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Abstract
Inductive reasoning is fundamental to both hu-
man and artificial intelligence. The inductive
reasoning abilities of current Large Language
Models (LLMs) are evaluated in this research.
We argue that only considering induction of
rules is too narrow and unrealistic, since in-
ductive reasoning is usually mixed with other
abilities, like rules application, results/rules val-
idation, and updated information integration.
We probed the LLMs with a set of designed
symbolic tasks and found that even state-of-the-
art (SotA) LLMs fail significantly, showing the
inability of LLMs to perform these intuitively
simple tasks. Furthermore, we found that per-
fect accuracy in a small-size problem does not
guarantee the same accuracy in a larger-size ver-
sion of the same problem, provoking the ques-
tion of how we can assess the LLMs’ actual
problem-solving capabilities. We also argue
that Chain-of-Thought prompts help the LLMs
by decomposing the problem-solving process,
but the LLMs still learn limitedly. Furthermore,
we reveal that few-shot examples assist LLM
generalization in out-of-domain (OOD) cases,
albeit limited. The LLM starts to fail when the
problem deviates from the provided few-shot
examples.

1 Introduction

Recently, the development of LLMs has made great
progress in various areas of artificial intelligence
(AI), especially in Natural Language Processing
(NLP). The performance of LLMs like GPT-3.5
(Brown et al., 2020) and GPT-4 (OpenAI, 2023)
can even outperform humans on some professional
tests, proving their ability to understand and solve
complex natural language questions. One of the
intriguing abilities of LLMs is reasoning, which is
also one of the core abilities of human intelligence.

Reasoning, following this definition (Hurley,
2000), consists of deductive reasoning (Johnson-
Laird, 2010), inductive reasoning (Hawthorne,
2021), and abductive reasoning (Douven, 2021).

LLMs show surprisingly high performance on tasks
requiring high-level reasoning ability, like program-
ming (Xu et al., 2022) and mathematical problem
solving (Imani et al., 2023). However, as the LLMs
memorize the statistical word co-occurrences from
the pre-training corpora containing such examples,
it is hard to know the real reasoning ability of LLMs
as they always generate specious answers. There-
fore, evaluation at a fundamental level, e.g. sym-
bolic level, is needed to accurately understand the
reasoning abilities of LLMs.

This research focuses on inductive reasoning,
which is the ability to derive common principles
from finite observations. Recent inductive reason-
ing research in NLP (Yang et al., 2022; Li et al.,
2023) focused mainly on rules induction from ob-
servations, but inductive reasoning in the real world
is more complex than just rules induction.

As inductive reasoning is based on finite obser-
vations, which may contain only partial informa-
tion, we cannot always expect the induced rules or
results to be fully correct. Therefore, in the real
world, under the surface of rules induction, the abil-
ity to validate induced rules/results and merge new
rules with previous rules is equally important, and
such ability to adapt to changing circumstances
is important for building AI models suitable for
real-world usage. To evaluate these abilities, we
designed three symbolic tasks: 1) Grouping Poly-
gons, 2) ordering named colors (Color Ordering),
and 3) shifting characters in English text (Character
Mapping).

We then define 3x5 experiments called Rules
Application, Rules Induction, Results Validation,
Rules Validation, and Rules Incorporation to evalu-
ate the ability to apply rules, induce rules, validate
induced results/rules, and merge new rules with
previous rules, as depicted in Figure 1. We observe
the LLMs failing on these tasks. Subsequent ex-
periments explored the role of few-shot examples
for generalization, the scalability of LLM perfor-
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mance with problem size, and the impact of the
Chain-of-Thought prompts, namely:

1. For evaluated LLMs, the performance varies
a lot between different experiments. This un-
stable LLM performance on symbolic induc-
tive reasoning tasks is in contrast to their sta-
ble/robust performance on NLP tasks. Besides
the instability, the task accuracy is low even
for SotA LLMs, illustrating the weakness of
LLMs in symbolic reasoning tasks.

2. In addition to low accuracy in Rules Induction
and Rules Application, LLMs also perform
poorly in Results/Rule Validation and Rules
Incorporation. This suggests that besides fo-
cusing on the accuracy of LLMs, their ability
to validate and check the generated results
should be paid attention to.

3. LLMs can learn from few-shot examples and
generalize beyond the given few-shot exam-
ples, but they still fail to learn scalable so-
lutions from the examples, even when de-
composing the problem-solving procedures
through Chain-of-Thought (CoT) prompting.

4. While the LLMs may solve small-sized prob-
lems perfectly, the accuracy drops drastically
when increasing the problem size. This pro-
vokes the question, "How can we prove that
the LLM really holds the solution to solve
specific types of problems?"

2 Related Research

2.1 Reasoning in LLMs

Reasoning is a core ability of human intelligence
and an established research area in machine learn-
ing. Previously, even simple natural language rea-
soning tasks were very challenging for neural mod-
els (Santoro et al., 2018; Saxton et al., 2019).

