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Abstract

Thanks to the recent progress in vision-
-language modeling and the evolving nature
of news consumption, the tasks of automatic
summarization and headline generation based
on multimodal news articles have been gain-
ing popularity. One of the limitations of the
current approaches is caused by the commonly
used sophisticated modular architectures built
upon hierarchical cross-modal encoders and
modality-specific decoders, which restrict the
model’s applicability to specific data modalities
— once trained on, e.g., fext+video pairs there is
no straightforward way to apply the model to
text+image or text-only data. In this work, we
propose a unified task formulation that utilizes
a simple encoder-decoder model to generate
headlines from uni- and multi-modal news ar-
ticles. This model is trained jointly on data
of several modalities and extends the textual
decoder to handle the multimodal output.

1 Introduction

The task of Multimodal Summarization was in-
troduced as an extension of the traditional NLP
task of Text Summarization. Early works (e.g., Li
et al., 2017; Sanabria et al., 2018; Li et al., 2020a)
explored to what extent enriching the textual docu-
ment with additional context-specific information
(e.g., visual clues from images attached to a prod-
uct/service review or video clips attached to a cook-
ing recipe) helps the automatic systems in refining
the summary generation process. Zhu et al. (2018)
were the first to notice that the informativeness
of a summary can be significantly improved by
including the visual clues in the output, introduc-
ing the task of Multimodal Summarization with
Multimodal Output (MSMO). In their formulation,
based on a textual document and a set of images,
the model is tasked to generate the textual summary
and pick a single image as the pictorial summary.
Li et al. (2020b) introduced a variant of the task

where the input is a pair of textual article and a
short video. The following works (e.g., Qiu et al.,
2022; Zhang et al., 2023b) explored the challeng-
ing problem of multi-modal fusion and alignment
by introducing auxiliary tasks during training and
extending the model architecture with task-specific
blocks. However, by doing so, the model is tailored
to a specific data modality.

In this work, we propose a novel MSMO
task formulation that supports the most com-
mon data modalities (text+video—text+image,
text+images —text+image, text—text) with a single
sequence-to-sequence model (Section 2). We ex-
plore two approaches (Section 3.2): i) extending
a text-to-text baseline with visual features and ii)
fine-tuning a multimodal foundation model. We
show that the proposed unified formulation leads
to results competitive with previously introduced
task-specific solutions (Section 4) while not being
restricted to specific data modalities.

2 Unifying MSMO

Previous works explored two variants of the
MSMO task: video-based and image-based. In
the video-based one, the multimodal article is rep-
resented as a pair of a video clip and a textual
document. The goal is to generate the textual sum-
mary and to choose a single frame that acts as a
pictorial summary. In the image-based variant, the
input is a set of images, i.e., there is no temporal
dependency. The second difference comes from the
ground truth image: in the image-based variant, we
assume that the target is one of the input images. In
the video-based one, there is no such assumption'
— a similarity function is utilized to obtain the per-
frame labels for training using the most similar one
as a positive target. Our goal is to train a system

'The target image is often created by applying minimal ed-
its, such as cropping or watermark removal. In addition, com-
putational reasons require to down-sample the input frames,
potentially dropping the exact one that is used as a target.

437

Findings of the Association for Computational Linguistics: FACL 2024, pages 437-450
March 17-22, 2024 (©)2024 Association for Computational Linguistics



NASA unveils new spacesuit for next Moon landing img_ind 3

IO -
1

]

Transformer Model

f

[11]

[[[[T_T_lIlllllllllllllllll

s

N

“Nasa chief Jim Bridenstine shared
a close-up look at the
next-generation suits for the
agency's Artemis programme.The
XEMU prototype suit looks similar to
ones used at the International
Space Station (...)"

