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Abstract

Self-supervised learning has achieved impres-
sive results in speech processing, but current
models are computationally expensive, gener-
ating environmental concerns because of their
high energy consumption. Therefore, we pro-
pose an efficient self-supervised approach to
address high computational costs, using a sin-
gle GPU during 24 to 48 hours of pretraining.
The proposed approach combines linear, con-
volutional, and self-attention layers with sev-
eral optimizations, including dynamic batch-
ing, flash attention, mixed-precision training,
gradient accumulation, and acoustic feature
extraction with input preprocessing. Com-
putational cost estimations for our proposed
model represent up to two orders of mag-
nitude improvements in computational effi-
ciency against existing speech models.

1 Introduction

Self-supervised models generate impressive re-
sults when learning latent representations, but their
training is computationally expensive (Peng et al.,
2023). Yet, their results in speech processing are
astounding because downstream tasks strongly ben-
efit from their learned representations (Mohamed
et al., 2022; Parcollet et al., 2023b).

Self-supervised approaches for speech represen-
tation learning can be based on consistency or self-
training (Zhang et al., 2020). Whether using consis-
tency or self-training, large training costs represent
a challenge. Indeed, most existing models require
several GPUs for days to pretrain their neural ar-
chitectures. This requirement causes several limita-
tions. First, it hinders the training and deployment
of speech models in computing platforms with low
resources, such as edge devices and mobile plat-
forms (Gaol et al., 2023; Mohamed et al., 2022).
Secondly, reproducibility is challenging, as few
labs can afford large computational resources (Lin
et al., 2023). Last but not least, it creates environ-

mental concerns because of the high energy con-
sumption during training (Parcollet et al., 2023b).

To address those limitations, we propose an effi-
cient self-supervised model to learn speech repre-
sentations. Instead of focusing on the model perfor-
mance in downstream tasks, the proposed model
focuses primarily on computational costs, limiting
the resources available for pretraining. We set a
pretraining limit based on cramming (Geiping and
Goldstein, 2023): we use a single GPU for 24 to
48 hours to train the model.

2 Related work

Several models have been recently proposed for
self-supervised learning of speech representations,
including CombinedSSL (Zhang et al., 2020),
Mockingjay (Liu et al., 2020), Spiral (Huang et al.,
2022), Data2vec2(Baevski et al., 2023), and Di-
noSR (Liu et al., 2023a). But two approaches
have clearly emerged (Mohamed et al., 2022): Hid-
den unit BERT (HuBERT) (Hsu et al., 2021) and
wav2vec2 (Baevski et al., 2020b). However, self-
supervised models are quite costly, requiring a lot
of computational resources for training. One alter-
native to reduce training costs is knowledge dis-
tillation (Allen-Zhu and Li, 2023), where a small
student model learns from a large teacher model,
which has been pretrained previously (Peng et al.,
2023).

Using knowledge distillation, LightHuBERT
(Wang et al., 2022) improves HuBERT with a once-
for-all transformer model. The teacher is a Hu-
BERT base model, while the student learns by pre-
dicting masked inputs in an iterative process. The
transformer in LightHuBERT comprises subnets
with sharable weights and several configuration pa-
rameters, enabling a random search to adjust the
model to different resource constraints.

The student architecture in knowledge distilla-
tion methods is manually designed, and it does not
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change during training. However, modifying stu-
dent architectures can have a considerable impact
on model results, even for student architectures
with similar sizes (Ashihara et al., 2022). There-
fore, a joined distillation and pruning approach for
speech SSL has been recently proposed, using Hu-
BERT (DPHuBERT) or WavLM (DPWavLM) as
the teacher models (Peng et al., 2023).

Yet, knowledge distillation approaches need a
pretrained teacher model because student models
can not be trained standalone (Chen et al., 2023).
Thus, computational costs do not improve as they
should include teacher model training. In con-
trast, MelHuBERT (Lin et al., 2023) proposes a
simplified version of HuBERT that has twelve
self-attention layers and a weighted sum of all
the layers for downstream tasks. The input is a
40-dimensional Mel log spectrogram, so input se-
quences are shorter, reducing the multiplication
and addition calculations by 33% (Lin et al., 2023).