However, the appearance of pre-trained language
models like BERT (Devlin et al., 2019), with the
commonsense knowledge encoded in the model
through pre-training, largely improved the perfor-
mance on NLP tasks, including reasoning tasks
(Helwe et al., 2021). In recent years, with the scal-
ing of model size, data size, and development of
new architectures, different abilities have emerged
from LLMs (Wei et al., 2022). Reasoning is one
of those emerging abilities. Combining tricks like
Chain-of-Thought (Wei et al., 2023) and In-Context

Learning (Dong et al., 2023), the performance
on natural language reasoning tasks is largely im-
proved, even for tasks like mathematical reasoning
(Lu et al., 2023), which was hard for neural models.

Evaluating LLMs on natural language reason-
ing tasks makes it difficult to know their reasoning
abilities as they learn word co-occurrence relations
from the pre-training corpus to aid in NLP rea-
soning tasks. To avoid the benefit of the encoded
word/sentence/knowledge from pre-training and
evaluate the reasoning ability at a more basic level,
we create symbolic tasks to isolate semantic mean-
ing to better evaluate LLMs’ reasoning abilities.

2.2 LLM Probing

Probing is an important method to understand
black-box neural networks with millions of param-
eters (Alain and Bengio, 2017). It is impossible
to analyze them from a purely mathematical stand-
point. Using probing tasks and analyzing the re-
sults gives us a peek hole to obtain insights into the
inner mechanism of LLMs. Probing has proven to
be an effective tool for analyzing the behavior of
neural networks and their mechanisms since RNN-
based networks (Nelson et al., 2020), Transformer-
based Pre-trained Models (Johnson et al., 2020;
Vulić et al., 2020), and then current, much larger
LLMs (Kondo et al., 2023; Wei et al., 2023).

This study centers on symbolic task-based prob-
ing of LLMs. Recently, Anil et al. (2022) illus-
trated LLMs’ limitations in tackling long-length
problems in parity checking and variable assign-
ment tasks. Additionally, Dziri et al. (2023) ex-
amined LLM’s capabilities using computational
graph-based symbolic tasks like logical grids and
multiplication computation. Their findings show
that LLMs solve tasks by breaking them into lin-
earized subgraphs and matching each subgraph in
the pre-trained corpus. The lack of genuine system-
atic problem-solving skills is evident when accu-
racy decreases as the graph depth increases.

Differing from previous research in symbolic
probing, we do not aim at evaluating a single or
specific ability, rather we set up different experi-
ment configurations to evaluate multiple abilities
centered around inductive reasoning.

3 Problem Formulation

3.1 Symbolic Tasks

We argue inductive reasoning requires various abil-
ities. To evaluate those abilities, we designed three
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Figure 1: Evaluation Framework

symbolic tasks, explained in the following section.

Polygons Grouping In this task, we describe 30
polygons with different numbers of sides, colors,
and material attributes. We also generate 15 group-
ing rules and the corresponding grouping results
from following those rules.

Color Ordering In this task, we automatically
generate a color priority dictionary with 20 colors
in which a high-priority color should be given a
high preference. We also generate corresponding
sorted or unsorted color lists with 20 colors based
on the color priority. Since we prompt both un-
sorted color list and color priority into the LLM,
to prevent the LLM from just replicating the color
priority list from the prompt to achieve a perfect
sorted result, we remove five colors and duplicate
five color units in the unordered color lists.

Character Mapping In this task, we form char-
acter mapping rules by mapping each English char-
acter to its three-index right-shifted counterpart,
with a wrap-around between Z and A. We sam-
ple sentences from the App-Review (Grano et al.,
2017) dataset with character lengths from 20 to 100
and mapped results following mapping rules.

3.2 Prompt Formulation

The prompt contains information about the target
task to posit the LLM adapt to the task. Addi-
tionally, we may add few-shot question/prediction
pairs for different tasks, named few-shot examples
F = {f1, f2 . . . f5} to help the LLM respond with

accurate answers. We use five examples for all few-
shot experiments. Unless mentioned specifically,
the prompt contents introduced below is the default
prompt to the LLM in all tasks.

Task Illustration (T ) The text prompt T sent to
the LLM contains other necessary information con-
sisting of four parts T = {Td, Ti, Tf , Tr}. Td is the
Task Description with general information about
the task. Ti is the Response Instruction, which
states the LLM responses’ expected content. Tf

states the expected Response Format, and Tr is an
optional Rules Text with the rules used in the tasks.

Units (S) Units S are the available symbolic
units in a given task. The LLM L needs to know all
symbolic units S = {s1, s2, . . . sn} prior to solv-
ing the corresponding symbolic task. For example,
each polygon in the Grouping task is a unit.

Problem (X) After the Task Illustration and
Units, we attach the problem text X to the prompt’s
end, and the LLM’s prediction is denoted as Y ={y1, y2 . . . yn}. The problem text, task illustration,
and units differ based on task settings.

3.3 Scalable Solution (H)

As LLM solves the problem internally, we call
such a hidden problem-solving procedure a solu-
tion, which is not a part of the prompt. In our task
setting, we expect the LLM to have the Scalable
Solution H that can be used to solve the prompted
problem in any unit size. The Scalable Solution dif-
fers from Rules Tr. For example, in the Mapping
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Role Positioning

Problem Description

Response Instruction

Response Format

Prompted Problem

Few-Shots Examples
(Optional)

You are a helpful assistant and you are supposed to follow the instructions that I give to you and perform the task as far as you can. Here we want 
to group different polygons into different groups based on their characteristics.