Figure 1: Overview of the proposed unified approach to MSMO. The visual tokens are appended to the text
representation. The generated output includes the textual summary and the index token that indicates which input
image (first, second, third, etc.) is picked as the pictorial summary. During training, a mixture of video-based,

image-based, and text-only data is used.

capable of natively handling both MSMO variants
as well as the basic text-to-text problem (summa-
rization or headline generation). We achieve that
by transforming the visual inputs into a sequence
of image features that are concatenated with the
textual token embeddings.

Instead of using a dedicated module for image
scoring, we realize the target image representations
by appending an index token to the textual target
— img_ind_1 indicates that the first image is the
target, img_ind_2 that the second, etc. This for-
mulation allows us to use the standard Transformer
architecture (Vaswani et al., 2017) trained end-to-
end in a multi-task setting (see Figure 1) — for the
text-only input, we do not extend the textual em-
beddings and do not add the index token into the
target sequence.

3 Experiments

3.1 Data

In our experiments, we use the text-only
PENS (Ao et al., 2021) dataset and the video-based
MLASK (Krubinski and Pecina, 2023) dataset for
training and testing. Since the largest publicly
available image-based multimodal summarization
dataset M3LS (Verma et al., 2023) lacks the image
targets, we extend the English subset of the M3LS
dataset by collecting the cover pictures on our own
(see Appendix A for details). For brevity, we fol-

low the TL;DW formulation by Tang et al. (2023)
and use the article title as the textual target (i.e., the
headline), although the proposed methods can also
be applied for other summarization tasks, such as
abstract generation.

3.2 Implementation

We use the T5 (Raffel et al., 2020) v1.1 base vari-
ant (250M trainable parameters) that we enrich
with visual features extracted with frozen ViT-L/14
CLIP (Radford et al., 2021), projected with a lin-
ear layer to match the hidden dimension size (we
refer to this model as TSCLIP). We extract a sin-
gle vector per image (frame) and, following Wang
et al. (2022a), use positional embeddings to indi-
cate the temporal dimension for videos. We ex-
tend the model vocabulary with index tokens, i.e.,
«img_ind_1, img_ind_2, ...» that are used for im-
age/frame selection. We train with the Adafac-
tor (Shazeer and Stern, 2018) optimizer using the
default parameters from the Transformers (Wolf
et al., 2020) package. For the multimodal baseline,
we use the Flan T5-XL (Chung et al., 2023) ver-
sion of BLIP-2 (Li et al., 2023, 3.9B parameters),
which we extend to handle multiple images in the
input — we concatenate the Q-Former features from
multiple images before appending them to the tex-
tual embeddings introducing no new parameters.
We use the LoRA (Hu et al., 2022) procedure and
update only the Q and V matrices in the Q-Former
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ROUGE-L BERTScore
MLASK PENS M3LS MLASK PENS M3LS
dev test dev test dev test dev test dev test dev test
Lead 12.28 | 12.19 | 16.51 | 16.27 9.74 9.85 | 10.67 | 10.77 8.85 9.10 9.57 | 10.03
Oracle 24.44 | 25.01 | 38.99 | 39.17 | 23.85 | 23.65 | 21.09 | 21.99 | 31.78 | 31.91 | 1843 | 19.34
Alpaca 14.81 | 15.07 | 26.80 | 2692 | 16.54 | 1696 | 18.67 | 19.14 | 28.40 | 28.62 | 19.34 | 20.78
BRIO 1556 | 1558 | 16.40 | 16.55 | 18.18 | 18.79 | 1597 | 1649 | 16.61 | 16.83 | 23.30 | 25.03
TS5CLIPmLask | 20.79 | 21.32 - - - - 25.46 | 25.99 - - - -
T5CLIPpgNs - - 43.00 | 44.21 - - - - 45.12 | 46.70 - -
T5CLIPM3Ls - - - - 29.63 | 29.68 - - - - 33.84 | 34.48
T5CLIP 21.48 | 21.43 | 43.07 | 4447 | 29.64 | 29.38 | 26.43 | 26.36 | 45.24 | 46.80 | 33.16 | 33.73
T5CLIP =10 21.48 | 21.57 | 42.60 | 43.74 | 29.32 | 29.28 | 2598 | 26.43 | 44.31 | 45.74 | 32.67 | 33.25
T5CLIP =50 20.63 | 21.05 | 40.87 | 42.15 | 26.92 | 26.88 | 25.21 | 2555 | 41.72 | 43.40 | 29.14 | 29.71
TS5CLIPsmooth 21.30 | 21.32 | 43.25 | 44.39 | 30.06 | 30.03 | 26.50 | 26.24 | 45.53 | 46.94 | 33.70 | 34.44
BLIP-2 23.25 | 24.24 | 43.03 | 44.37 | 32.82 | 33.02 | 27.87 | 28.94 | 44.56 | 46.27 | 3591 | 37.24
MMS 19.99 | 20.07 - - - - 2397 | 24.38 - - - -

