ambiguous
words, Arnold et al. (2023a) provide a sense em-
bedding and incorporate a sense disambiguation
step prior to noise injection. Arnold et al. (2023b)
account for the common semantic context issue that
appeared in the previous private embedding mech-
anisms. They incorporate grammatical categories
into the privatization step in the form of a constraint
to the candidate selection and show that selecting
a substitution with matching grammatical proper-
ties amplifies the performance in downstream tasks.
Qu et al. (2021) recently points out that (Lyu et al.,
2020a) does not address privacy issues in the train-
ing phase since the server needs users’ raw data to
fine-tune. Moreover, its method has a high com-
putational cost due to the heavy encoder workload
on the user side. Thus, Qu et al. (2021) improve it
and consider the federated setting where users send
their privatized samples via some local metric DP
mechanism to the server, and the server conducts
privacy-constrained fine-tuning methods. More-
over, besides the text-to-text privatization given in
(Feyisetan et al., 2020) and the sequence private
representation proposed by Lyu et al. (2020a), Qu
et al. (2021) proposed new token-level privatiza-
tion and text-to-text privatization methods. In the
token representation privatization method, they add
random noise using metric DP to token embedding
and send it to the server. They add noise to the
embedded token and output the closest neighbor
token in the embedding space.

Instead of the local Metric DP, Yue et al. (2021)
consider UMLDP and propose SANTEXT and
SANTEXT+ algorithms for text sanitization tasks.
Specifically, they divide all the text into a sensitive
token set VS and a remaining token set VN . Then
VS and VN will use a privacy budget of ϵ and ϵ0
respectively via the composition theorem in LDP.
After deriving token vectors, SANTEXT samples
new tokens via local Metric DP with Euclidean
distance. Compared with SANTEXT, SANTEXT+
samples new tokens when the original tokens are
in sensitive set VS . They apply it to BERT pre-

training and fine-tuning models.
While there are many studies on the benefits of

private embedding with word-level privacy. There
are also some shortcomings to such notion of pri-
vacy, as mentioned by (Mattern et al., 2022) re-
cently. For example, in the previous private word
embedding methods, we need to assume the length
of the string for each sample is the same. More-
over, since we consider the word level of privacy,
the total privacy budget will grow linearly with the
length of the sample. To mitigate some shortcom-
ings, Mattern et al. (2022) propose an alternative
text anonymization method based on fine-tuning
large language models for paraphrasing. To ensure
DP, they adopt the exponential mechanism to sam-
ple from the softmax distribution. They apply their
method in fine-tuning models with GPT-2.

Recently, Du et al. (2023a) studied sentence-
level private embedding in local metric DP. Bor-
rowing the wisdom of normalizing sentence em-
bedding for robustness, they impose a consistency
constraint on their sanitization. They propose two
instantiations from the Euclidean and angular dis-
tances. The first one utilizes the Purkayastha mech-
anism (Weggenmann and Kerschbaum, 2021), and
the other is upgraded from the generalized planar
Laplace mechanism with post-processing.

Very recently, besides pre-training and fine-
tuning, private word embedding has also been used
in the task of prompt tuning for Large Language
Models. The goal of private prompt tuning is to
protect the privacy of examples demonstrated in the
prompt. Specifically, Li et al. (2023) leverages the
above private embedding methods to ensure local
metric DP. To mitigate the performance degrada-
tion when imposing privacy protection, they pro-
pose a privatized token reconstruction task moti-
vated by the recent findings that the masked lan-
guage modeling objective can learn separable deep
representations. Then, the objective of privatized
token reconstruction is to recover the original con-
tent of a privatized special token sequence from
LLM representations.

5 Challenges and Future Directions

DP for LLMs. Dealing with large-scale text data
and training LLMs like GPT-4 are tough tasks in
deep learning with DP. Due to the high dimen-
sionality of embedding vectors, even adding small
noise can have a significant influence on the train-
ing speed and performance of models. It is more
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severe for DP-SGD-based methods, which need
high memory costs, and their per-example clip-
ping procedure is time-consuming. These meth-
ods will be inefficient when they are applied to
large language models. Thus, how to reduce the
memory cost and accelerate the training or fine-
tuning of DP-SGD become core concerns in gradi-
ent perturbation-based methods. Although there is
some work in this direction, from Table 1 we can
see most of the current studies are only for BERT,
GPT-2, and T5, and there is still a gap in accu-
racy between private and non-private models and
these methods still need catastrophic cost of mem-
ory compared with the non-private ones. Moreover,
it is well known that we need a heavy workload
on hyperparameter-tuning for large-scale models
in the non-private case. From the privacy view,
each try-on hyperparameter-tuning will cost an ad-
ditional privacy budget, which makes our final pri-
vate model cost a large privacy budget. Thus, how
to efficiently and privately tune the hyperparame-
ters in large models is challenging.