There are also efforts to improve the wav2vec
architecture. Proposed approaches improving
wav2vec include squeezed and efficient wav2vec2
with disentangled attention (SEW-D) (Wu et al.,
2022) and stochastic squeezed and efficient
wav2vec2 (S-SEW) (Vyas et al., 2022).

Despite existing efforts to improve self-
supervised model efficiency, there is still room to
reduce the computational costs of self-supervised
models. Computational costs create challenges
when using these models in mobile devices and
for training on very large datasets (Mohamed et al.,
2022; Parcollet et al., 2023b). They also hinder the
development of new approaches, the study of other
training recipes, and the reproduction of experimen-
tal results, as few researchers can afford the cost
(Chen et al., 2023; Lin et al., 2023; Parcollet et al.,
2023b; Wang et al., 2023). Besides, computational
costs have environmental implications, as training
requires considerable amounts of energy (Parcollet
et al., 2023b).

Likewise, few existing self-supervised models
use half-precision numbers, even though this tech-
nique can half the memory requirements and accel-
erate the arithmetic computations on recent GPUs
(Micikevicius et al., 2018). A similar issue hap-
pens with dynamic batching (Gaol et al., 2023;
Tyagi and Sharma, 2020), a procedure that avoids
wasting computing resources on the padded por-
tion of speech mini-batches. Also, most models
use standard self-attention layers, though efficient
alternatives have been proposed recently, without

using approximations (Dao et al., 2022; Parcollet
et al., 2023a).

We address these limitations in the following
section, proposing an efficient model for self-
supervised learning of speech representations.

3 Efficient self-supervised approach

In this section, we describe our proposed model:
efficient self-supervised learning (ESSL). We also
summarize the optimizations used to improve
model efficiency.
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Figure 1: Neural architecture for our proposed ESSL
approach, based on a teacher – student configuration
(Huang et al., 2022).

3.1 Model architecture

The architecture uses a teacher – student configu-
ration based on recent work for speech processing
(Huang et al., 2022). The student part comprises an
encoder, a projection head, and a predictor, while
the teacher part comprises an encoder and a pro-
jection head (Figure 1). Following a conformer
configuration (Gulati et al., 2020), the encoder has
3 convolutional layers, followed by 2 self-attention
layers, 2 convolutional layers, and 10 self-attention
layers. Projection heads are linear layers, and the
predictor has 3 convolutional layers (Huang et al.,
2022). Self-attention layers use relative position
embeddings to better capture the sequence ordering
of input sequences (Chen et al., 2022).

Pretraining relies on a contrastive loss to force
the student latent representation to converge to
the latent representation of the teacher part of the
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model, updating teacher weights with an exponen-
tial moving average of student weights (Chen et al.,
2020; Huang et al., 2022). A contrastive loss in
the teacher – student configuration is defined as
follows (Chen et al., 2020; Huang et al., 2022):

φ(a, b) =
aT b

‖a‖ ‖b‖ (1)

L = −
T∑

i=1

log
eφ(zi,z

′
i)/τ

∑
j∈Di

eφ(zi,z
′
j)/τ

(2)

where z is the latent representation from the stu-
dent network and z′ is the latent representation
from the teacher network, τ represents a tempera-
ture parameter, and Di is the set of distractors for
the zi representation.

Regularization for the proposed model includes
dropout, SpecAugment (Park et al., 2019), random
positional shifting (Huang et al., 2022), and mul-
ticondition training (Chiba et al., 2019) through
noise addition. For noise addition, audio data
comes from the DNS 2021 challenge (Reddy et al.,
2021), adding noise audio to the utterances in the in-
put dataset. Noise addition is performed randomly,
with a probability of 0.5 (Huang et al., 2022).

After noise addition, random positional shift-
ing is also used on the input sequences. Random
shifting avoids the model exploiting positional in-
formation from input sequences. The shifting of in-
put sequences forces the model to focus on speech
data, and the sequences for the teacher model are
readjusted before calculating the pretraining loss
(Huang et al., 2022). Likewise, SpecAugment ran-
domly masks the input audio sequence in the time
and frequency domains (Park et al., 2019). Masks
use zero values in the time domain, while Gaussian
noise replaces the speech data of the masks in the
frequency domain. Finally, dropout is applied in
the self-attention layers of the model (Park et al.,
2019).