Table 1: Evaluation of the textual output quality on the validation and test splits for each modality-specific dataset
(Section 3.1). The three highest-scoring systems in each column are bolded independently for test-set and dev-set.

and Language Model components (5.7M trainable
parameters), training with the AdamW (Loshchilov
and Hutter, 2019) optimizer with 5=(0.9, 0.999),
learning rate of le-5 and weight decay of Se-2.
We train all the models for up to 10 epochs with
early stopping applied if ROUGE-L F1 does not
improve for 5 consecutive epochs. We limit the
source size to 1024 sub-word tokens and the target
length to 128 tokens. We train on a machine with
three NVIDIA A40 GPUs and the average training
time is 24 hours for the T5 variants (effective batch
size 300) and one week for the BLIP-2 variant (ef-
fective batch size 60). During decoding, we utilize
beam search of size 4, length penalty of 1.0, and
repetition penalty (Keskar et al., 2019) of 2.5.

3.3 Maetrics and baselines

Metrics We measure the quality of the tex-
tual output with ROUGE-L (Lin, 2004) and
BERTScore (Zhang et al., 2020b), reporting the
F1 scores. For the pictorial output, we report the
cosine similarity (CosSim) between the ViT-L/14
CLIP features of the target image and the one cho-
sen by the model. To measure the multi-modal
interactions, we report the CLIPBERTScore (Wan
and Bansal, 2022) metric. It is computed as a
weighted average” of the CLIPScore (Hessel et al.,
2021) of the chosen image and the generated sum-
mary and the BERTScore precision of the input
article and the generated summary. For the image-
based data, we also report the top-1 accuracy (Top-1
Acc), i.e., the percentage of predictions where the

2We use the recommended o = 0.25

target image is correctly retrieved. For details, see
Appendix B.

Baselines We report two extractive baselines: Lead
that extracts the first sentence and Oracle that picks
a sentence maximizing ROUGE-L with the ground
truth. For the off-the-shelf textual abstractive base-
lines, we use the Alpaca (Taori et al., 2023) and
BRIO (Liu et al., 2022) models (see Appendix C).
For the video-based data, we compare with the
MMS model (Krubiniski and Pecina, 2023). We
also report a trivial baseline RandomVi that picks a
random image/frame. To further establish a com-
parison with the recent developments, we also
report a generative visual baseline based on Sta-
ble Diffusion (Rombach et al., 2022). We em-
ploy the stabilityai/stable-diffusion-2-1
model prompted with the textual target (_TEXT_)
using the following template: “High quality,
photorealistic photo of _TEXT_".