Besides the central setting, from Table 1, we can
also see that DP training and In-context learning
in the federated learning setting is still lacking in
studies. Moreover, even for DP fine-tuning, we
can see the current studies only focused on small
models such as LaMDA, and there is still no study
on private fine-tuning for LLMs in the federated
learning setting.

Sentence-level Private Embedding As we men-
tioned, in embedding vector perturbation-based
methods, the core problem is how to derive a pri-
vate embedding that can avoid information leak-
age while also having good performance for down-
stream tasks. These methods use variants of dis-
tances to extract the relationship between words
in the embedding space and use different noises
to obfuscate sensitive tokens. Besides, some work
focuses on how to use these private embeddings
in specific settings like the generation of synthetic
private data, federated learning, and fine-tuning
models. However, these papers only focus on word-
level privacy and do not consider sentence-level pri-
vacy which is more practical in the NLP scenario.
For example, even if we replace some sensitive
words (like name) using private embedding meth-
ods in a question-answering system, we can still
easily infer that person from some sentences. In
total, we should not only consider the privacy is-
sue of each word but also consider how to hide

sentence structures and syntax in sentences. Thus,
designing sentence-level private embeddings is an
important but difficult problem in private language
models.

Private Inference. It is notable that in this pa-
per, we mainly discussed how to privately train
and release a language model without leaking in-
formation about training data. However, in some
scenarios (such as Machine Learning as a Service),
we only want to use the model for inference instead
of releasing the model. Thus, for these scenarios,
we only need to perform inference tasks based on
our trained model, while we do not want to leak
information about training data. From the DP side,
such private inference corresponds to the DP pre-
diction algorithm, which is proposed by (Dwork
and Feldman, 2018). Compared with private train-
ing, DP inference for text data is still far from
well-understood, and there are only few studies on
it (Ginart et al., 2022; Majmudar et al., 2022).

Limitations

First, in this paper, we mainly focused on the deep
learning-based models for NLP tasks in the dif-
ferential privacy model. Actually, there are also
some studies on classical statistical models or ap-
proaches for NLP in DP, such as topic modeling
(Park et al., 2016; Zhao et al., 2021; Huang and
Chen, 2021) and n-gram extraction (Kim et al.,
2021). Secondly, due to the space limit, we did
not discuss all the related work for DP-SGD, and
we only focused on the work that uses DP-SGD to
NLP-related tasks. Thirdly, while we tried our best
to discuss all the existing work on deep learning-
based methods for DP-NLP, we have to say that
we may have missed some related work. Moreover,
since we aim to classify all the current work into
three categories based on their methods of adding
randomness, there is still some work that does not
belong to these three classes, such as (Bo et al.,
2021; Weggenmann et al., 2022). To make our pa-
per be consistent, we did not mention these works
here. Fourthly, although DP can provide rigorous
guarantees of privacy-preserving, it has also been
shown that DP machine learning models can cause
fairness issues. For example, they always have a
disparate impact on model accuracy (Bagdasaryan
et al., 2019). Finally, it is notable that in this paper,
we did not discuss the narrow assumptions made
by differential privacy, and the broadness of natural
language and of privacy as a social norm. More
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details can be found in (Brown et al., 2022).
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A An Introduction to DP-SGD

Given a training data with n samples D = {xi}ni=1,
a loss function (such as cross-entropy loss) is de-
fined to train the model, which takes the parameter
θ ∈ Rd of neural network and samples and outputs
a real value:

L(θ,D) =
n∑

i=1

ℓ(θ, xi). (1)

The goal is to find the weights of the network that
minimizes L(θ,D), i.e., θ∗ = argminθ L(θ,D).
With additional constraint on DP, now we aim to
design an (ε, δ)/ε-DP algorithm A to make the
private estimated parameter θpriv close to θ∗.
Example: In Language Modeling (LM), we have
a corpus D = {x1, · · · , xn} where each text
sequence xi consists of multiple tokens xi =
(xi1, · · · , ximi) with xij as the j-th token of xi.
The goal of LM is to train a neural network (e.g.,
RNN) parameterized by θ to learn the probability
of the sequence pθ(x), which can be represented
as the following objective function

−
n∑

i=1

mi∑

j=1

log pθ(xij |xi1, · · · , xi(j−1)).

