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Abstract
In this paper, we champion the use of struc-
tured and semantic content representation of
discourse-based scholarly communication, in-
spired by tools like Wikipedia infoboxes or
structured Amazon product descriptions. These
representations provide users with a concise
overview, aiding scientists in navigating the
dense academic landscape. Our novel auto-
mated approach leverages the robust text gen-
eration capabilities of LLMs to produce struc-
tured scholarly contribution summaries, offer-
ing both a practical solution and insights into
LLMs’ emergent abilities.

For LLMs, the prime focus is on improv-
ing their general intelligence as conversational
agents. We argue that these models can also
be applied effectively in information extraction
(IE), specifically in complex IE tasks within
terse domains like Science. This paradigm shift
replaces the traditional modular, pipelined ma-
chine learning approach with a simpler objec-
tive expressed through instructions. Our re-
sults show that finetuned FLAN-T5 with 1000x
fewer parameters than the state-of-the-art GPT-
davinci is competitive for the task.

1 Introduction

Scholarly communication in the digital age is fac-
ing significant challenges due to the overwhelm-
ing volume of publications (Johnson et al., 2018)
thereby creating the need for efficient access to rel-
evant knowledge. In this regard, next-generation
scholarly digital libraries, such as the Open Re-
search Knowledge Graph (ORKG) (Auer et al.,
2020; Stocker et al., 2023), offer a promising
solution by adopting semantic publishing princi-
ples (Shotton, 2009). The ORKG stores schol-
arly contributions in a structured and semantic
way, leveraging a knowledge graph (KG) repre-
sentation (Ehrlinger and Wöß, 2016; Fensel et al.,
2020). The fine-grained semantic contribution rep-
resentation in the ORKG utilizes property-value

Figure 1: Two structured research contributions com-
pared in the Open Research Knowledge Graph (papers
in columns, properties in rows and values in cells).

tuples, capturing important aspects and correspond-
ing observations of research contributions. This
representation enhances understanding and naviga-
tion of scholarly content by both humans and ma-
chines. With selected properties that apply univer-
sally to research on a specific problem, the ORKG
enables intelligent exploration and assistance ser-
vices, including research comparisons based on
shared properties, e.g., Figure 1. Its novel informa-
tion access methods provide condensed overviews
of the state-of-the-art, supporting strategic read-
ing (Renear and Palmer, 2009) in the ever-growing
publication landscape.

This work, as a text mining service toward pro-
ducing scalable solutions for the ORKG, for the
first time, introduces a complex information extrac-
tion (IE) task. Our notion of complex IE entails
joint entity and relation extraction in a single ob-
jective aligned with the structured property-value
format of contributions in the ORKG. We defined
the complex IE task w.r.t. a key research problem
in the domain of Epidemics & Virology, i.e. esti-
mating the basic reproduction number (R0) for in-
fectious diseases. This R0 estimate research topic
was brought to common knowledge during the re-
cent Covid-19 pandemic by the Centers for Disease
Control and Prevention (CDC) as a key informant.
Important to infectious disease epidemiology, gen-
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Figure 2: Comparing (A) instruction tuning with (B) instruction-tuned LLM domain- and task-tuning of this work.

erally, the R0 estimate represents the average num-
ber of secondary infections caused by a single in-
fected individual (Foppa, 2017). In other words,
it is an estimate of disease progression in a given
population. E.g., the estimated R0 for COVID-19
has been reported between 2.5 to 5.7 (Sanche et al.,
2020). It varies for different infectious diseases and
populations. For researchers in Epidemics & Virol-
ogy, it is interesting to be able to compare the R0
of different viruses facilitated by structured contri-
bution data available in the ORKG. The alternative,
traditional, and seemingly impossible knowledge
comprehension task, would be to scour for vital in-
formation buried in unstructured text across the 44k
articles by Covid-19 R0 estimate Google search.

To define our complex IE task, an expert seman-
tic modeler created a research comparison based
on structured property-value pairs for Covid-19 R0
estimate contributions across 30 abstracts. Con-
sequently, six properties were modeled: disease
name, location, date, R0 value, %CI values,1 and
method. The semantic modeling aimed to identify
properties that were both generic enough to struc-
ture most related research on the R0 estimate (in
the context of a research comparison) and special-
ized enough to reflect the vital details of the R0
contribution (by identifying commonalities in ob-
servations reported across 30 different abstracts).
This structured format is called ORKG-R0. Thus
our complex IE task focused on extracting property-
value pairs for ORKG-R0 contributions in schol-
arly article abstracts. To address this task, a larger
gold-standard corpus was annotated (details in sec-
tion 3) and an LLM-based solution was optimally
designed (introduced next, details in section 4).

The complex IE task introduced earlier is ad-
dressed as single-task instruction-based finetun-
ing of an instruction-tuned Large Language Model
(LLM) with the primary objective of better aligning
the LLM to our task and domain. Our approach is

1CI stands for confidence interval.

characterized in Figure 2. We chose LLMs for their
rich parameter spaces and ability to handle complex
IE tasks with simple instruction prompts (Ouyang
et al., 2022). Unlike traditional pipelined-based
IE, which are prone to error propagation and re-
quire extensive manual engineering, LLMs offer
flexibility, adaptability, and the ability to handle
a wide range of tasks in zero- and few-shot set-
tings through instructions (Radford et al.; Brown
et al., 2020; Wei et al., 2021). By relying on instruc-
tion prompting, we can effectively address complex
inter-relations without the need for an exhaustive
enumeration of all possible relations or prelimi-
nary named entity recognition (NER). We finetune
an LLM from the sequence-to-sequence encoder-
decoder-based T5 model class (Raffel et al., 2020)
to accept a research paper title and abstract and
instruct it to write the ORKG-R0 structured “sum-
mary” of knowledge in the prompt as either text-
based or as a structured JSON object. For the LLM,
we specifically select the instruction-tuned FLAN-
T5-Large model (Chung et al., 2022) with reported
780M parameters. There could have been one of
two directions for this work: scaling the models or
instruction fine-tuning of a moderate-sized LLM,
i.e. with parameters in millions versus 1000x more
in billions. We chose the latter. We believe that our
choice makes model tuning more accessible within
the research community while empirically proving
to be nonetheless effective (experimental details in
section 5). Furthermore, our choice of Google’s
FLAN-T5, open-sourced and easily accessible in
the Transformers library, obviates any paywall that
hinders access to LLMs for the research commu-
nity at large. For instruction-based finetuning, we
use applicable instructions from the open-sourced
instruction generalization efforts introduced as the
“Flan 2022 Collection” (Longpre et al., 2023). Our
approach differs from finetuning a pretrained LM
as we instead finetune an instruction-tuned LM, en-
abling the model to effectively follow instructions

375

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=COVID-19+R0&btnG=
https://orkg.org/comparison/R44930/
https://huggingface.co/docs/transformers/model_doc/flan-t5


Title: A norovirus 
gastroenteritis outbreak in 
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analysis 
Abstract: There is a large 
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disease name: Norovirus 
location: Australia 
date: 24th of August to 18th of September 
2020 
R0 value: 2.4 
%CI values: (95% CI 1.50, 3.50) 
method: time-dependent methods during 
the growth phase of the outbreak 

Answer: Text-based  

[{"contribution":{"disease name": "Norovirus", 
"location": "Australia", 
"date": "24th of August to 18th of September 
2020", 
"R0 value": "2.4", 
"%CI values": "(95% CI 1.50, 3.50)", 
"method": "time-dependent methods during 
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… 
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Figure 3: Multiple instruction prompts describing our complex scientific information extraction (IE) task.

it has been trained on and adapt to a new domain
and complex IE task, without the need to handle
variability in learning new instruction formats. Our
approach is shown in Figure 3.