Problem Description
------
You will be given the possible attributes of different polygons with different Sides Numbers, Colors, and Materials. You will also be given the 
grouping rules that describe what types of polygons should be grouped together. You are supposed to group those polygons into different groups 
based on the grouping rules.

Attributes
------
Sides Numbers: {SidesNumber}
Colors: {Colors}
Materials: {Materials}

Response Instruction 
------
Your final answer to this problem should contain the following information:
1. The polygons that belong to each group. 

Response Format 
------
Following the Response Instruction, the format should be:
Grouping Result:
Group 0:  Polygon x1, Polygon x2, ...
Group 1:  Polygon y1, Polygon y2, ...
...
The above format is just an example, you should replace x1, x2, y1, y2 with actual polygons based on your analysis. The order of polygons in each 
group does not matter.

Below are the grouping rules that describe what types of polygons should be grouped together:
{First Example Rules}
Now try your best to use those grouping rules for the group following polygons, your response should follow the Response Format.
{First Example Polygons}

Grouping Results:
Group 0: Polygon 1, Polygon 2
…….

Below are the grouping rules that describe what types of polygons should be grouped together:
{Rules}

Now try your best to use those grouping rules for the group following polygons, your response should follow the Response Format.
{Polygons}

Figure 2: Prompt Template for Rules Application Task of Polygon Grouping

task, the Scalable Solution is mapping each charac-
ter using its corresponding rules, where mapping
rules Tr serve as an input of the scalable solution.

3.4 Task Setting
We set up tasks to probe the LLM’s inductive rea-
soning abilities in applying, inducing, validating,
and rectifying results/rules, identifying new rules,
and merging them with previous rules. Examples
are shown in Table 1. Those tasks are designed
on the principle that if the LLM holds the scalable
solution H , these tasks are intuitively simple. The
same solution can apply to every example, yield-
ing perfect accuracy, as the scalable solution and
the tasks remain constant regardless of unit size
changes.

Rules Application In this task, we evaluate the
ability to apply rules, and the problem text of this
task is Xf . The LLM is asked to apply the given
rules Tr to those symbolic units S and expect to
obtain the correct results Y , formulated as:

L(T ;S;X) = L({Td, Tf , Ti, Tr};S;Xf) H
→ Y

Rules Induction In this task, we evaluate the
ability to induce rules. We present the correct re-
sults Y obtained by applying the (hidden) rules to
the given units. We denote the problem text for this
task as Xl. We prompt the LLM to induce the (hid-
den) rules by observing the relation between units

and the correct results, which can be formulated as:

L(T ;S;X;Y ) = L({Td, Tf , Ti};S;Xl;Y ) H
→ Tr

Results Validation In this task, we evaluate the
ability to validate the results’ correctness and cor-
rect the results if an error exists. The problem text
of this task is Xr. We prompt the LLM with the
rules and a (probably) wrong result Ŷ with three
errors generated randomly with 50% chance. The
LLM is required to validate and/or correct the given
result Ŷ . The LLM first answers whether the given
result is correct. It is a binary classification prob-
lem denoted as Ur = {Y es,No}. If Ur = Y es,
the LLM quits generation by outputting words like
None. If Ur = No, the LLM applies rules to rectify
the error and obtain new results Y , formulated as:

Let L({Td, Tf , Ti, Tr};S;Xr; Ŷ ) H
→ Ur

Y = {L(T ;S;Xr; Ŷ ;Ur) if Ur = No

None if Ur = Y es

Rules Validation In this task, we evaluate the
ability to validate the correctness of the rules and
correct the rules if errors exist and the problem
text of this task is Xe. The prompted rules T̂r are
possibly wrong and may have three error rules gen-
erated randomly in 50% of the experiments, and the
prompted correct result can help validate the cor-
rectness of the rules. Knowing whether the rules
are correct is the first step for solving the prob-
lem, so we call that result Ue = {Y es,No}. If
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Task Illustration Units Problems Predictions

Rules
Induction

Inducing grouping rules through
observing the grouping results. Polygon 1:

[3 Sides, Green, Copper],
Polygon 2:
[5 Sides, Red, Iron],
...
Polygon N:
[10 Sides, Yellow, Plastic]

Group 1:[Polygon 1, Polygon 3, . . . ]
. . .
Group N:[Polygon 7, Polygon N, . . . ]

Induce the grouping rules by
observing the above results.

Induced Rules:
Rule 1: 3 Sides, Green and Copper
Rule 2: 5 Sides, Red and Iron ...

Rule
Application

Applying grouping rules to given
polygons to obtain the grouping results

Rule 1: 3 Sides, Green and Copper
Rule 2: 5 Sides, Red and Iron ...