We first review the DP-SGD method (Abadi
et al., 2016; Wang et al., 2018, 2020a; Hu et al.,
2022). In the non-private case, to minimize the ob-
jective function (1), the most fundamental method
is SGD, i.e., in the t-th iteration, we update the
model as follows:

θt+1 = θt − η
1

|B|
∑

x∈B
∇ℓ(θt, x),

where B is a subsampled batch of random ex-
amples, η is the learning rate and θt is the cur-
rent parameter. DP-SGD modifies the SGD-based
methods by adding Gaussian noise to perturb the
(stochastic) gradient in each iteration of the train-
ing, i.e, during the t-th iteration DP-SGD will com-
pute a noisy gradient as follows:

gt =
1

|B|(
∑

xi∈B
ĝti +N

(
0, σ2C2Id

)
), (2)

σ is noise multiplier, ĝti is some vector computed
from ∇ℓ(θt, xi) and gt is the (noisy) gradient used
to update the model. The main reason here we
use ĝti instead of the original gradient vector is
that we wish to make the term

∑
ĝti has bounded

ℓ2-sensitivity so that we can use the Gaussian
mechanism to ensure DP. The most commonly
used approach to get a ĝti is clipping the gradient:
ĝti = ∇ℓ(θt, xi)min{1, C

∥∇ℓ(θt,xi)∥2 } i.e., each gra-
dient vector is clipped by a hyper-parameter C > 0.

Since the ℓ2-sensitivity of
∑

ĝki is bounded by
C, after the clipping, we can add Gaussian noise
to ensure DP. As there are several iterations and in
each iteration, we use some subsampling strategy,
we can use the composition theorem and privacy
amplification to compute the total privacy cost of
DP-SGD. Equivalently, given a fixed privacy bud-
get (ϵ, δ), number of iterations and subsampling
strategy, one can get the minimal noise multiplier σ
to ensure DP, see (Asoodeh et al., 2021; Gopi et al.,
2021; Mironov et al., 2019; Wang et al., 2020c;
Zheng et al., 2020; Zhu and Wang, 2019) for de-
tails.

B Ensemble Model Based Methods

Unlike gradient perturbation and private embed-
ding based methods, the general idea of ensem-
ble model based methods is first we divide the
whole private data into several subsets, then we
non-privately train a model for each private sub-
set. To ensure privacy, for each time of inference
or query, we will do a private aggregation for all
models. Compared with the previous two types
of approach, the main advantage of the ensemble
model based method is the noise we add will be
independent of the scale of the model or the dimen-
sion of the embedding space, indicating the noise is
much smaller. However, the weakness is that here,
we cannot release private embeddings or the pri-
vate model, and each query or inference will cost
a privacy budget. Generally speaking, based on
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Method Type Publications Scenarios Definition Model Architecture DP Level Downsteam Tasks

Gradient
Perturbation

Based
Methods

Hoory et al. (2021)

Pre-trained
DP

BERT Sample-level Entity-extraction
Anil et al. (2021) BERT Sample-level —

Yin and Habernal (2022) BERT Sample-level Classification, QA
Senge et al. (2022) BERT, XtremeDistil Sample-level Classification, NER, POS, QA

Ponomareva et al. (2022) T5 Sample-level NLU

Yu et al. (2022)

Fine-tuning DP

RoBERT, GPT-2 Sample-level NLG, NLU
Yu et al. (2021) BERT Sample-level Classification, NLU

Dupuy et al. (2021) BERT,BiLSTM Sample-level Classification, NER
Li et al. (2021) GPT-2, (Ro)BERT Sample-level Classification, NLG

Lee and Søgaard (2023) GPT-2, DialoGPT Sample-level Meeting Summarization
Xia et al. (2023) GPT-2, (Ro)BERT Sample-level Classification

Behnia et al. (2022) (Ro)BERT Sample-level NLU
Bu et al. (2023) GPT-2, (Ro)BERT Sample-level Classification