In this context, the central research question
(RQ) of this work examines: How does instruction-
based finetuning enhance LLM performance in a
unique domain, specifically in a complex scien-
tific field like Virology that requires specialized
expertise? Summarily, the main contributions of
our work are as follows: 1) Corpus: A gold-
standard corpus of 1,500 annotated structured ab-
stracts based on ORKG-R0. 2) Methodological:
We adopt “single-task instruction-finetuning” to
enhance LLMs’ domain and task adaptation. It in-
volves selecting instructions from the open-sourced
FLAN collection and fine-tuning FLAN-T5 780M
to respond to those instructions. Our source code
is released. 3) Methodological: Our approach
distinguishes itself in the realm of IE research by
introducing an LLM-based approach that breaks
away from traditional pipeline-based methods for
entity and relation extraction. Instead, we propose
a single-system approach utilizing a moderately-
sized LLM, which holds potential for practical
applications. And 4) Results: Our instruction-
finetuned ORKG-FLAN-T5R0 780M outperforms
pretrained T5, instruction-tuned FLAN-T5, and
GPT3.5-davinci 175B on ORKG-R0 complex IE.
The best model is released on HuggingFace.

2 Background: Scholarly Communication

Semantic scholarly knowledge publishing models,
such as the ORKG, specifically the ORKG-R0 in-

stance in this work, and the structured abstracts
methodology (e.g., IMRAD) employed by pub-
lishers like PubMed have distinct approaches and
serve different purposes in scholarly communica-
tion. This section distinguishes the two.

The ORKG (Auer, 2018) and similar semantic
knowledge publishing models (Baas et al., 2020;
Birkle et al., 2020; Wang et al., 2020a; Aryani
et al., 2018; Manghi et al., 2019; Hendricks et al.,
2020; Fricke, 2018) aim to create interconnected
and machine-actionable representations of schol-
arly knowledge. They leverage semantic tech-
nologies, knowledge graphs (KGs), and ontolo-
gies to capture the meaning, context, and relation-
ships between research concepts. The ORKG, for
example, stores scholarly contributions as struc-
tured property-value pairs, enabling advanced ex-
ploration, comparison (Oelen et al., 2019), and
analysis via visualizations (Wiens et al., 2020) of
research findings. The strength of semantic knowl-
edge publishing models lies in their ability to fa-
cilitate interdisciplinary collaborations, data inte-
gration, and automated processing of scholarly in-
formation. They enhance research transparency,
enable advanced search and discovery, and support
the development of novel strategic reading tools
and services for researchers.

On the other hand, the structured abstracts
methodology (Haynes et al., 1990; Hayward et al.,
1993; Nakayama et al., 2005; Kulkarni, 1996;
Hopewell et al., 2008), e.g., IMRAD (Sollaci and
Pereira, 2004), focuses on organizing research ar-
ticles into a specific format. IMRAD advocates
for a structured abstract based on four points, viz.
Introduction, Methods, Results, and Discussion, to
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provide a standardized framework for reporting re-
search. The strength of structured abstracts lies in
their ability to provide a clear and consistent orga-
nization of research findings. They help readers
quickly understand the key components of a study
and locate specific information within the article.
Structured abstracts facilitate efficient scanning and
information retrieval.

In summary, semantic scholarly knowledge pub-
lishing models enhance the machine-actionability
and interoperability of scholarly knowledge, en-
abling advanced computational exploration and
analysis. They offer opportunities for interdisci-
plinary collaborations and innovative research tools.
On the other hand, structured abstracts provide a
standardized format for reporting research, facili-
tating efficient information retrieval.

3 Corpus

We aim to create a high-quality corpus for the com-
plex scientific IE task introduced in this work. The
corpus creation goal was to obtain gold-standard
property-value structured format representation
w.r.t. the six predicates in ORKG-R0 from scholarly
article abstracts. These structured representations
encapsulate the R0 estimate research problem for
infectious diseases.
Base corpus. Our starting point was the large-
scale CORD-19 dataset (Wang et al.) provided by
AllenAI. This resource comprised a growing col-
lection of publications and preprints on Covid-19,
its variants, related historical coronaviruses such
as SARS and MERS, as well as other infectious
diseases such as H1N1 Influenza, Dengue, Mon-
keypox, Ebola, Zika virus, Norovirus, etc. At our
download date timestamp 2022-06-02 it comprised
over 800,000 total publications. The dataset cov-
ered diverse topics such as epidemiology, virology,
clinical studies, public health, and more. It served
as a valuable resource for researchers, policymak-
ers, and the general public to access and analyze
the latest scientific knowledge related to COVID-
19. Since CORD-19 contained articles on various
themes, as a next step the corpus was filtered to
include only articles on the R0 estimate theme.
Corpus filtering. Our method for filtering the base
corpus to our desired collection was simple. We im-
plemented pattern-based heuristics using variants
of the phrase “R0 estimate” and checked the publi-
cation abstract for containment. The base corpus
was then reduced to 4590 instances. Post dedupli-