Apply the above grouping rules to the
given polygons and give the results

Grouping Results:
Group 1:[Polygon 1, Polygon 3, . . . ]
. . .
Group N:[Polygon 7, Polygon N, . . . ]

Results
Validation

Validate the correctness of grouping
results and rectify them if they are wrong

Rule 1: 3 Sides, Green and Copper ...
Group 1:[Polygon 1, Polygon 2, . . . ]
Group 2:[Polygon 3, Polygon 6, . . . ]...

Validate the correctness of the result
first and rectify them if it is wrong

Correction Results Or Not: No
Corrected Results:
Group 1:[Polygon 1, Polygon 3, . . . ]
. . .
Group N:[Polygon 7, Polygon N, . . . ]

Rules
Validation

Validate the correctness of rules
and correct them if they are wrong

Rule 1: 3 Sides, Green and Copper ...
Group 1:[Polygon 1, Polygon 3 . . . ]
Group 2:[Polygon 2, Polygon 6. . . ]. . .

Validate the correctness of rules
first and rectify them if it is wrong

Correction Rules Or Not: Yes
Rules do not need correction

Rules
Incorporation

Find whether new rules exist in the new
results or not if so, induce new rules.

Rule 1: 3 Sides, Green and Copper . . .
Group 1:[Polygon 1, Polygon 3, . . . ]
Group 2:[Polygon 2, Polygon 6, . . . ]. . .

Find whether there exist new
rules or not and induce them if necessary

New Rules Or Not: Yes
New Inducted Rules:
Rule 2: 5 Sides, Red and Iron . . .

Table 1: Different Task Examples in Polygons Grouping

Ue = Y es, the LLM finishes generation by out-
putting words like None as correct rules do not
need correction. If Ue = No, the LLM corrects the
wrong rules and obtain corrected rules Tr based on
the correct results Y , which can be formulated as:

Let L(T = {Td, Tf , Ti, T̂r};S;Xe;Y ) H
→ Ue

Tr = {L(T ;S;Xe;Y ;Ue) if Ue = No

None if Ue = Y es

Rules Incorporation In this task, we evaluate the
ability to identify new rules and merge new rules
with previous rules if new rules exist where the
problem text of this task is Xi. The prompted rules
T̂r and the results are correct, but the rules may
be a part of the entire rule-set since we withhold
three new rules in the given new result with a 50%
chance. The LLM refers to the new result and
identifies whether we can induce new rules from it
or not. Identifying whether new rules exist is the
first step, so we denote this binary classification
results as Ui = {Y es,No}. If Ui = No, the LLM
finishes generation with the word None. If Ui =
Y es, the LLM should induce new rules T̈r based
on the new given results Y , formulated as:

Let L({Td, Tf , Ti, T̂r};S;X;Y ) H
→ Ui

T̈r = {L(T ;S;Xi;Y ;Ui) if Ui = Y es

None if Ui = No

We show an example of the prompt formula-
tion in Figure 2 for the Rules Application Task
for Polygon Grouping. As illustrated in the figure,
the prompt first indicates the role of the LLM to
posit the LLM in a position to solve the task. The
following Problem Description contains the Task
Illustration T and Units S which in this example
is to group different polygons. Then Response In-
struction tells how the model should respond so that

the answer generated can be extracted easily. Then
Few-Shot examples are optional depending on the
experiment setting. Finally, the Prompted Prob-
lem contains the Problem X that the LLM should
answer following all the information contained in
the prompt. The content of each part changes with
the different task settings, but all share the same
backbone structure. 1

4 Experiments2

In this study, all those tasks are automatically gen-
erated and can be automatically solved by the cor-
responding program as the solution for each prob-
lem is the same. Though humans may not solve
the problem with perfect 100% accuracy due to
humans making mistakes in following solution pro-
cedures like overlooking some rules, this does not
mean humans cannot solve this problem as it is not
caused by the inability of inductive reasoning. In
the optimal situation, the performance for humans
should be perfect as the program which is 100%.

4.1 Evaluated LLMs

Davinci (Brown et al., 2020) is a GPT3-based
LLM trained with instruction tuning (Ouyang et al.,
2022). We use the Text-Davinci-003 version3

which has 175B parameters size.

GPT-3.5 (Brown et al., 2020) is one of the SotA
LLMs currently. It is trained with both instruc-
tion tuning (Zhang et al., 2023) and RLHF, mean-
ing reinforcement learning from human feedback
(Christiano et al., 2023). Compared to Davinci, it
is specially trained for chat purposes but still uses
GPT-3 as a backbone structure.