4 Results

Textual Output Table 1 compares the models (see
examples of model outputs in Appendix D) trained
separately on each task (e.g., TSCLIPpgNs) with
the ones trained in the multi-task fashion (TSCLIP).
The results are comparable, with additional textual
data improving the performance on the smallest
video-based dataset — MLASK. The proposed base-
lines, besides the Oracle, are lagging behind the
task-specific models. The highest scores are ob-
tained by the fine-tuned BLIP-2, which integrates
the largest language component — Flan T5-XL.
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CosSim CLIPBERTScore Top-1 Acc
MLASK M3LS MLASK M3LS M3LS
dev test dev test dev test dev test dev test

RandomVi 0.61 | 0.61 | 0.75 | 0.76 - - - 33.20 | 33.59
TSCLIPMLASK 0.64 | 0.64 - - 70.56 | 70.59 - - - -
TSCLIPMm3Ls - - 0.97 | 0.97 - - 69.57 | 69.70 | 93.59 | 94.56
TS5CLIP 0.64 | 0.64 | 093 | 094 | 70.67 | 70.65 | 69.61 | 69.77 | 87.49 | 88.55
TS5CLIPy=10 0.64 | 0.64 | 096 | 097 | 70.99 | 70.99 | 69.74 | 69.92 | 93.03 | 94.05
TSCLIP =50 0.64 | 0.63 | 096 | 097 | 71.12 | 71.11 | 69.60 | 69.72 | 91.76 | 93.19
TSCLIPsmooth 0.64 | 0.63 | 0.82 | 0.81 | 70.65 | 70.61 | 69.83 | 69.96 | 39.91 | 38.55
BLIP-2 0.63 | 062 | 0.83 | 0.84 | 71.46 | 71.44 | 70.07 | 70.26 | 60.46 | 61.73
MMS 0.68 | 0.68 - - 71.50 | 71.53 - - - -
Stable Diffusion v2.1 | 042 | 043 | 044 | 0.44 - - - - - -

Table 2: Evaluation of the visual output quality on the validation and test splits for video-based and image-based
datasets (Section 3.1). The highest-scoring system in each column is bolded independently for test-set and dev-set.

Visual Output The relatively high scores of the
random visual baseline (Table 2) may indicate
that the CLIP features are not distinctive enough
for the closely related images/frames coming
from the same article. The image-specific model
(T5CLIPM3Ls) performs slightly better than the
multi-task one (TSCLIP). We attribute this to the
potentially easier image-based task formulation
(Section 2) where the target input (i.e., one with
CosSim = 1.0) is present in the input.

In order to improve the visual performance, we
propose to use two methods: smooth labels (see
Krubinski and Pecina, 2023) and greater weights w
for the visual tokens when computing loss. Using
10 times greater weight (TSCLIPy-1¢) improves
the top-1 accuracy on M3LS, while using 50 times
greater weight (TSCLIPy=5¢) brings no further im-
provement, degrading the quality of textual out-
put. The smooth labels (TSCLIPsmooth), designed
for video-based data, are not effective on image-
based data. The highest similarities on MLASK are
achieved by the MMS model, which uses a sepa-
rate visual encoder and frame-scoring module. The
highest CLIPBERTScore is achieved by MMS on
MLASK (the best visual output quality) and BLIP-
2 on M3LS (the best textual model, a greater weight
for the textual component). Masking the visual
features with random noise has a negligible effect
on the textual output (M3LS test 29.38—29.32),
which we attribute to the "greedy learning" hypoth-
esis by Wu et al. (2022), but drops the top-1 accu-
racy to chance level (M3LS test 88.55—37.9).

5 Related Work

Historically, for both the video-based (Li et al.,
2020b) and the image-based (Zhu et al., 2018)

MSMO, the attention mechanism (Bahdanau et al.,
2015) was used to condition the encoded text rep-
resentation on the visual information, which in
the next step was passed to the autoregressive text
decoder. Following works focused on improving
the quality end efficiency of this process: Li et al.
(2018) and Liu et al. (2020) focused on the filtering
mechanism that would allow the model to attend
only to chosen relevant features avoiding poten-
tial noise. Yu et al. (2021) and Qiao et al. (2022)
worked on adapting strong pre-trained language
models to the multimodal input. All of those works
perturb the textual representation — the model is
no longer capable of inference on text-only data.
The reverse attention (vision —text) was used to
condition the visual information on the text content.
Using a learning signal from the pictorial target, the
model was trained to produce image/frame-level
scores.