cation, the collection was further reduced to 3967
instances. Other than exact duplicates, there were
other near-duplication patterns such as punctua-
tion marks stripped or retained, numbers with or
without decimal points served as different data in-
stances. Near-duplicates were also filtered by clus-
tering abstracts that were 95% similar (583 clusters
from 1227 articles were created). A human anno-
tator went through all clusters and decided on one
abstract to retain while dropping all others. The
resulting curated corpus contained 3024 abstracts
which included a direct mention or a variant of the
phrase “R0 estimate”.
The ORKG-R0 model. Here we provide an expla-
nation of ORKG-R0 as an ideal representation of
a structured contribution for the research problem
of “R0 estimate,” as defined by an expert semantic
modeler. The R0 estimate pertains to an infectious
disease (disease name), for a specific population
demographic (location), with validity for a specific
time period (date). It reports a specific value (R0
value), along with a confidence interval for the sta-
tistical value (%CI values), and is computed by a
statistical method (method).
Annotation exercise. To ensure a practical and
realistic human annotation target, we selected a
sub-sample of 1500 articles from the curated 3024
dataset. This would then serve as the gold-standard
dataset for training and development purposes, as
an empirical basis for future research. A team of
two annotators produced the ORKG-R0 structured
annotations with the corpus raw data comprising
a paper title and abstract, where each instance is
uniquely identified by a cord_id. The overall an-
notation exercise lasted 3 months. The annotation
task began by distinguishing between the papers
actually reporting an R0 value as a contribution
and those that just mentioned the “R0 estimate”
keyword in the abstract, but did not actually report
a value as a contribution of the work. Resultingly,
we found 652 articles reported an R0 value and
thus were annotated for the ORKG-R0 structure
(referred to as the “answerable” set, in short ans),
while 850 did not (referred to as the “unanswer-
able” set, in short unans). Among the 652 articles,
approximately 157 had multiple contributions for
the “R0 estimate.” Notably, a few articles stood
out with 10, 11, or 16 reported contributions. The
gold-standard annotated set was made available in
two formats: text-based and JSON-based, which
are illustrated by the green boxes in Figure 3. In
the text-based format, multiple contributions were
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separated using a pipe character, while in the JSON
format, they were encoded as separate JSON ob-
ject dictionaries. We observed that the JSON data
structure is more conducive for utilization in down-
stream applications. Therefore, our empirical anal-
ysis regarding LLMs aimed not only to assess their
ability to generate structured abstract summaries
but also to evaluate their compatibility with a spe-
cific data structure. This allows for the seamless
integration of their output into downstream appli-
cations.
The annotators. In our annotation process, we
first developed a structured summary model for the
“R0 estimate for infectious diseases” using both do-
main experts and a semantic modeler specializing
in ontology design. Next, a PhD student populated
the model using a dataset of abstracts, treating it as
a form-filling task of reported facts. While the task
itself is tedious in that the student needed to read
all abstracts to populate the properties, the process
did not entail much ambiguity in the decisions. The
definition of the properties we selected are fairly
straightforward and the values are to be directly
extracted from the text. For discrepancies in spans
for the values selected, the LLM is expected to be
robust enough to arrive at the optimal extraction
scenario. For any concerns on quality, our gold-
standard test dataset annotations versus the LLM
predictions eventually obtained can be publicly
browsed at this link https://scinext-project.
github.io/#/r0-estimates.
Our complex IE task objective. We phrased the
following question to formulate our task objective
w.r.t. the ORKG-R0 extraction target: What are
the values for the following properties of the basic
reproduction number estimate (R0): disease name,
location, date, R0 value, %CI values, and method?
In essence, it encapsulates an IE task.

The ORKG-R0-based complex IE objective
presents a unique approach compared to traditional
scientific IE, particularly in biomedicine. Common
biomedical IE tasks, like those in the BioCreative
V chemical disease relation extraction task corpus
(BC5CDR) corpus, focus on document-level en-
tity and relation extraction, linking two elements
such as a chemical and a disease with semantic
interactions like “interacts” (Li et al., 2016). In
contrast, the ORKG-R0 IE model aims to establish
a multifaceted link among six distinct elements:
infectious disease name, study location, study date,
R0 estimate value, %confidence interval values,
and method. This approach diverges from the se-

mantic interaction model of BC5CDR, as it does
not establish semantic relations between its ele-
ments. Instead, it aggregates these elements to
form a comprehensive summary representation of
a work’s contribution to the research problem “R0
estimate for infectious diseases.”

The ORKG-R0 model is characterized by the un-
derlying principles of the ORKG platform from
which it is derived, which emphasizes structured,
machine-actionable models of scholarly communi-
cation beyond traditional formats like PDFs (Auer
et al., 2020). The ORKG prioritizes structured rep-
resentations of a work’s contributions over exhaus-
tive content coverage. In contrast, resources like
the BC5CDR corpus (and other similar databases
in biomedicine, e.g., BioCreative datasets (Ri-
naldi et al., 2016; Islamaj Doğan et al., 2019;
Krallinger et al., 2017; Miranda et al., 2021)) focus
on building extensive knowledge graphs of disease-
chemical interactions, with annotations drawn from
comprehensive scientific papers. While valuable,
these annotations are different in their goal as they
do not necessarily provide insights into the specific
contributions of a work, such as the discovery of
an interaction or the methods used for such discov-
eries. The ORKG-R0 IE, therefore, aligns more
closely with research contribution summarization
tasks than with traditional scientific IE tasks in
biomedicine. Consequently, models developed for
ORKG-R0 IE are unlikely to be directly applicable
to conventional biomedical IE tasks.

In terms of objectives, our work is somewhat
analogous to Leaderboards in artificial intelligence
(AI), which annotate units or tuples comprising
Task, Dataset, Metric, and Score (Kabongo et al.,
2021a, 2023d,c). However, there are distinct differ-
ences in annotation scope: Leaderboards typically
utilize the full text of papers, whereas our method
relies solely on abstracts. Additionally, the AI com-
munity currently lacks a gold-standard dataset for
Leaderboard annotations, a gap our dataset aims
to fill. We propose our dataset as a pioneering
resource in generating structured scientific sum-
maries, addressing the current community need for
standardized datasets in this domain.
Instructions for the LLM. Instruction tuning is
a novel approach (Khashabi et al., 2020; McCann
et al., 2018; Keskar et al., 2019) that improves
LLMs’ performance by providing explicit instruc-
tions during finetuning, guiding the model’s behav-
ior (Ouyang et al., 2022; Chung et al., 2022; Min
et al., 2022) and enhancing its adaptability and ef-
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fectiveness in diverse learning scenarios. Unlike
traditional non-instruction tuning methods (Raffel
et al., 2020; Liu et al., 2019; Aghajanyan et al.,
2021; Aribandi et al., 2021) that rely solely on
unlabeled data, instruction tuning incorporates spe-
cific guidance, simplifying the finetuning process
and enabling better performance on new tasks and
domains (Sanh et al., 2022). It became possible to
generically prompt an LLM to perform different
tasks with a single instruction. As such it can be
considered as a template that encodes the task and
its objective, in turn telling the LLM what to do
with the given objective.

The “Flan 2022 Collection” was a large-scale
open-sourced collection of 62 prior publicly re-
leased datasets in the NLP community clustered
as 12 task types, such as reading comprehension
(RC), sentiment, natural language inference (NLI),
struct to text, etc. It is the most comprehensive
resource facilitating open-sourced LLM develop-
ment as generic multi-task models. Importantly,
and of relevance to this work, FLAN was not just a
super-amalgamation of datasets encapsulating dif-
ferent learning objectives, but also included at least
10 human-curated natural instructions per dataset
that described the task for that dataset. As such,
we select a set of instructions to guide the LLM
for our complex IE task from the FLAN collec-
tion. Specifically, we identified the applicable
instructions to our task were those designed for
the SQuAD_v2 (Rajpurkar et al., 2016, 2018) and
DROP (Dua et al., 2019) datasets. The general
characteristic of the selected instructions is that
they encode a context (in our case the paper title
and abstract) and the task objective, and instruct
the model to fulfill the objective. See Appendix B
for further details. The purple boxes in Figure 3
show some exemplars. Examples of all instructions
are in Appendix A.