1More details are in the Appendix A.3.
2Please refer to the Appendix for detailed settings of ex-

periments and symbolic tasks.
3For brevity, Davinci is used to denote Text-Davinci-003.
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Model Task
Rules Application Rules Induction

Zero-shot Few-Shot Zero-shot Few-Shot

Par Acc Full Acc Par Acc Full Acc Par Acc Full Acc Par Acc Full Acc

Davinci
Grouping 75.6 10.0 87.9 24.0 23.5 1.3 85.4 11.2
Ordering 36.7 0.0 29.6 0.0 56.5 39.7 87.0 82.1
Mapping 6.4 0.0 10.1 0.0 33.0 3.0 90.4 2.0

GPT-3.5
Grouping 88.5 23.7 90.6 33.4 88.6 24.2 91.4 24.4
Ordering 32.9 0.0 35.5 0.0 54.5 46.1 93.6 88.9
Mapping 33.5 6.3 39.9 10.1 68.4 6.8 89.0 8.0

GPT-4
Grouping 99.5 95.3 99.9 98.8 95.5 74.3 99.9 97.2
Ordering 45.3 24.4 52.4 28.9 95.4 96.6 97.5 98.8
Mapping 62.3 30.6 67.1 47.3 49.4 17.1 93.8 21.7

Table 2: Accuracy on Rules Application and Rules Induction. The best results for one LLM in different tasks in
either Rules Application or Rules Induction are underlined, and the best results of all models are bold and underlined.
Par Acc and Full Acc means Partial and Full Accuracy.

GPT-4 (OpenAI, 2023) is the current SotA LLM
with a strong performance in various tasks. It even
performs well on professional tests that require a
high-level understanding of natural language.4

4.2 Evaluation Criteria
Validation Accuracy means the number of vali-
dation problems U that the LLM correctly predicts
divided by the total number of examples.

Partial Accuracy means the percentage of sub-
problems the LLM correctly predicted. It is only
counted when sub-problems exist. For example,
in the rule correction problem, Ue = Y es means
the prompted rules are correct, therefore the sub-
problems do not exist so such an example is not
counted into the calculation of Partial Accuracy.

Full Accuracy means the percentage that the
LLM can correctly predict all sub-problems in a
given problem. The Full Accuracy is only calcu-
lated for examples that have sub-problems.5

4.3 Results
4.3.1 Rules Application and Rules Induction
We discuss the Rules Application and Rules Induc-
tion together in Table 2 due to their contrasting
nature that apply and induce rules and found:

1. For Rules Application, Grouping has the high-
est accuracy, followed by Mapping, then Or-
dering. For Mapping, applying mapping rules
to text leads to unsemantic text, but LLMs are

4The evaluated Llama2 gives extremely low accuracy and
we put its experiment results and analysis in the Appendix.

5We abbreviate Validation Accuracy, Partial Accuracy, and
Full Accuracy as Valid Acc, Partial Acc, and Full Acc.

trained to generate meaningful text using Lan-
guage Modelling, thus generating unsemantic
mapped text is not straightforward. For the
Ordering, the same color units exist in the
unsorted list. The LLM needs to clarify and
put the same colors together, but the LLMs
struggle to find such a hidden procedure.

2. In Rules Induction, Ordering has the highest
accuracy, followed by Grouping, then Map-
ping. In Ordering, the prompted ordered list
equals directly telling the rules even with the
deletion and repetition of some colors, leading
to high accuracy. In Grouping, the LLM needs
to check three polygon attributes to derive the
rules, which lowers accuracy. In Mapping,
the duplicated and mixed-case characters re-
quire the LLM to merge characters and in-
duce case-insensitive rules. Such hidden steps
make Mapping the most challenging task.

3. The accuracy for Rules Induction is lower than
for Rules Application except for Ordering,
which we have explained above, showing that
Rules Induction is harder. GPT-4 performs
better than GPT-3.5 and Davinci in both tasks,
possibly due to a much larger pre-train size,
instruction tuning size, and model size.

4. A high Partial Acc does not mean high Full
Acc shows the prediction error scatters in each
example rather than converging in several ex-
amples, meaning that the LLM tends to make
small mistakes in each example.
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(a) Results Validation

Model Task Zero-Shot Few-Shot

Valid Acc Partial Acc Full Acc Valid Acc Partial Acc Full Acc

Davinci
Grouping 51.6 28.4 8.6 52.0 33.5 15.9
Ordering 96.0 20.1 2.8 100 79.3 67.5
Mapping 53.6 1.5 0.0 59.0 12.9 2.5

GPT-3.5
Grouping 55.6 27.3 10.9 66.0 28.2 11.0
Ordering 96.0 32.6 9.3 100 53.3 25.9
Mapping 50.3 0.1 0.0 50.3 5.4 0.9

GPT-4
Grouping 82.1 96.0 13.1 92.5 93.2 14.5
Ordering 100 98.9 93.7 100 98.7 95.6
Mapping 61.2 77.3 8.9 68.7 80.4 60.0

(b) Rules Validation

Model Task Zero-Shot Few-Shot

Valid Acc Partial Acc Full Acc Valid Acc Partial Acc Full Acc

Davinci
Grouping 50.8 51.8 7.8 46.5 66.5 19.3
Ordering 57.4 82.1 2.4 68.2 77.4 39.2
Mapping 50.3 16.2 11.8 51.8 59.7 42.0

GPT-3.5
Grouping 51.3 21.2 3.9 53.0 29.1 6.4
Ordering 94.5 55.4 34.6 78.8 78.3 47.6
Mapping 51.2 26.0 22.0 91.8 39.9 32.7

GPT-4
Grouping 67.6 89.8 52.2 90.8 93.5 59.4
Ordering 100 86.5 80.3 100 97.4 96.1
Mapping 50.7 82.2 54.6 84.2 95.5 94.3

Table 3: Model accuracy on Results Validation and Rules Validation. The best results for one LLM between different
tasks are underlined, and the best results of all models are both bold and underlined.