Gupta et al. (2023) (Ro)BERT Sample-level GLU
Du and Mi (2021) GPT-2, (Ro)BERT Sample-level Classification, NLG
Bu et al. (2022) (Ro)BERT Sample-level Classification, NLG
Yue et al. (2022) GPT-2 Sample-level Synthetic Text Generation

Mireshghallah et al. (2022) GPT-2 Sample-level Synthetic Text Generation
Carranza et al. (2023) T5 Sample-level Query Generation

Igamberdiev and Habernal (2022) GPT-2 Sample-level Classification
Aziz et al. (2022) GPT-2 Sample-level Synthetic Text Generation

Wunderlich et al. (2021) BERT,CNN Sample-level Classification
Li et al. (2022) LSTM Sample-level Classification

Amid et al. (2022) LSTM Sample-level Classification
Shi et al. (2021) SDP RNN Sample-level NLG, Dialog System
Shi et al. (2022) SDP GPT-2, (Ro)BERT Sample-level NLG, NLU

McMahan et al. (2018) LSTM, RNN User-level Prediction, Classification
Ramaswamy et al. (2020) LSTM User-level Prediction, Classification

Kairouz et al. (2021) LSTM User-level, Sample-level Prediction, Classification
Choquette-Choo et al. (2022) Federated Learning LDP LSTM User-level, Sample-level Prediction

Koloskova et al. (2023) LSTM User-level, Sample-level Prediction
Denisov et al. (2022) LSTM User-level, Sample-level Prediction
Agarwal et al. (2021) LSTM User-level, Sample-level Prediction

Wang et al. (2023) LaMDA User-level Prediction
Xu et al. (2023) Gboard User-level Prediction

Embedding
Vector

Perturbation
Based

Methods

Lyu et al. (2020b)

Private Embedding LDP

BERT Word-level Classification
Lyu et al. (2020a) BERT Word-level Classification
Plant et al. (2021) BERT Word-level Classification

Krishna et al. (2021) Auto-Encoder Word-level Classification
Habernal (2021) Auto-Encoder Word-level Classification

Alnasser et al. (2021) Auto-Encoder Word-level Classification
Igamberdiev et al. (2022) Auto-Encoder Word-level Classification
Maheshwari et al. (2022) Auto-Encoder Word-level Classification

Bollegala et al. (2023) GloVe Word-level Classification
Chen et al. (2023) GloVe, BERT Token-level Classification
Du et al. (2023b) Fine-tuning Sequence LDP BERT Sentence-level Classification, QA

Meehan et al. (2022) Private Embedding DP SBERT Sentence-level Classification

Feyisetan et al. (2020)

Private Embedding LMDP

GloVe, BiLSTM Word-level Classification, QA
Xu et al. (2020) GloVe Word-level Classification
Xu et al. (2021c) GloVe,FastText Word-level Classification
Xu et al. (2021a) GloVe, CNN Word-level Classification

Carvalho et al. (2021b) GloVe Word-level Classification
Feyisetan and Kasiviswanathan (2021) GloVe, FastText Word-level Classification

Feyisetan et al. (2019) GloVe Word-level Classification, Prediction
Carvalho et al. (2021a) GloVe, FastText Word-level Classification

Tang et al. (2020) GloVe Word-level Classification
Imola et al. (2022) GloVe, FastText Word-level Classification

Arnold et al. (2023a) GloVe Word-level Classification
Arnold et al. (2023b) GloVe Word-level Classification

Qu et al. (2021) Fine-tuning BERT, BiLSTM Token-level Classification,NLU
Du et al. (2023a) Private Embedding BERT Sentence-level Classification, QA
Li et al. (2023) Private Prompt Tuning BERT, TA Word-level Classification, QA

Yue et al. (2021) Private Embedding UMLDP BERT, GloVe Word-level Classification,QA

Ensemble
Model
Based

Methods

Duan et al. (2023)
In-context Learning

GPT-3 Sample-level Classification
Wu et al. (2023) GPT-3 Sample-level Classification, QA, Dialog Summarization

Tang et al. (2023) GPT-3 Sample-level Classification, Information Extraction
Tian et al. (2022) Fine-tuning GPT-2 Sample-level, User-level Synthetic Text Generation

Table 1: An overview of studies for DP-NLP.