Our work is positioned here, coalescing the most
relevant collection of instructions that were used
to instruction-finetune the T5 (2020) model class,
as the strong reference point for any future open
source work on single-task instruction finetuning.

4 Approach

Our approach is single-task instruction-finetuning
for our novel introduced complex IE task. As
such it aims to be an incremental progression
of the instruction-tuning paradigm introduced as
FLAN (Finetuned Language Net) (2021; 2022;

2023). Specifically Chung et al. (2022) ask: are
instruction-finetuned models better for single-task
finetuning? as a recommendation for future work.
Our work then is a direct examination of this re-
search question except for a novel task type that we
also introduce for the first time in the community.

Now, we outline our methodology. Step 1. Col-
lect relevant instructions for ORKG-R0 complex
IE to guide an LLM towards the desired objective.
Step 2. Instantiate the instructions to the LLM us-
ing gold-standard structured data and a formulated
question (e.g. in Appendix A). Step 3. Finetune the
LLM with the instruction-instantiated data. Three
training strategies are explored: single-instruction
tuning, all-instruction tuning, and best-instruction
tuning based on evaluation results.

4.1 Model

We adopt the FLAN-T5 model (Chung et al., 2022)
w.r.t. its public checkpoints. This encoder-decoder
sequence generation model is available in a range
of sizes: Small 80M, Base 250M, Large 780M, XL
3B, and XXL 11B. We choose the Large model
as a middle ground between the Small and XXL
models, providing enough parameters for our com-
plex IE task and practicality for deployment. Addi-
tionally, we find it inefficient to test extreme scale
LLMs for a single task. Our choice of Flan-T5
was motivated by prior empiricism (Longpre et al.,
2023) proving instruction-tuned models as more
computationally efficient starting checkpoints for
new tasks – FLAN-T5 required less finetuning to
converge higher and faster than T5 on single down-
stream tasks (2023). Our model choice builds upon
previous research, enhancing the T5 text-to-text
sequence generation model (2020) with FLAN-
T5 (2022) to improve alignment with instructions
in unseen tasks and zero-shot settings. Our result-
ing model is called ORKG-FLAN-T5R0.

5 Evaluations

Dataset. For evaluations, we created a 70%/10%/
20% split as train/dev/test sets, respectively, of the
1500 instances. The dataset comprised 1,082 train
(464 ans, 618 unans), 120 dev (53 ans, 67 unans),
and 300 test (135 ans, 165 unans) instances.
Experimental setup. We used a total of 18 instruc-
tions for training, with 9 instructions each from
SQuAD_v2 and DROP, specifically instantiated in
appendices A.1 and A.2, respectively, suitable for
our task. Among these, 2 DROP instructions were
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Highest Scores Lowest Scores

Model Format Rouge1 Rouge2 RougeL RougeLsum
General

-Accuracy Rouge1 Rouge2 RougeL RougeLsum
General

-Accuracy

T5
text 12.46 4.56 10.37 11.99 45.00 1.37 0.52 1.21 1.37 45.00
json 12.01 4.33 10.54 10.49 45.00 1.35 0.51 1.18 1.17 45.00

FLAN-T5
text 51.66 0.42 51.42 51.85 56.33 7.94 3.98 7.68 7.85 45.00
json 51.64 0.41 51.39 51.74 56.33 7.66 3.82 7.41 7.39 45.00

GPT3.5
text 68.92 17.71 68.20 68.89 79.00 31.00 24.51 30.20 30.83 40.33
json 68.44 17.26 67.72 67.92 79.00 30.33 23.92 29.57 29.29 40.33

ORKG-
FLAN-T5R0

text 78.64 28.75 78.33 78.65 86.33 71.34 27.75 70.96 71.41 81.00
json 80.77 28.03 80.43 80.53 88.67 30.93 27.04 30.55 30.41 44.67

Table 1: Zero-shot results for T5, FLAN-T5 and GPT3.5 tested out-of-the-box to generate structured summaries
versus our ORKG-FLAN-T5R0 model. Two answer formats plus highest & lowest scores are contrasted. The general
accuracy shows models’ ability to distinguish between answerable vs. unanswerable contexts (details in section 3).

Own Test Instructions Best Test Instructions
Disease-

Name Location Date
R0-

Value
%CI-
Values Method Overall

Disease-
Name Location Date

R0-
Value

%CI-
Values Method Overall

s7
Exact 54.26 56.23 29.67 52.90 32.76 34.42 43.59 56.76 55.81 30.94 53.38 33.33 37.17 44.80

s8
Partial 54.26 59.13 46.15 57.92 62.07 44.51 54.46 56.76 58.72 47.51 58.80 63.16 47.79 55.89

s6
Exact 54.50 52.25 33.18 52.50 36.84 33.14 43.75 58.51 53.11 35.41 53.00 37.84 33.33 45.21

s1
Partial 56.08 55.06 48.34 60.30 63.16 40.70 54.06 60.11 55.93 49.76 61.44 64.86 41.52 55.71

d3
Exact 57.66 55.71 35.56 53.99 18.80 32.29 42.34 58.29 55.17 35.62 56.07 22.22 32.75 43.37

s6
Partial 59.22 57.38 52.44 58.60 56.41 41.93 54.44 59.89 57.47 52.97 61.21 58.12 42.11 55.42

Table 2: Our top three ORKG-FLAN-T5R0 single-task instruction-finetuned models, based on the single-instruction
tuning setting in descending order of overall partial F1 for the text answer format. 1st column: models trained on
SQuAD_v2 instr. 7 (s7), SQuAD_v2 instr. 6 (s6), and DROP instr. 3 (d3). Last column: best inference instructions.

Own Test Instructions Best Test Instructions
Disease-

Name Location Date
R0-

Value
%CI-
Values Method Overall

Disease-
Name Location Date

R0-
Value

%CI-
Values Method Overall

d3
Exact 55.64 53.04 32.84 47.62 24.56 32.64 41.11 59.26 53.33 35.18 49.20 25.00 35.12 42.91

s6
Partial 58.27 56.35 51.74 54.19 56.14 45.10 53.84 61.38 56.67 54.27 56.95 55.36 45.83 55.28

s8
Exact 54.08 53.51 34.91 48.92 24.56 30.42 41.10 56.85 54.25 31.88 49.53 27.27 31.34 41.89

s1
Partial 56.63 56.22 50.94 55.83 52.63 41.13 52.34 59.43 56.99 49.28 55.53 56.36 42.17 53.39

s10
Exact 52.92 52.20 34.74 47.52 16.82 32.82 39.56 57.14 52.23 33.33 48.32 17.65 32.70 40.31

s1
Partial 54.04 54.55 50.53 53.59 56.07 41.49 51.82 58.26 54.60 49.46 54.67 58.82 40.88 52.91

Table 3: Our top three ORKG-FLAN-T5R0 single-task instruction-finetuned models, based on the single-instruction
tuning setting in descending order of overall partial F1 for the JSON answer. 1st column: models trained on DROP
instr. 3 (d3), SQuAD_v2 instr. 8 (s8), and SQuAD_v2 instr. 10 (s10). Last column: best inference instructions.