3.2 Model optimizations

Optimizations in our proposed model include flash
attention (Dao et al., 2022), mixed precision train-
ing (Micikevicius et al., 2018), dynamic batching
(Tyagi and Sharma, 2020), gradient accumulation
(Huang et al., 2023), and acoustic feature extraction
(AFE) with input preprocessing (Parcollet et al.,
2023b). AFE comprises the first part of the neural
model, processing the input signal before feeding
it to the subsequent layers. The best-performing

approaches for AFE combine Mel Filterbanks for
preprocessing the raw waveform before the convo-
lutional module (Parcollet et al., 2023b), as we do
in ESSL.

Batch sizes have a considerable impact on train-
ing performance (Chen et al., 2023; Hsu et al.,
2021). To deal with the high memory requirements
of large batch sizes with a single GPU, gradients
are accumulated for a few training steps before ap-
plying them to update the parameters of the model
(Huang et al., 2023). This approach enables the
increase in batch size to get close to batch sizes
used in large models (Liu et al., 2023a).

Another optimization involving training batches
is dynamic batching (Ravanelli et al., 2021). Based
on the duration of each audio file, dynamic batch-
ing packages one or several files into a single batch,
keeping the total batch duration under a specified
maximum duration. By doing so, dynamic batch-
ing minimizes the amount of padding that fixed
batch sizes must use. This optimization reduces
the amount of RAM required to train a model. It
also eliminates the GPU iterations wasted when
processing the padding data in fixed batch sizes.

Concerning the number format for model param-
eters and data, mixed precision training uses the
floating point 16 (FP16) format. FP16, also known
as half-precision, diminishes the size of the model
and the batches, using less RAM during training
than the floating point 32 (FP32) commonly used
in computations. FP16 also enables faster training
in the GPU, without affecting the convergence of
the model (Micikevicius et al., 2018; Narayanan
et al., 2021).

Lastly, FlashAttention (Dao et al., 2022) im-
proves the efficiency of self-attention layers by
focusing on the optimization of the input-output
(IO) memory operations in the GPU. In general,
GPUs have two kinds of memories. A small SRAM
is associated with each kernel, and a large high-
bandwidth memory, which is slower and is shared
between all the kernels. Memory-intensive opera-
tions, like the matrix operation of the self-attention
layers, have their bottleneck at the read-write RAM
access. In contrast, compute-intensive operations
have their bottleneck in the number of arithmetic
operations that must be realized. As self-attention
is primarily a memory-intensive operation, FlashAt-
tention reduces the number of IO operations by
tiling, assigning a matrix operation to a single ker-
nel, and saving some results from the forward pass
to share in the subsequent backward pass.
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Figure 2: Cost estimation for pretraining speech SSL models. ESSL represents a remarkable reduction in compu-
tational costs against existing models.

4 Results and discussion

All experiments run on a single GPU, an NVIDIA
GeForce RTX 3090 Ti, with 24 GB of memory and
1.56GHz of base clock rate. Considering training
data, LibriSpeech 960h provides speech utterances
for unsupervised pretraining. Finetuning for Auto-
matic Speech Recognition (ASR) is performed with
LibriSpeech 100h (Panayotov et al., 2015), using
a CTC loss (Yan et al., 2023). Regarding training
configuration, pretraining requires 60k iterations,
which is equivalent to 15k pretraining steps because
we do four gradient accumulations. The learning
rate warms up the first 8% of the iterations to a
maximum of 3e-4. For finetuning, 160k iterations
are performed. This is equivalent to 40k finetuning
steps with four gradient accumulations. The learn-
ing rate warms up the first 10% of the iterations to
a maximum of 3e-5 (Huang et al., 2022). Code is
publicly available1 to facilitate the replication of
experimental results.

Efficiency gains of ESSL are remarkable (Figure
2). Though metrics degrade against large speech
models (Table 1), the computational cost estima-
tion represents a fifth of recent work (Lin et al.,
2023), diminishing from 150 GPUh to only 28
GPUh, and about a third of recent work (Liu et al.,
2020). When doing a comparison against large

1https://github.com/Orange-OpenSource/
essL

SSL Model ASR

Mockingjay (Liu et al., 2020) 15.48
wav2vec (Schneider et al., 2019) 11.00
vq-wav2vec (Baevski et al., 2020a) 12.80
wav2vec2 Base (Baevski et al., 2020b) 4.79
HuBERT Base (Hsu et al., 2021) 4.79
Spiral Base (Huang et al., 2022) 3.30
WavLM Base (Chen et al., 2022) 3.40
CombinedSSL (Zhang et al., 2020) 1.60
ESSL 10.69

Table 1: WER for LibriSpeech test-clean dataset (Yang
et al., 2021). Models are pretrained with LibriSpeech
960h. ASR results use a language model for decoding.

models, their computational cost estimations are
around one or two orders of magnitude larger. For
example, Spiral takes 480 GPUh, which is 17 times
larger than our proposed approach. Similarly, Com-
binedSSL takes 18432 GPUh, which is 658 times
larger than ESSL.