A step towards simplifying these modular ap-
proaches was recently made by Jiang et al. (2023),
who generate pseudo-captions for input images
and then pick the image with the highest similar-
ity between the caption and the generated textual
summary, and He et al. (2023), who instead of us-
ing a textual decoder, predict sentence-level scores
and extract top-k sentences as the textual sum-
mary. A one-for-all architectures unifying several
vision-and-language tasks have also been explored
in a wider context. Cho et al. (2021) introduce
visual sentinel tokens corresponding to image re-
gions, allowing them to realize Visual Grounding
with a text-only decoder. The Task- and Modality-
Agnostic OFA framework (Wang et al., 2022b)
unifies the multi-modal and text-only tasks with
a sequence-to-sequence Transformer. By design,
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it is however limited to tasks dealing with a single
image, e.g., Image Captioning or Visual Question
Answering, not supporting inputs containing mul-
tiple images or videos. A recent line of research
on multimodal LLMs (Zhang et al., 2023a; Maaz
etal., 2023; Li et al., 2024) transfers the knowledge
from image-text models into video-text models.

Inspired by those works and the general-purpose
multimodal foundation models (e.g., Bao et al.,
2022; Alayrac et al., 2022; Wang et al., 2023a), we
propose the unified formulation (Section 2) — the
multi-task training with a simplified encoder allows
the model to natively handle both multi-modal and
text-only input and the usage of index tokens that
explicitly point to a particular input image allows
us to drop the scoring module and train with a
single text decoder.

6 Conclusions

In this pilot study on multi-task multi-modal sum-
marization, we propose a novel unified formulation
for the MSMO task. By training the textual de-
coder to generate index tokens, we make use of
the training signal from the visual modality with-
out a dedicated scoring module. Our results indi-
cate that multi-task training, which incorporates
text-only data, is an alternative to text-only pre-
training, which preserves the native capability to
handle purely textual input. For the challenging
task of video-based MSMO, there is still some gap
left when it comes to the visual output quality when
compared to sophisticated task-specific architec-
ture. Based on our results, for this specific task,
the visual generative approaches are still inferior to
extractive ones.

Limitations

Multimodal Summarization variants. In
our work, we examine three variants of the
multimodal summarization task: text+video—
—text+image, text+images—text+image, and
text—text. We acknowledge existence of other
formulations, such as fext+video—text (Qiao
et al., 2022), images—text (Trieu et al., 2020) or
video —text+images (Lin et al., 2023) that we did
not include in our experiments.

Dataset choice. Our findings are based on particu-
lar datasets, in a particular language (English) and
from a particular domain (news articles). The fact
that the previously introduced datasets (Li et al.,

2020b; Tang et al., 2023) are not publicly available
is a limiting factor.

Extension of the M3LS dataset. Since the largest
image-based dataset (Section 3.1) lacks the cover
pictures in the training data, we collected them by
automatically crawling a news website. To check
the validity of our setup, we sampled 100 articles
and manually checked the collected images, but no
large-scale human evaluation was conducted.

Generative models. Both of the off-the-shelf gen-
erative models that we use: the visual one (Stable
Diffusion v2-1) and the textual one (Alpaca) were
trained on data that potentially may include harm-
ful content such as explicit pornographic materials
or toxic, stereotyped language. We did not apply
any filtering to the model outputs, so the predic-
tions may not be free of bias.
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A Appendix — Data preparation