495



different private aggregations, there are two types
of approaches: the PATE-based method, and the
Sample-and-Aggregation method.

B.1 PATE-based Method

PATE (Papernot et al., 2016) was originally crafted
for addressing classification tasks, and it incorpo-
rates both a private dataset and a public unlabeled
dataset within its framework, drawing parallels to
the principles of semi-supervised learning. PATE
ensures DP by employing a teacher-student knowl-
edge distillation framework consisting of multiple
teacher models and a student model. In this setup,
the student model acquires knowledge from the
private dataset through knowledge distillation fa-
cilitated by the teacher models. The PATE frame-
work consists of three key components: (i) Teacher
Model Training: The private dataset is first shuf-
fled and divided into M distinct subsets. Each
teacher model is subsequently trained on one of
these subsets. (ii) Teacher Aggregation: To lever-
age the knowledge of the individual teacher models,
their outputs are aggregated, and this aggregated
information serves as supervision for the student
model. Each of the trained teachers contributes
their insights to guide the learning process of the
student on the unlabeled public dataset. (iii) Stu-
dent Model Training: The student model is trained
on the public dataset using the guidance provided
by the aggregated teacher models. This collabora-
tive approach ensures that the student model learns
from the unlabeled data while benefiting from the
distilled knowledge of the teacher models.

In the context of classification tasks, a common
practice involves leveraging the collective wisdom
of teachers by using their noisy majority votes as
labels to guide the students, thereby ensuring DP.
However, when it comes to text generation tasks,
the straightforward application of this framework
encounters a significant challenge. This challenge
arises because traditional text generation models
generate words sequentially, typically from left
to right. Consequently, a straightforward appli-
cation of PATE to text generation necessitates the
iterative unveiling of all teachers, word by word,
which comes with substantial computational and
privacy costs. To tackle this issue, an innovative
solution was presented by Tian et al. (2022), known
as the SeqPATE framework. The SeqPATE frame-
work initiates by generating pseudo-data using a
pre-trained language model, simplifying the teach-

ers’ role to providing token-level guidance based
on these pseudo inputs. In dealing with the in-
herent complexities of the expansive word output
space and the accompanying noise, the framework
introduces dynamic filtering of candidate words.
This process focuses on selecting words with no-
tably high probabilities. Additionally, the SeqPATE
framework adopts a unique approach to aggregat-
ing teacher outputs. Instead of relying on voting,
it involves an interpolation of their output distribu-
tions, offering a more refined and nuanced strategy
for information fusion.

Recently, a notable development in the applica-
tion of PATE, as reported by Duan et al. (2023),
extends its utility to the realm of private In-context
learning, a domain where the primary objective
revolves around safeguarding the privacy of down-
stream data embedded in discrete prompts. De-
parting from the conventional approach of training
teacher models on distinct partitions of private data,
this innovative method capitalizes on the private
data to formulate distinct prompts for the Large
Language Model (LLM). In the context of private
knowledge transfer, the teachers take on the role of
labeling public data sequences. Each teacher offers
their perspective by voting on the most probable
class labels for the private downstream task. On
the student model front, a novel strategy is pro-
posed, leveraging the data efficiency of the prompt-
ing technique. This approach entails using labeled
public sequences to create new discrete prompts
for the student model. The chosen prompt is sub-
sequently deployed alongside the Large Language
Model (LLM) to serve as the student model, effec-
tively enhancing the overall efficiency and privacy
of the In-context learning process.

B.2 Sample-and-Aggregation-based Method

In contrast to the PATE-based method, the Sample-
and-Aggregation-based approach diverges signif-
icantly by omitting the presence of a public un-
labeled dataset, rendering the incorporation of a
student model unnecessary. Notably, the work by
Wu et al. (2023) delves into the realm of private
In-context learning and provides a comprehensive
protocol. The protocol encompasses the following
crucial steps: The initial step involves the discreet
partitioning of the dataset, specifically the private
demonstration exemplars, into non-overlapping
subsets of exemplars. Each of these subsets is
then paired with relevant queries, culminating in

496



the creation of exemplar-query pairs. For every
exemplar-query pair, the Language Model’s (LLM)
API is invoked, eliciting a diverse set of responses.
Subsequently, these individual responses generated
by the LLM are aggregated in a manner compli-
ant with differential privacy (DP) principles. The
outcome is a privately aggregated model answer,
which is then made available to the user. Further-
more, the study introduces two distinctive private
aggregation schemes, thus enhancing the repertoire
of options for preserving privacy in the context of
In-context learning.