formulated to prompt the LLM to generate a ques-
tion from a given context. Although indirect to our
task, we included them as they were relevant to
obtaining capable models, but were excluded from
testing. Thus for testing, we had 16 instructions (9
SQuAD and 7 DROP). For training, we had three
main experimental settings based on the 18 training
instructions. In the first setting, we trained 32 mod-
els (16 for text-format and 16 for JSON-format)
by tuning FLAN-T5 with a single instruction for
our task. Note here models were not trained for the
indirect instruction. This setting tested the hypoth-
esis that FLAN-T5 only needed one instruction to
perform our task effectively since it already came
instruction tuned. In the second setting, we trained
two models: one using all 18 instructions with the
full training data, and the other using a 50% random
sub-sample to prevent overfitting. This resulted in

four models for each answer format. The third
setting followed a similar approach, training two
models with best SQuAD and DROP instructions
based on single instruction inference results. Over-
all, we trained 40 models. Model hyperparamter
details are in Appendix C. In terms of compute, all
experiments were run on an NVIDIA 3090 GPU.
Training took 12-15 hours on smaller datasets and
30 hours on larger datasets, while inference lasted
15-30 minutes for 300 test instances.

Metrics. We experimented in two main settings:
zero-shot evaluations and single-task finetuned
model evaluations. For the latter, we used recall,
precision, and F1 metrics in exact and partial match
settings for each of the six ORKG-R0 extraction
targets and overall. In the zero-shot evaluations,
where models were not guaranteed to respond with
the desired structure, we treated the task as struc-
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tured summarization. To evaluate these summaries,
we used standard summarization ROUGE met-
rics (Lin, 2004) (details in Appendix D) instead
of F1 metrics, which would require complex post-
processing and could lead to misinterpretation of
the model’s response.

5.1 Results and Discussion

Zero-shot evaluations. Table 1 results show
model’s capacity in generating structured sum-
maries per ORKG-R0. Notably, our single-task
instruction-finetuned ORKG-FLAN-T5R0 model
surpasses its incremental predecessors T5 and
FLAN-T5 with the same parameter size of 780M,
as well as GPT3.5 (with 1000x more parameters at
175B), confirming the effectiveness of instruction-
tuned models for single-task finetuning. Addition-
ally, the general accuracy of the model, which dis-
tinguishes between answerable and unanswerable
contexts, is significantly improved, at nearly 89%.
Single-task finetuning of instruction-tuned
LLM. From the 40 trained models, the best results
were achieved in the single-instruction tuning set-
ting, as shown in Table 2 and 3 for text and JSON
answers respectively. The best partial overall F1
scores were 55.89% for text answer and 55.28%
for JSON answer. Among the 6 properties, extract-
ing R0 and %CI values was relatively easier with
higher scores for text than JSON. Extracting the
method and date proved to be the most challenging.
Since our work builds upon the instruction-tuned
FLAN-T5 model, it already possesses the capabil-
ity to handle the instructions we use. Thus, the best
inference instruction was not necessarily the same
as the one the model was trained on. More results
from the all-instruction and best-instruction models
can be found in Appendix E.
Impact of diverse inference instructions. Fig-
ure 4 offers a look into the inference perfor-
mance differences from the best ORKG-FLAN-
T5R0 model. As such the model shows better
responses to the SQuAD (orange lines) versus
DROP (green lines) inference templates in both text
(darker lines) and JSON (lighter lines) answers.

6 Error Analysis

Based on an analysis of all the erroneous responses
on the test set from our best model, we identified
five main error types. They were further catego-
rized on their impact on recall or precision. For
each, mismatching (prediction, annotated label),
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Figure 4: Performances range on inference instructions.

we assigned an error type(s) and on which proper-
ties that error had an effect. The five error types are:
Type 1 is where the model answers unanswerable
questions (Type 1.1) or fails to provide answers for
answerable questions (Type 1.2). Type 2 is where
the model predicts values for a property and the
label had no value (Type 2.1) or does not predict a
value when the label had a value (Type 2.2). Type 3
is where the model predicts either more (Type 3.1)
or fewer (Type 3.2) contributions than indicated in
the label. Type 4 were inconsistencies between pre-
dicted and label values. This may include minor ty-
pographical errors (Type 4.1), not fully addressing
the label values but still providing a related value
in prediction (Type 4.2), including extra related
information in prediction (Type 4.3), or generat-
ing totally unrelated predicted values (Type 4.4).
Type 5.1 is an invalid predicted JSON.

Figure 5: Our best model error types for text format.

Text Response Format. As shown in Figure 5,
the most frequent errors in the text-based settings
are unanswerable labels (Type 1.1) and incomplete
predictions (Type 4.2). These two errors have sim-
ilar distributions across properties and "method"
is the most affected property overall. Type 2.2
errors significantly impact the accuracy of extract-
ing "date" values. In contrast, Type 2.1 and Type
3.1 errors are rare, indicating the model’s ability
to generate property values and contributions ap-
propriately. Typographical errors (Type 4.1) are
common, particularly for "%CI values" and "date,"
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suggesting that normalizing label values and using
a standard can improve performance in this regard.

Figure 6: Our best model error types for JSON format.

JSON Response Format. Figure 6 shows error
Type 4.2 is the primary error affecting properties,
similar to text-format errors. The "method" prop-
erty is the most affected overall, while "date" is par-
ticularly impacted by error Type 2.2, highlighting
a common issue in JSON-based models. However,
JSON models exhibit fewer errors of Type 1 (unan-
swerable) and instead tend to make more errors in
predicting extra text (Type 2.1 and Type 3.1).

7 Conclusions and Future Directions

Searching scientific articles for the Covid-19 R0
estimate yields around 44,000 results. To navi-
gate through this vast amount of information and
stay up-to-date with the latest R0 estimates, is in-
undating for researchers. Next-generation digital
libraries like ORKG are transforming this tradi-
tional paradigm by capturing machine-actionable
data, enabling advanced computational tools such
as research comparisons. LLM-powered complex
IE technologies can play a crucial role in scaling
scientific information extraction. We present a con-
crete use-case in virology, showcasing the acquisi-
tion of LLM-powered structured knowledge with
the ORKG-R0 model. To facilitate reproducibility
and foster future research, we have made available
several resources: our dataset (https://doi.org/
10.5281/zenodo.8068441 licensed under CC BY
4.0), instructions, source code (https://github.
com/mahsaSH717/r0-estimates licensed under
MIT), and our optimally finetuned model for
the ORKG-R0 IE task at https://huggingface.
co/orkg/R0_contribution_IE. Additionally,
for enhanced transparency, a selection of our
human-annotated test dataset and its correspond-
ing model predictions can be browsed online
here https://scinext-project.github.io/#/
r0-estimates.