A.1 MLASK

Since the textual part of MLASK? — the largest publicly available video-based news summarization dataset
— is in the Czech language, we used the CUBBITT (Popel et al., 2020) Machine Translation system* to
translate articles and summaries (titles) into English. We use the split proposed by Krubinski and Pecina
(2023), i.e., 36,109/2,482/2,652 instances for training/validation/testing. In our early experiments, we
sampled one of every 25 frames (1 frame per second), which on average produced 86 images (frames)
per video, with the longest videos having up to about 300 frames sampled. This number is too large to
process with the BLIP-2 model — it uses the Q-Former to map each input image into 32 visual tokens,
which would require us to process sequences of length up to 9,600. Therefore, we decided to further
down-sample the input by sampling 20 frames evenly spaced across the video. To check whether this
affects the model performance, we trained the TSCLIPpp sk aLL Variant (see Section 3.2) that uses the
denser sampling for each video. The results (MLASK dev-set ROUGE-L: 20.79 — 20.55, BERTScore:
25.46 — 25.34, CosSim: 0.64 — 0.61) indicate that the model is not able to make use of the dense frame
sampling, showing that the problem of frame-selection requires more work in the future.

A.2 PENS

The PENS dataset® contains 113,762 news articles and was originally introduced for personalized news
headline generation. We filtered it by removing articles identified as non-English by the langid® language
identifier, and those where the title has less than 2 words or more than 25 words. In the next step, we
de-duplicated the data based on the article and title fields. We were left with 100,992 documents (89%),
out of which 5,000 were used for validation and testing and the remaining ones (90,992) for training.

A3 M3LS

The M3LS dataset’ was introduced recently as the largest resource for image-based multimodal summa-
rization. The data was collected in several languages, including 376,367 documents in English, from
the www. bbc. com/news website. However, the multimodal information (images) is present only on the
source side — the target is purely textual. In order to extend this resource with the visual target, we made
use of the URLs that were provided for each article by collecting the content (URL) of the meta element
HTML tag with property="og:image"”. Based on our understanding and manual checks, the URLs
correspond to the picture that is used to visually represent the article at the www.bbc.com/news main
page. In the next step, we collected the images and applied two-step filtering: we kept only those images
that had a particular resolution (1024x490), and in the next step, we removed duplicates. Finally, we
filtered those multimodal articles that fulfilled two conditions: they had at least a single image in the input
and we were able to collect the target image for them. We ended up with 115,432 instances, which we
split into training/validation/testing based on the publication date: articles published in January—April
of 2021 for validation (5,865 instances) and the ones published in May—October of 2021 for testing
(6,854 instances). The remaining data (before January 2021) is used for training (102,713 instances).
Following the image-based MSMO formulation (Section 2), we append the target image to the source
images, shuffling them during training to avoid positional bias. The quantitative statistics of the number
of input images in the extended M3LS dataset are displayed in Table 3.

Min ‘ Q1 ‘ Mean ‘ Qs ‘ Max
2 |2 [ 379 | 4] 21

Table 3: Quantitative statistics of the number of input images (including the target image) in the subset of the
English M3LS dataset that we extended with the multimodal target.

3https://github.com/ufal/MLASK
*https://ufal.mff.cuni.cz/cubbitt

5https ://msnews.github.io/pens_data.html
6https ://github.com/saffsd/langid.py
"https://github.com/Raghvendra-14/M3LS
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B Appendix — Metrics

We use the ROUGE metric from the TorchMetrics package® and the original implementations of
BERTScore’ and CLIPBERTScore!®. The signature of the BERTScore model that we use is:
roberta-large_L17_no-idf_version®.3.12(hug_trans=4.29.0.dev0)-rescaled. For readability
reasons, we re-scale both BERTScore and CLIPBERTScore into the [0-100] range by multiplying the
numerical scores by 100.

C Appendix — Baselines

The Stanford Alpaca model'! is a text-only, Transformer-based Large Language Model (LLM), fine-
tuned from the LLaMA (Touvron et al., 2023) model to follow instructions. It has been trained on
the automatically generated data created with the Self-Instruct (Wang et al., 2023b) techniques. In our
experiments, we use the following prompt:

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.