In a parallel exploration of private In-context
learning, Tang et al. (2023) consider the scenarios
involving an infinite number of queries. In lieu
of generating private answers, their innovative ap-
proach revolves around the creation of synthetic
few-shot demonstrations using the private dataset.
This method involves augmenting each private sub-
set with the information generated thus far, collec-
tively contributing to the likelihood of generating
the subsequent token. To mitigate the impact of
noise prior to the private aggregation phase, the
approach strategically curtails the vocabulary to
include only tokens found within the top-K indices
of the next-token probability. This is derived solely
from the instructional content, entirely excluding
any input from the private data. The probabilities
associated with the next token generation, extracted
from each individual subset, are then subjected to
a private aggregation process, ensuring a nuanced
and privacy-preserving amalgamation of informa-
tion.

C Differential Privacy Preliminaries

Differential Privacy (DP) is a data post-processing
technique, which guarantees data privacy by con-
fusing the attacker. To be more specific, suppose
there is one dataset noted as S, and we can get
another dataset S′ by changing or deleting one data
record in this dataset. Denote the output distribu-
tion when S is the input as P1, and the output distri-
bution when S′ is the input as P2, if P1 and P2 are
almost the same, then we cannot distinguish these
two distributions, i.e., we cannot infer whether the
deleted or replaced data sample based on the out-
put we observed. The formal details are given
by Dwork et al. (2006). Note that in the defini-
tion of DP, adjacency is a key notion. One of the
commonly used adjacency definitions is that two
datasets S and S′ are adjacent (denoted as S ∼ S′)

if S′ can be obtained by modifying one record in
S.
Definition 2. Given a domain of dataset X . A
randomized algorithm A : X 7→ R is (ε, δ)-
differentially private (DP) if for all adjacent
datasets S, S′ with each sample is in X and for
all T ⊆ R, the following holds

Pr(A(S) ∈ T ) ≤ exp(ε) Pr(A(S′) ∈ T ) + δ.

When δ = 0, we call the algorithm A is ε-DP.

Illustration: For example, let X be a collection
of labeled product reviews, each belonging to a
single individual, and let R be the parameters of a
classifier trained on X . If the classifier’s training
procedure A satisfies the DP definition above, an
attacker’s ability to find out whether a particular
individual was present in the training data or not is
limited by ε and δ.

In the definition of DP, there are two parameters
ϵ and δ. Specifically, ϵ measures the closeness
between the output distribution when the input is
S, and the output distribution when the input is
S′, smaller ϵ indicates the two distributions are
more indistinguishable, i.e., the algorithm A will
be more private. In practice, we set ϵ = 0.1 −
0.5 as a high privacy regime. Informally, δ could
be thought of as the probability ratio between the
two distributions is not bounded by eϵ. Thus, it is
preferable to set δ as small as possible. In practice
we always set δ as a value from 1

n1.1 to 1
n2 , where

n is the number of samples in the dataset S. It is
notable that besides ϵ and (ϵ, δ)-DP, there are also
other definitions DP such as Rényi DP (Mironov,
2017), Concentrated DP (Bun and Steinke, 2016;
Dwork and Rothblum, 2016), Gaussian DP (Dong
et al., 2022) and Truncated CDP (Bun et al., 2018).
However, all of them can be transformed into the
original definition of DP. Thus, in this survey, we
mainly focus on Definition 2.

There are several important properties of DP,
see (Dwork and Roth, 2014) for details. Here, we
only introduce those which are commonly used in
NLP tasks. The first one is post-processing, which
means that any post-processing on the output of an
(ϵ, δ)-DP algorithm will remain (ϵ, δ)-DP. Equiva-
lently, if an algorithm is DP, then any side informa-
tion available to the adversary cannot increase the
risk of privacy leakage.
Proposition 1. Let A : X 7→ R be (ϵ, δ)-DP, and
let f : R 7→ R′ be a (randomized) algorithm. Then
f ◦ A : X 7→ R′ is (ϵ, δ)-DP.
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Example: Continuing with our scenario of train-
ing a review classifier under DP, let us imagine we
take the model from the previous example, which
was trained under (ε, δ)-DP, and perform a domain
adaptation by fine-tuning on a different dataset,
this time without any privacy. The resulting model
still remains (ε, δ)-DP with respect to the original
data, that is, privacy cannot be weakened by any
post-processing.