As mentioned, batch size is crucial for training
speech processing models (Chen et al., 2023). Us-
ing dynamic batching, half-precision, and gradi-
ent accumulation enables ESSL to get close to the
batch sizes used in large speech models – but using
one GPU only. The batch size has 18 minutes of
audio data. With 4 gradient accumulations, it gets
to 72 minutes. This size is close to batch sizes used
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in recent speech models, such as 47 minutes in Hu-
BERT, 96 minutes in wav2vec2, or 187 minutes in
WavLM (Liu et al., 2023a).

Perturbations on input speech sequences are also
crucial for the performance of ESSL. Removing
them makes WER degrade from 29.91% to 40.08%
(Table 2). This drop in performance indicates the
importance of SpecAugment, random positional
shifting, and multicondition training through noise
addition in the pretraining process.

Other experiments to analyze ESSL include ran-
dom initialization and MelHuBERT configuration.
For experiments with MelHuBERT configuration,
we used 40 Mel Filterbanks, with a 20ms hop
length (Lin et al., 2023). Though training steps
can be up to 36% faster given shorter input se-
quence lengths, WER drops considerably, going
from 29.91% down to 51.09%. Concerning ran-
dom initialization, we discarded pretrained weights
and finetuned from a model with random weights.
Results suggest finetuning only is not enough for
speech processing. A WER of 99.7% highlights
the importance of pretraining in final ESSL results.

Configuration dev-other dev-clean

ESSL 28.18 10.38
- w/o perturbations 40.08 17.88
- w/ 40 Mel Filterbanks 51.09 26.41
- random initialization 99.70 99.78

Table 2: Analysis of different configurations for ESSL.
Results include WER performance on LibriSpeech dev-
other and dev-clean datasets.

5 Limitations

Very-low data settings are challenging. The limited
availability of data hinders research in speech pro-
cessing for under-resourced languages (Liu et al.,
2023b; Shi et al., 2021). We tested finetuning ESSL
for ASR with the Librilight dataset (Kahn et al.,
2020). Librilight has 10 hours, 1 hour, and 10 min-
utes datasets to finetune models, in contrast with
the 100 hours available in LibriSpeech. Results
indicate ESSL struggles in very-low data settings,
with a WER of 97.30% in LibriSpeech dev-other
(Table 3). This performance degradation is too high
to perform ASR for under-resourced languages.

Method dev-clean dev-other

Librilight 10 min

ESSL 96.41 97.30
wav2vec2 Base 8.9 15.7
HuBERT Base 9.1 15.0

Librilight 1 hr

ESSL 96.05 96.41
wav2vec2 Base 5.0 10.8
HuBERT Base 5.6 10.9

Librilight 10 hr

ESSL 70.45 81.62
wav2vec2 Base 3.8 9.1
HuBERT Base 3.9 9.0

Table 3: WER results for LibriSpeech dev-other and
dev-clean datasets, using the Librilight very-low data
settings of 10 minutes, 1 hour, and 10 hours for model
finetuning.

6 Conclusion

In this work, we proposed ESSL, an efficient ap-
proach for self-supervised learning of speech rep-
resentations. ESSL addresses high computational
costs by combining several model optimizations
and fixing a limit on computational resources avail-
able for pretraining. Estimations of computational
cost reduction reveal up to two orders of magnitude
improvements against existing speech SSL models.
Overall, ESSL is a step in the process of reducing
computational costs in SSL models, enabling their
training in edge devices, facilitating the develop-
ment of new approaches, and making them more
environmentally friendly.

For future work, we will investigate our efficient
approach for other speech processing tasks, includ-
ing intent classification, keyword spotting, query
by example, and other downstream tasks. We will
also explore architectural modifications to improve
model performance in very-low data settings.
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