To sum up, our work can be seen as a fla-
vor of meta-learning that was seminally proposed
by Min et al. (2022) as the meta in-context
learning paradigm. We explore meta-learning
through instruction-finetuning of an instruction-
tuned model, and differ in that we use a zero-shot
rather than a few-shot training and testing scenario.
We relegate few-shot in-context model learning to
future work. While this work comprehensively
evaluates the T5 class of LLMs, there are other
promising LLMs like PaLM (Chowdhery et al.,
2022), Chinchilla (Hoffmann et al., 2022), and
ChatGPT (Brown et al., 2020; Ouyang et al., 2022)
that can be further investigated for NLP tasks with
instructions. Exploring alternative model families
is a fruitful direction for future research. Addition-
ally, model distillation (Hinton et al., 2015; Jiao
et al., 2020; Sanh et al., 2019; Wang et al., 2020b)
holds potential for transferring knowledge from
large teacher models to smaller, efficient student
models. This approach holds promise, particularly
in scenarios where single-task tuned models are
desired, as we propose in this study.

Limitations

This section presents a discussion of the limitations
w.r.t. the two main facets of this work: structured
scholarly knowledge publishing (paragraph I) and
LLM scaling experiments for single-task instruc-
tion finetuning (paragraph II).

I. Structured Scholarly Knowledge Publishing
This work proposes the ORKG-R0 model that
records a fine-grained structured representation of
the salient facets of a research contribution on the
specific research problem of investigating the R0
number of infectious diseases. For such popular
research use-cases in the community, e.g., captur-
ing Leaderboards in the empirical AI research as
Task, Dataset, Metric, and Score (Kabongo et al.,
2021b, 2023a,b), as another example apart from
the one we address in this work, a current limita-
tion that such a contribution-centric fine-grained
structured scholarly knowledge publishing model
faces is it’s adoption and standardization. The
widespread adoption of the semantic scholarly
knowledge publishing model is still in its early
stages, and achieving consensus on standard for-
mats, ontologies, and metadata remains a challenge.
This lack of standardization can hinder interop-
erability and limit the accessibility of knowledge
across different platforms and communities. To
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overcome this limitation, i.e. to realize this vision
of the publishing of fine-grained structured schol-
arly contributions to better assist researchers to
stay on track with research progress many more
collaborative advocacy and community-building
efforts would need to be set in place. The trajec-
tory, however, looks promising. The ORKG since
its inception in 2018 currently has a knowledge
base of roughly 41k structured contributions. More
stats here https://orkg.org/stats. In addition,
yearly paid community curation grants are run invit-
ing researchers from various disciplines to help
curate a high-quality knowledge graph (https:
//orkg.org/about/28/Curation_Grants). Fi-
nally, the ORKG has initiated collaborations with
various conferences and journals that ask authors
to submit research comparisons of their work ver-
sus related work to help expedite the peer-review
process. E.g., see the last point in the Author
Guidelines in the SEMANTiCS 2023 call for
papers https://2023-eu.semantics.cc/page/
cfp_rev_rep. To this end, the platform is inte-
grated with content creator anonymization features
to support double-blind review protocols. More
information here https://orkg.org/about/22/
Conferences_and_Journals.

As a second limitation of semantic publishing,
the ORKG is designed to be a next-generation
digital library that supports fine-grained schol-
arly knowledge publishing stored as a large-scale
knowledge graph in the backend (Jaradeh et al.,
2019). It is also amenable to be published in
the Linked Open Data (LOD) Cloud https://
lod-cloud.net/. Thus it follows the best prac-
tices laid out in Berners-Lee et al.’s (2001) the
Semantic Web. As such the engineering of this
platform entails a high degree of technical com-
plexity compared with the traditional PDF-based
publishing platforms. Implementing and maintain-
ing the infrastructure required for semantic pub-
lishing models can be technically complex and
resource-intensive. It requires expertise in seman-
tic technologies, data management, and ontological
engineering. Nevertheless, the ORKG platform
supports the integration of widgets for its various
features in other platforms. This would lower the
technical entrance barrier for other publishers to
also support the semantic publishing of scientific
contributions.

II. Scaling Single-Task Instruction-tuning of
LLMs This work has investigated the moderate-

sized FLAN-T5 Large model with 780M parame-
ters. Prior work reported: “we see that increasing
model scale by an order of magnitude (i.e., 8B
-> 62B or 62B -> 540B) improves performance
substantially for both finetuned and non-finetuned
models” (Chung et al., 2022). Borrowing insights
from the earlier experiments on scaling models,
potentially, a single-task finetuned model perfor-
mance could be boosted if larger scale models were
used. This aspect while not analyzed in this work
is relegated to future work. However, a more practi-
cally viable option would not just be additional scal-
ing investigations, but these combined with model
distillation (Hinton et al., 2015).
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A Instructions: Qualitative Examples

In this section, we elicit each of the instructions
that were considered in this work as formulated in
the FLAN 2022 Collection for the SQuAD_v2 and
DROP datasets.

A.1 The Stanford Question Answering
Dataset (SQuAD_v2)

Instruction 1:

title: Estimating the serial interval of the novel
coronavirus disease (COVID-19) based on the pub-
lic surveillance data in Shenzhen, China, from 19
January to 22 February 2020

context: The novel coronavirus disease
(COVID-19) poses a serious threat to global public
health and economics. Serial interval (SI), time be-
tween the onset of symptoms of a primary case and
a secondary case, is a key epidemiological param-
eter. We estimated SI of COVID-19 in Shenzhen,
China based on 27 ...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction:
{title}:\n\n{context}\n\n Please answer a ques-

tion about this article. If the question is unanswer-
able, say "unanswerable". {question}

Instruction 2:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27 ...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: Read this and answer the question.
If the question is unanswerable, say "unanswer-
able".\n\n{context}\n\n{question}

Instruction 3:

This instruction is omitted in this work.
Instruction: (What is a question about this ar-

ticle? If the question is unanswerable, say "unan-
swerable"),\n{context}\n{question}

Instruction 4:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27 ...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n{question} (If the ques-
tion is unanswerable, say "unanswerable")

Instruction 5:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n Try to answer this
question if possible (otherwise reply "unanswer-
able"):{question}

Instruction 6:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
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the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n If it is possible to an-
swer this question, answer it for me (else, reply
"unanswerable"): {question}

Instruction 7:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n \n Answer this ques-
tion, if possible (if impossible, reply "unanswer-
able"): {question}

Instruction 8:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-

mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: Read this: {context}\n \n {ques-
tion} \n What is the answer? (If it cannot be an-
swered, return "unanswerable")

Instruction 9:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: Read this: {context}\n Now answer
this question, if there is an answer (If it cannot be
answered, return "unanswerable"): {question}

Instruction 10:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n Is there an answer to
this question (If it cannot be answered, say "unan-
swerable"): {question}

A.2 Discrete Reasoning over Paragraphs
(DROP) Dataset

Instruction 1:
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context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: Answer based on context: \n
\n{context}\n \n {question}

Instruction 2:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n \n Answer this ques-
tion based on the article: {question}

Instruction 3:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-

mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n \n {question}

Instruction 4:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n Answer this question:
{question}

Instruction 5:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: Read this article and answer this
question {context}\n {question}

Instruction 6:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
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onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n \n Based on the above
article, answer a question. {question}

Instruction 7:

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: Context: {context}\n \n Question:
{question}\n \n Answer:

Instruction 8:

This instruction is omitted in this work.
Instruction: Write an article that answers the

following question: {question}

Instruction 9:

Note single-instruction finetuned models were not
trained on this instruction. This instruction was
only used in the all-instruction training setting.