The second property is the composition prop-
erty. Generally speaking, the composition prop-
erty guarantees that the composition of several DP
mechanisms is still DP.
Proposition 2 (Basic Composition Theorem). Let
A1,A2, · · · ,Ak be k sequence of randomized al-
gorithms, where A1 : X 7→ R1 and Ai : R1 ×
· · ·Ri−1 × X 7→ Ri for i = 2, · · · , k. Suppose
that for each i ∈ [k], Ai(a1, · · · , ai−1, ·) is (ϵi, δi)-
DP. Then the algorithm A : X 7→ R1 × · · · × Rk

that runs the algorithms Ai in sequence is (ϵ, δ)-DP
with ϵ =

∑k
i=1 ϵi and δ =

∑k
i=1 δi.

The basic composition allows us to design com-
plex algorithms by putting together smaller pieces.
We can view the overall privacy parameter ϵ as a
budget to be divided among these pieces. We will
thus often refer to (ϵ, δ) as the “privacy budget”:
each algorithm we run leaks some information, and
consumes some of our budget. Differential privacy
allows us to view information leakage as a resource
to be managed. For example, if we fix the privacy
budget (ϵ, δ), then making each Ai be ( ϵk ,

δ
k )-DP

is sufficient to ensure the composition is (ϵ, δ)-DP.

Example: In most of the NLP tasks, we need
to train a model by using variants of optimization
methods, such as SGD or Adam. In general, these
optimizers include several iterations to update the
model, which could be thought of as a composition
algorithm, and each iteration could be thought of
as an algorithm. Thus, it is sufficient to design a
DP algorithm for each iteration, and we can use the
composition theorem to calculate the budget of the
whole process.

Besides the basic composition property, there
are also several advanced composition theorems
for (ϵ, δ)-DP, which could provide tighter privacy
guarantees than the basic one. For example, con-
sider each Ai, i ∈ [k] is (ϵ, δ)-DP. Then the ba-
sic composition theorem implies their composi-
tion is (kϵ, kδ)-DP. However, this is not tight as
we can use the advanced composition theorem
to show their composition could be improved to

(O(
√
kϵ,O(kδ))-DP (Dwork et al., 2010). We re-

fer to reference (Kairouz et al., 2015; Murtagh and
Vadhan, 2016; Meiser and Mohammadi, 2018) for
details.

The third property is the privacy amplification
via subsampling. Intuitively, every differentially
private algorithm has a much lower privacy param-
eter ϵ when it is run on a secret sample than when
it is run on a sample whose identities are known
to the attacker. And there, a secret sample can be
obtained by subsampling as it introduces additional
randomness.

Proposition 3. Let A be an (ϵ, δ)-DP algorithm.
Now we construct the algorithm B as follows: On
input D = {x1, · · · , xn}, first we construct a new
sub-sampled dataset DS where each xi ∈ Ds with
probability q. Then we run algorithm A on the
dataset DS . Then B(D) = A(DS) is (ϵ̃, δ̃)-DP,
where ϵ̃ = ln(1 + (eϵ − 1)q) and δ̃ = qδ.

Example: The subsampling property can be used
for the private version of the stochastic optimiza-
tion method. As in these methods, a common strat-
egy is to use the subsampled gradient to estimate
the whole gradient.

It is notable that, besides subsampling, some
other procedures could also amplify privacy, such
as random check-in (Balle et al., 2020), mixing
(Balle et al., 2019) and decentralization (Cyffers
and Bellet, 2022). And for different subsampling
methods, the privacy amplification guarantee is
also different (Imola and Chaudhuri, 2021; Zhu
and Wang, 2019; Balle et al., 2018).

In the following, we will introduce some mech-
anisms commonly used in NLP tasks to achieve
DP.