4.3.2 Results Validation and Rules Validation
The Results Validation and Rules Validation are dis-
cussed concurrently due to their contrasting nature.
The outcomes are presented in Table 3.

1. In Results Validation, Mapping has the lowest
accuracy, followed by Grouping and Ordering.
For Mapping, locating an error requires apply-
ing rules to the character at the correspond-
ing index, requiring the LLM to count the se-
quence length and locate it, but LLMs struggle
to do such precise manipulation. For Group-
ing, the LLM needs to check three attributes
to locate the error, which is comparatively eas-
ier. For Ordering, identifying an error merely
needs checking color units sequentially with
the prompted color preference.

2. For Rules Validation, Grouping has the lowest
accuracy, followed by Mapping and Ordering.
For Grouping, LLM has to induce rules from
grouping results first and compare them with
the possible wrong rules, and such a hidden
step increases the difficulty. For Mapping, just

apply the rule to each original and mapped
character to check if conflicts exist. It is rel-
atively easier to locate and correct the error.
For Ordering, similarly, an ordered color list
is another representation of rules, making it
easy to both validate and correct.

3. LLMs give a low Valid Acc in all tasks except
Ordering for reasons explained above. As val-
idation is a binary classification problem, such
accuracy means LLMs struggle to validate the
correctness of results even for GPT-4, even
though GPT-4 scores are slightly better.

4. Rules Validation have a higher Partial and Full
Acc than Results Validation. This is because
the rule sizes are much smaller than the unit
size and we have several rules but dozens of
units, making Rule Validation easier due to
the smaller prediction space.

5. In all LLMs, the few-shot can boost the accu-
racy in Partial Acc and Full Acc while the im-
provement in Valid Acc differs, showing that
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Figure 3: Accuracy Change in Few-Shot Generalization

the ability to learn to validate the results/rules
from examples varies.

4.3.3 Rules Incorporation
The Rule Incorporation task can be considered a
variant of Rules Induction where the LLM knows
partial rules but may need to complete them based
on whether the given results contain new rules.
From the results in Table 4, we can see:

1. In the Zero-Shot setting, LLMs show no obvi-
ous preference regarding Valid Acc in either
task, while Few-Shot improves it in the Order-
ing task, but Davinci and GPT-3.5 still fail to
identify new rules from results. GPT-4 shows
a high Valid Acc, meaning that the ability to
validate new rules may be an emergent ability
when LLMs reach a certain model size.

2. In contrast to Rules Induction, a decrease in
Full Acc in Ordering and Grouping tasks is
observed, which is counter-intuitive given the
partial rules should enhance results as it re-
duces the prediction space for rules. This may
be because even though the prediction space is
narrowed, identifying new rules and merging
them with existing rules poses another diffi-
culty for LLMs. Conversely, the Mapping
tasks benefit from given partial rules, which
reveals that rules can be completed by right-
shifting three indices, thereby simplifying the
rule inference compared to other tasks.

4.3.4 Few-Shot Generalization
The task accuracy of LLMs can be largely im-
proved by adding few-shot examples. However,
this is when the few-shot examples are not out-
of-distribution with the problem prompted. This
leaves a question: Does the LLM learn the scal-
able solution of the task or just fit into the answer
pattern from few-shot examples? We discuss this

problem using GPT-4 and the Rules Validation of
the Ordering tasks. We set the few-shot examples
with three error color preferences, but the final
problem includes more. We compare the zero-shot
and few-shot settings results depicted in Figure 3:

1. The few-shot setting has higher accuracy than
the zero-shot setting, proving that the LLM
learns to generalize beyond the few-shot ex-
amples with three wrong color preferences.
Notably, the few-shot setting initially exhibits
an accuracy advantage exceeding 20%.

2. Providing few-shot examples does not make
the LLM generalize to all situations as the ac-
curacy decreases like in the zero-shot setting
and even gets close to that accuracy in ex-
treme situations, suggesting LLM only learns
limitedly from few-shot examples.

3. The increasing trend in Partial Acc after 12
wrong preferences is because the random
chance of picking out a wrong color prefer-
ence increases with more wrong colors.

4.3.5 Increased Unit Size

Figure 4: Accuracy Regarding Increased Polygons Size

Instead of increasing the task’s difficulty, we
evaluate the situation in which the underlying struc-
ture of the task remains fixed, but the unit size in-
creases. GPT-4 has near-perfect Rules Application
accuracy in the Polygon Grouping task, indicating
it may hold a scalable solution for this. We want to
see whether the performance remains stable when
the unit sizes increase. The results in Figure 4 show
the GPT-4’s accuracy with increased polygon size:

1. The Full Acc decreases, showing the LLM
cannot scale its performance with increased
unit size even when small and larger problems
share the same structure. This shows that the
LLM does not hold the scalable solution de-
spite its high accuracy in small-size problems.
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Model Task Zero-shot Few-Shot