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: Write a question about the follow-
ing article: {context}

Instruction 10:

Note single-instruction finetuned models were not
trained on this instruction. This instruction was
only used in the all-instruction training setting.

context: Estimating the serial interval of the
novel coronavirus disease (COVID-19) based on
the public surveillance data in Shenzhen, China,
from 19 January to 22 February 2020

The novel coronavirus disease (COVID-19)
poses a serious threat to global public health and
economics. Serial interval (SI), time between the
onset of symptoms of a primary case and a sec-
ondary case, is a key epidemiological parameter.
We estimated SI of COVID-19 in Shenzhen, China
based on 27...

question: What are the values for the following
properties of the basic reproduction number esti-
mate (R0): disease name, location, date, R0 value,
%CI values, and method?

Instruction: {context}\n \n Ask a question
about this article.

B ORKG-R0 for the FLAN Collection

In this section, we discuss the relation of our com-
plex IE task formulated as ORKG-R0 to the task
types already in the FLAN collection (2021; 2023)
as a new candidate for inclusion. As mentioned ear-
lier, FLAN has 12 task type clusters of 63 datasets.
Two of which are reading comprehension (RC) and
struct-to-text, among others. In this respect, our
task could either be considered part of the RC task
or as a new task type i.e. text-to-struct. In an
RC task, e.g. SQuAD (2016), a context passage
is provided along with a question to test compre-
hension. Our complex IE task is similar, where
given a scholarly paper’s title and abstract as con-
text, the machine must generate a structured sum-
mary by understanding the context and assigning
applicable extracted values for the ORKG-R0 prop-
erties. Furthermore, the model must also create
ORKG-R0 clusters for abstracts reporting multi-
ple contributions.2 Otherwise, it could be intro-

2Note, there is a subtle difference between RC and the
related question-answering (QA) task type. In QA, complex

390



duced into the FLAN collection as a new task type
called text-to-struct. As such, for instance, the
WebNLG (Gardent et al., 2017) or DART (Nan
et al., 2021) datasets in the struct-to-text cluster,
seek to convert structured data in RDF to text. No-
tably, our task is its direct inverse which seeks to
obtain structured property-value tuples which can
easily be represented in RDF syntax.

C Our Experimental Hyperparamters

We had different training experimental settings
to train on different datasets with different sizes
(single-instruction model tuning, all-instructions
model tuning, all-instructions model tuning with
50% subsampled training data, best-instructions
model tuning, and best-instructions model tuning
with 50% subsampled training data).

The hyperparameters are: batch size and num-
ber of training epochs, which differ based on each
dataset group mentioned above. the batch size was
either 32 or 16 and the number of epochs were
one of 10, 15, 20, and 30 values. In all settings
we used early stopping which stops the training if
the "Overall Partial F1" score dose not improve at
least 0.1% after completing 10 consecutive training
epochs. For all settings we used AdafactorSchedule
and Adafactor optimizer (Shazeer and Stern, 2018)
with scale_parameter=True, relative_step=True,
warmup_init=True, lr=None, which is one of the
combinations working well according to the com-
munity for T5 finetuning.

The evaluations were done on each epoch on the
dev set and we kept two best (the one maximizing
the "Overall Partial F1" score) and last checkpoints
in each model training process to then use for infer-
ence on test set.

D ROUGE Evaluation Metrics

The ROUGE metrics (Lin, 2004) are commonly
used for evaluating the quality of text summariza-
tion systems. ROUGE-1 measures the overlap of
unigram (single word) units between the generated
summary and the reference summary. ROUGE-
2 extends this to measure the overlap of bigram
(two consecutive word) units. ROUGE-L calcu-
lates the longest common subsequence between the
generated and reference summaries, which takes
into account the order of words. ROUGE-LSum is

IE would require breaking down the RC extraction target into
multiple questions, such as the disease name or the reported
location, etc., unlike in RC.

an extension of ROUGE-L that considers multiple
reference summaries by treating them as a single
summary. These metrics provide a quantitative as-
sessment of the similarity between the generated
and reference summaries, helping researchers and
developers evaluate and compare the effectiveness
of different summarization approaches. They have
become widely used benchmarks in the field of
automatic summarization.

E Additional Results

Finally, in this last appendix section, we show the
highest and lowest results obtained from the two
other experimental settings discussed in the main
paper. I.e. all-instruction model finetuning, in two
subsettings: with all the training data and with a
50% random subsample of the training data. These
results are presented in Table 4 and Table 5, re-
spectively, for the text format and JSON format
responses. And furthermore, results are shown for
the best-instruction finetuning setting in two subset-
tings: with all the training data and with a 50% ran-
dom subsample of the training data. These results
are presented in Table 6 and Table 7, respectively,
for the text format and JSON format responses.
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All Data Data From Random Selection of Templates

Template Match Type
Disease
-Name Location Date

R0
-Value

CI
-% Values Method Overall Template Match Type

Disease
-Name Location Date

R0
-Value

CI
-% Values Method Overall

Top 2 Highest
s1

Exact 54.24 52.12 21.51 47.84 13.59 33.96 37.26
d7

Exact 54.88 51.69 33.48 49.84 33.06 33.43 42.76
Partial 54.80 53.94 38.71 55.22 54.37 44.65 50.35 Partial 55.41 54.49 48.46 56.26 57.85 40.47 52.38

d6
Exact 53.52 51.81 21.51 47.84 13.59 33.23 36.96

d1
Exact 54.69 51.70 29.60 50.16 36.67 32.14 42.53

Partial 54.08 53.61 37.63 55.29 54.37 43.89 49.89 Partial 55.23 55.11 43.95 56.50 58.33 39.29 51.66

Top 2 Lowest
d4

Exact 53.22 51.65 20.32 46.86 13.46 33.02 36.47
s6

Exact 56.02 47.00 27.56 45.98 36.07 31.06 40.63
Partial 53.78 53.45 36.36 54.62 53.85 42.99 49.25 Partial 56.51 50.13 40.94 51.31 55.74 38.15 48.93

s8
Exact 53.22 52.25 19.35 46.71 13.59 33.64 36.51

d4
Exact 52.58 47.67 27.23 47.13 36.07 32.57 40.56

Partial 53.78 53.45 34.41 54.19 54.37 44.24 49.15 Partial 53.09 50.96 41.70 52.19 55.74 38.29 48.79

Table 4: Top two highest and lowest inference results by ORKG-FLAN-T5R0 all-instructions and all-instructions
with 50% subsampled finetuned models, in descending order of overall partial F1 for the text answer. template
column: inference instructions. SQuAD_v2 instr. 1 (s1), DROP instr. 6 (d6), DROP instr. 4 (d4), SQuAD_v2 instr.
8 (s8), DROP instr. 7 (d7), DROP instr. 1 (d1), SQuAD_v2 instr. 6 (s6), and DROP instr. 4 (d4).