We first give the definition of a (numeric) query.
The query is simply something we want to learn
from the dataset. Formally, a query could be any
function f applied to a dataset S and outputting
a real valued vector, formally f : X 7→ Rd. For
example, numeric queries might return the sum of
the gradient of the loss on all samples, number of
females in the database, or a textual summary of
medical records of all persons in the database rep-
resented as a dense vector. Given a dataset S, a
common paradigm for approximating f(S) differ-
entially privately is via adding some randomized
noise. Laplacian noise and Gaussian noise are the
most commonly used ones, which correspond to
the Laplacian and Gaussian mechanisms, respec-
tively.
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Definition 3 (Laplacian Mechanism). Given a
query f : X 7→ Rd, the Laplacian Mech-
anism is defined as: ML(S, f, ϵ) = q(S) +
(Y1, Y2, · · · , Yd), where Yi is i.i.d. drawn from a
Laplacian Distribution Lap(∆1(f)

ϵ ), where ∆1(f)
is the ℓ1-sensitivity of the function f , i.e., ∆1(f) =
supS′∼S′ ||f(S) − f(S′)||1. For a parameter λ,
the Laplacian distribution has the density function
Lap(λ)(x) = 1

2λ exp(−x
λ). Laplacian Mechanism

preserves ϵ-DP.

Definition 4 (Gaussian Mechanism). Given a
query f : X 7→ Rd, the Gaussian mechanism
is defined as MF (S, f, ϵ, δ) = q(S) + ξ where
ξ ∼ N (0,

2∆2
2(f) log(1.25/δ)

ϵ2
Id), where ∆2(f) is

the ℓ2-sensitivity of the function f , i.e., ∆2(f) =
supS∼S′ ||f(S) − f(S′)||2. Gaussian mechanism
preserves (ϵ, δ)-DP when 0 < ϵ ≤ 1.

From the previous two mechanisms, we can see
that to privately release f(S), it is sufficient to
calculate the ℓ1-norm or ℓ2-norm sensitivity first
and add random noise. Moreover, as ∆2(f) ≤
∆1(f), the Gaussian mechanism will have lower
error than the Laplacian mechanism, while we relax
the definition from ϵ-DP to (ϵ, δ)-DP.

Instead of answering f(S) privately, we also al-
ways meet the selection problem, i.e., we want to
output the best candidate among several candidates
based on some score of the dataset. The exponen-
tial mechanism is the one that can output a nearly
best candidate privately.

Definition 5 (Exponential Mechanism). The Ex-
ponential Mechanism allows differentially private
computation over arbitrary domains and range R,
parameterized by a score function u(S, r) which
maps a pair of input data set S and candidate
result r ∈ R to a real-valued score. With the
score function u and privacy budget ϵ, the mech-
anism yields an output with exponential bias in
favor of high-scoring outputs. Let M(S, u,R)
denote the exponential mechanism, and ∆ be
the sensitivity of u in the range R, i.e., ∆ =
maxr∈RmaxD∼D′ |u(D, r) − u(D′, r)|. Then if
M(S, u,R) selects and outputs an element r ∈ R
with probability proportional to exp( ϵu(S,r)2∆u ), it pre-
serves ϵ-DP.

In the original definition of DP, we assume that
data are managed by a trusted centralized entity
that is responsible for collecting them and for de-
ciding which differentially private data analysis to
perform and to release. A classical use case for

this model is the one of census data. Compared
with the above model (which is called the central
model), there is another model, namely the local
DP model, where each individual manages his/her
proper data and discloses them to a server through
some differentially private mechanisms. The server
collects the (now private) data of each individual
and combines them into a resulting data analysis. A
classical use case for this model is the one aiming
at collecting statistics from user devices like in the
case of Google’s Chrome browser. Formally, it is
defined as follows.

Definition 6. For a data domain X , a randomized
algorithm A : X 7→ R is called (ε, δ)-local DP
(LDP) if for any s, s′ ∈ X and T ⊆ R we have

Pr[A(s) ∈ T ] ≤ eεPr[A(s′) ∈ T ] + δ.

Compared with Definition 2, we can see that
here the main difference is the inequality holds for
all elements s, s′ ∈ X instead of all adjacent pairs
of the dataset. In this case, each individual could
ensure that their own disclosures are DP via the
randomizer A. In some sense, the trust barrier is
moved closer to the user. While this has the benefit
of providing a stronger privacy guarantee, it also
comes at a cost in terms of accuracy.

It is notable that besides the central DP and local
DP model, there are also other intermediate models
such as shuffle model (Cheu et al., 2019) and multi-
party setting (Pathak et al., 2010). However, as they
are seldom studied in NLP, we will not cover these
protocols in this survey.
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