Valid Acc Partial Acc Full Acc Valid Acc Partial Acc Full Acc

Davinci
Grouping 51.0 30.1 3.9 52.0 37.2 5.8
Ordering 49.2 37.9 0.5 87.5 26.1 3.4
Mapping 49.3 49.0 5.6 49.3 87.4 34.5

GPT-3.5
Grouping 50.3 33.4 10.9 54.8 42.5 16.9
Ordering 51.1 33.3 8.0 66.0 72.0 39.1
Mapping 51.4 78.7 28.8 52.0 91.4 55.2

GPT-4
Grouping 99.7 96.1 89.5 99.5 98.0 94.6
Ordering 100 96.2 82.8 100 96.1 89.9
Mapping 95.1 94.4 56.0 97.2 95.9 62.3

Table 4: Model Accuracy on Incorporation. The best results for one LLM between different tasks are underlined
and the best results of all models are both bold and underlined.

CoT Few-Shot Nums Partial Acc Full Acc

w/o CoT 5 Shot 52.4 28.9
CoT-1 Shot 82.6 58.6
CoT-2 Shot 83.0 57.7
CoT-3 Shot 84.6 55.8
CoT-4 Shot 84.9 62.2
CoT-5 Shot 85.0 62.3

Table 5: Chain-of-Thought Experiment

2. The Partial Acc is relatively stable, meaning
the LLM predicts with stable accuracy for
each sub-problem. However, the increased
unit size enlarges the sub-problem size, which
increases the expectation value of prediction
error, naturally reducing the Full Acc.

4.3.6 Does Chain-of-Thought help?
In this experiment, we discuss to what extent the
Chain-of-Thought (CoT) helps the LLM to solve
the task. We evaluate GPT-4 in the Ordering of
Rules Application task as even GPT-4 performs
poorly in the few-shot setting. The CoT prompt
shows the process of checking each color’s pref-
erence and reordering the list based on acquired
preferences. We reveal information on the scalable
resolution to the LLM through those intermediate
steps. From results in Table 5, we can see that:

1. From the results, the CoT-prompted model
greatly improves the accuracy, leading to more
than 35% accuracy gain in the 5-shot. This
shows that the LLM learns to follow interme-
diate steps exposed by the CoT prompt, but it
is still far from perfect accuracy, showing that
a scalable solution is not learned.

2. We observe an inconsistency in accuracy im-
provement with increased few-shots. The

accuracy decreases in the two or three-shot
settings compared to one-shot, while the en-
hancement in the five-shot setting over one-
shot is just 3.5%. This could be because each
Color Ordering example has a different color
preference and an unordered list (independent
and not correlated with each other), so infor-
mation from five examples is not substantially
better than from just one.

5 Conclusion

In this research, through designed symbolic prob-
ing tasks, we probed the LLMs’ abilities centered
around inductive reasoning, including Rules Induc-
tion, Rules Application, Results/Rules Validation,
and Rules Incorporation. We found that LLMs fail
to correctly induce or apply rules in simple sym-
bolic tasks and cannot or even fail to validate the
correctness of results/rules or identify and merge
new rules given new results. This suggests that not
just improving prediction accuracy, but also mak-
ing the LLM identify what is correct and wrong,
and being able to identify new information from
new examples are important.

Our experiments show that near-perfect accuracy
in small-sized tasks does not imply that LLM per-
formance scales well to a larger sized task. In this
sense, it raises the question: how can we prove that
the LLM knows how to solve a problem/task?

We also notice that few-shot examples help the
model to generalize to unseen situations, but do not
make the model able to solve the problem in all
situations. Through the CoT-enhanced prompt, we
see a significant performance improvement, stating
that CoT helps the model to understand the scalable
solution of a task in which the CoT prompt exposed
more information about scalable solutions.
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6 Limitations

We did not evaluate all available LLMs due
to limited computational resources and service-
restrictions (area limitation, wait-list, etc.). Instead,
we selected several representative and strong LLMs
that are easy to access. We are only able to run
Llama2 models up to 13B, but we found that they
do not even understand the prompt instructions cor-
rectly at those model sizes. This is despite follow-
ing the correct way to prompt it, as described in the
Llama2 paper (Touvron et al., 2023)6 and in discus-
sions7 in the research community8. Please refer to
Appendix A.1.2 for the results analysis of Llama2.
Additionally, as probing research, our final goal
was not actually to try to solve the symbolic tasks
proposed in this paper, but that may be a separate
goal in more powerful future research.

It is also possible that the accuracy can be fur-
ther improved by using different prompts. We have
tried various prompt designs and multiple prompts
to make the LLMs give their best performance.
The current prompt design gives the best accuracy
among the prompts we have experimented with,
though we do not deny that other prompts can im-
prove the performance further. However, due to
the number of possible prompts being infinite, we
cannot exhaust them. We chose the best prompt
among all the ones we have tried so far, and keep
using it right now.