### Instruction:
Generate a one sentence summary of a given text, using no more than 10 words.

### Input:
__DOCUMENT _TEXT__

### Response:"”

We report results with the 7B parameter variant and, for generation, utilize beam search of size 4,
length penalty of -5.0, and repetition penalty of 2.5. In our early experiments, we noticed that truncating
the input at the token level resulted in words and sentences being cut in half, which negatively affected the
model performance. To avoid this, we use the wtpsplit package (Minixhofer et al., 2023) to prompt the
model with full sentences, capping the input length (i.e., __DOCUMENT_TEXT__) at 1000 characters.

BRIO (Liu et al., 2022) is a recent encoder-decoder model trained for both summary gener-
ation and evaluation, i.e., the ability to score the quality of candidate summaries. We use the
Yale-LILY/brio-xsum-cased variant (568M parameters), which is based upon the pre-trained
PEGASUS (Zhang et al., 2020a) model and fine-tuned on the XSum (Narayan et al., 2018) dataset to
generate single-sentence summaries.

When generating images with the stabilityai/stable-diffusion-2-1 model, we use the stan-
dard inference parameters (guidance_scale=5 and num_inference_steps=50) with the following
negative_prompt: “ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of
frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off,
low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face” .

8https ://torchmetrics.readthedocs.io/en/stable/text/rouge_score.html
9https ://github.com/Tiiiger/bert_score

10https ://github.com/meetdavidwan/faithful-multimodal-summ
"https://github.com/tatsu-1lab/stanford_alpaca
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D Appendix — Model OQutputs

Walrus counting from space: How many tusked Thousands of volunteers to count Arctic
beasts do you see? walruses from space

(a) Reference (b) TSCLIP

Walruses are heavily dependent on sea-ice,
which has been in sharp retreat, leading
to increased difficulty for the animals to
hunt and rest.

Scientists count walruses from space

Satellite image of a Laptev walrus haul-out

k-

Source: Satellite imagery 2021 Maxar Technologies [B|B|[C]

(c) BLIP-2

(d) Stable Diffusion 2.1 + Alpaca

Figure 2: Pictorial summary — M3LS Example 1.
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’I thought the navy was cool and really
interesting’

Ireland’s Naval Service marks its 75th
anniversary

(a) Reference (b) TSCLIP

Covid has ensured that anniversary
commemorations will be more subdued than
the 50th anniversary celebrations, when
foreign navies visited Ireland.

Irish Navy celebrates 75th anniversary

(c) BLIP-2 (d) Stable Diffusion 2.1 4+ Alpaca

Figure 3: Pictorial summary — M3LS Example 2.
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Man seriously injured his head at waste
treatment company, helicopter flew for him

(a) Reference

A worker was injured in a truck at a waste
treatment plant in Prague

A man was injured at a waste treatment
company in Prague. He was airlifted to
hospital

Novinky.cz -

(b) TSCLIP

(c) BLIP-2

A man was injured in a waste treatment
company in Prague. He died at the scene

Man injured at waste treatment plant,
airlifted conscious to hospital.

(e) Stable Diffusion 2.1 + Alpaca

Figure 4: Pictorial summary — MLASK Example 1.




Branson’s "a once-in-a-lifetime experi-
I will make the universe accessible to all ues’ [l @ Ciee S Sgees Liih [ re
of you, exulted Branson. Prepare 5 million

(a) Reference (b) TSCLIP

The world’s richest man has a new era of
Richard Branson became the second 70-year- space travel, Branson and his family are
old to go into space heading to the edge of space

UNITYa2 UNITVYa2
e NEWMEXICO  TRUE

R NEWMEXICO TRUE

(c) BLIP-2

(d) MMS

Virgin Galactic successfully completed its
first commercial space flight, marking a
major milestone for space tourism.

(e) Stable Diffusion 2.1 + Alpaca

Figure 5: Pictorial summary — MLASK Example 2.
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