All Data Data From Random Selection of Templates

Template Match Type
Disease
-Name Location Date

R0
-Value

CI
-% Values Method Overall Template Match Type

Disease
-Name Location Date

R0
-Value

CI
-% Values Method Overall

Top 2 Highest
s5

Exact 51.25 48.94 29.03 41.97 13.59 27.04 35.38
d4

Exact 56.27 47.76 31.02 49.33 22.64 32.91 40.06
Partial 53.48 50.15 44.09 49.89 54.37 35.85 48.06 Partial 56.82 50.75 45.99 56.19 54.72 42.41 51.27

d2
Exact 50.14 48.94 26.88 41.97 13.59 27.67 34.93

d6
Exact 56.27 47.76 31.02 50.00 22.64 32.38 40.08

Partial 52.37 50.15 44.09 49.68 54.37 36.48 47.95 Partial 56.82 50.75 45.99 56.32 54.72 41.90 51.20

Top 2 Lowest
s1

Exact 50.70 47.13 25.81 42.11 13.59 25.79 34.25
s8

Exact 54.55 47.06 32.46 49.01 22.43 32.50 39.72
Partial 52.92 48.34 44.09 49.02 54.37 33.96 47.21 Partial 55.10 50.00 46.07 55.14 50.47 41.88 49.88

d1
Exact 50.42 47.42 25.95 41.58 13.73 25.95 34.24

s9
Exact 54.14 47.34 32.46 49.83 20.75 31.97 39.47

Partial 52.66 49.24 44.32 47.83 52.94 34.81 47.06 Partial 54.70 50.30 46.07 55.75 49.06 41.38 49.64

Table 5: Top two highest and lowest inference results by ORKG-FLAN-T5R0 all-instructions and all-instructions
with 50% subsampled finetuned models, in descending order of overall partial F1 for the JSON answer. template
column: inference instructions. SQuAD_v2 instr. 5 (s5), DROP instr. 2 (d2), SQuAD_v2 instr. 1 (s1), DROP instr.
1 (d1), DROP instr. 4 (d4), DROP instr. 6 (d6), SQuAD_v2 instr. 8 (s8), SQuAD_v2 instr. 9 (s9).

All Data Data From Random Selection of Templates

Template Match Type
Disease
-Name Location Date

R0
-Value

CI
-% Values Method Overall Template Match Type

Disease
-Name Location Date

R0
-Value

CI
-% Values Method Overall

Top 2 Highest
s2

Exact 49.21 54.85 30.00 49.20 22.81 32.35 39.79
s6

Exact 48.04 47.15 24.88 41.59 19.42 23.18 34.16
Partial 50.26 57.06 51.00 54.35 52.63 44.12 51.73 Partial 48.53 49.86 38.28 49.12 54.37 38.27 46.62

d6
Exact 49.10 53.66 31.84 49.22 23.42 31.70 39.89

d3
Exact 47.62 46.19 26.92 41.92 18.35 21.47 33.87

Partial 50.65 55.83 47.76 54.55 54.05 43.23 51.15 Partial 48.10 48.82 41.35 48.28 55.05 36.13 46.48

Top 2 Lowest
s9

Exact 48.04 52.05 32.16 49.21 23.42 32.56 39.65
s8

Exact 47.39 46.35 21.72 41.18 17.24 21.47 32.60
Partial 49.61 54.25 47.24 54.43 54.05 43.60 50.66 Partial 47.87 48.96 34.39 48.57 51.72 35.08 44.50

s1
Exact 47.92 51.37 30.00 47.80 23.01 32.56 38.84

s9
Exact 46.90 44.44 22.33 40.00 16.39 21.88 32.07

Partial 49.48 53.55 45.00 53.28 53.10 43.60 49.80 Partial 47.36 46.97 34.42 45.99 47.54 35.11 43.01

Table 6: Top two highest and lowest inference results by ORKG-FLAN-T5R0 best-instructions and best-instructions
with 50% subsampled finetuned models, in descending order of overall partial F1 for the text answer. template
column: inference instructions. SQuAD_v2 instr. 2 (s2), DROP instr. 6 (d6), SQuAD_v2 instr. 9 (s9), SQuAD_v2
instr. 1 (s1), SQuAD_v2 instr. 6 (s6), DROP instr. 3 (d3), SQuAD_v2 instr. 8 (s8), and SQuAD_v2 instr. 9 (s9).

All Data Data From Random Selection of Templates

Template Match Type
Disease
-Name Location Date

R0
-Value

CI
-% Values Method Overall Template Match Type

Disease
-Name Location Date

R0
-Value

CI
-% Values Method Overall

Top 2 Highest
s1

Exact 49.28 47.85 32.82 46.25 28.30 27.94 38.77
s2

Exact 47.03 50.54 32.65 42.48 27.87 25.22 37.68
Partial 51.00 50.31 46.15 50.67 52.83 36.19 47.90 Partial 48.58 52.72 44.90 50.30 57.38 35.19 48.31

s9
Exact 47.29 48.02 31.96 47.21 26.67 27.67 38.16

s1
Exact 49.75 49.60 33.20 39.77 25.20 24.93 37.12

Partial 49.00 50.46 45.36 51.79 51.43 37.11 47.58 Partial 50.25 51.19 45.06 47.13 55.12 35.13 47.45

Top 2 Lowest
d3

Exact 49.13 46.91 30.77 44.74 24.76 27.56 37.33
d2

Exact 46.80 48.83 32.13 39.55 23.26 24.93 35.94
Partial 50.29 48.77 44.10 49.33 51.43 37.18 46.88 Partial 48.28 50.39 44.18 46.83 51.16 35.46 46.13

d1
Exact 48.26 46.58 29.32 45.03 27.18 28.03 37.43

d6
Exact 46.42 48.70 33.33 39.66 23.44 25.07 36.13

Partial 49.42 48.45 42.93 48.77 52.43 37.58 46.63 Partial 47.90 50.26 45.24 46.72 50.00 35.65 46.05

Table 7: Top two highest and lowest inference results by ORKG-FLAN-T5R0 best-instructions and best-instructions
with 50% subsampled finetuned models, in descending order of overall partial F1 for the JSON answer. template
column: inference instructions. SQuAD_v2 instr. 1 (s1), SQuAD_v2 instr. 9 (s9), DROP instr. 3 (d3), DROP instr.
1 (d1), SQuAD_v2 instr. 2 (s2), SQuAD_v2 instr. 1 (s1), DROP instr. 2 (d2), and DROP instr. 6 (d6).
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