Additionally, all proposed symbolic tasks may
be completely solvable if we prompt the LLM to
use an external API like a sorting function or a
pre-programmed function or even write its own
code/program that can solve the given task. We
argue that using such a tool to solve this problem
is based on human-constructed knowledge, which
equals making the human solve the task, not test-
ing if the model can solve it. From a human per-
spective, those tasks are solvable even without ex-
ternal tools. Understanding rules, applying rules,
discovering errors, and concluding on a general
solution to a problem are fundamental aspects of
intelligence that should be achieved even without
external assistance from outside the model/brain.

6http://huggingface.co/blog/llama2#
how-to-prompt-llama-2

7www.reddit.com/r/Localllama/comments/
155po2p/get_Llama_2_prompt_format_right/

8http://twitter.com/osanseviero/
status/1682391144263712768

7 Ethical Considerations

According to the terms-of-service of the OpenAI-
provided API, its output (obtained data, model, etc.)
cannot be used to compete with OpenAI.

We declare that we have no such intention of
doing so. The purpose of this research is not to
develop or produce any model or any data nor any
method that aims to compete with OpenAI pro-
duced model, including the GPT3 (Text-Davinci)
series, GPT-3.5 series, GPT-4 series, and all other
OpenAI products (current or future improvements),
released or coming models. We ask any follow-up
researchers who cite this paper to also refrain from
such competition in their follow-up research.
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A Appendix

A.1 Experiment Settings

A.1.1 Model Setting
For the Text-Davinci-003, we set the LLM to have
zero temperature. For the GPT-3.5, we used the
gpt-3.5-turbo-16k version. We set the temperature
as 0 since we want to output for LLM to be stable,
determinative, and reproducible. Additionally, we
want the LLM to follow the instructions given in the
prompt exactly. Setting the temperature is a good
solution to make the LLM follow the instructions
exactly.

For the GPT-4, we used the June 2023 version.
Similarly, we also set the temperature as 0 to make
the LLM produce deterministic results.

A.1.2 Llama2
For the Llama2-13b model, we show its experiment
results in Table 6 and Table 7 and Table 8.

Regarding the results in Rules Application and
Rules Induction, we can see that:

1. From the results in Table 6, we can see that
Llama2 fails significantly in both the zero-shot
and the few-shot settings. Especially in the
Rules Application, the Llama2 gives zero Full
Accuracy. Additionally, the Partial Accuracy
is also low in Rules Application, even with
few-shot examples showing that Llama2 may
not be able to learn from those examples.

2. Regarding the Rules Induction, the accuracy
is slightly better, even though it is far from
satisfying. We can see that except for Order-
ing, in which the rules are easy to obtain from
the prompted ordered color lists, the Llama2
also fails significantly in other tasks. For the
Grouping and Mapping task, even with few-
shot examples, the Full Accuracy is still only
2.9% and 2.0%.

Regarding the results in Results Validation and
Rules Validation. From the results in Table 7.

1. Firstly, the Llama2 also fails to validate the
correctness of results or rules in both the zero-
shot setting and the few-shot setting.

2. Similarly, it also fails to correct the results.
Even in the Gropuing with the few-shot set-
ting, its performance is still just 8.9%. In other
tasks, the performance is simply zero accuracy
or close to zero accuracy.

3. In the Rules Validation, we have similar re-
sults. The Llama2 is also not able to validate
the correctness of rules. Additionally, the Full
Accuracy is also low.

Regarding the results of Rule Incorporation.
From the results in Table 8, we can see:

1. The Llama2 also fails to identify new rules.
This means that Llama2 cannot find new rules
in the given results.

2. Additionally, the performance is also low in
both the zero-shot setting and the few-shot
setting.

3. The few-shot examples improve the Partial
Accuracy a little, but do not improve the Full
Accuracy.

We also did a brief case analysis of Llama2, and
we found that in most cases, even following the de-
sired response format to generate the answer is dif-
ficult. This means that it is hard to extract Llama2’s
prediction for the problem as it can be expressed
in various ways even when we set its temperature
parameter as zero, expecting it to follow the in-
structions. Additionally, Llama2 seems to repeat
some tokens and also generate meaningless noise
random tokens, which cannot be considered as an
answer since it is meaningless.
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Model Task
Rules Application Rules Induction

Zero-shot Few-Shot Zero-shot Few-Shot

Par Acc Full Acc Par Acc Full Acc Par Acc Full Acc Par Acc Full Acc

Llama2
Grouping 1.7 0.0 2.7 0.0 12.6 0.0 24.3 2.9
Ordering 34.4 0.0 35.4 0.0 38.9 29.7 59.4 40.4
Mapping 8.6 0.0 2.5 0.0 8.3 0.5 89.8 2.0

Table 6: Accuracy on Rules Application and Rules Induction. The best results are bold and underlined. Par Acc and
Full Acc mean Partial and Full Accuracy respectively.

(a) Results Validation

Model Task Zero-Shot Few-Shot

Valid Acc Partial Acc Full Acc Valid Acc Partial Acc Full Acc

Llama2
Grouping 58.0 2.0 0.0 58.0 23.5 8.9
Ordering 52.3 3.4 0.0 54.6 12.7 1.3
Mapping 48.7 0.0 0.0 50.0 0.8 0.0

(b) Rules Validation

Model Task Zero-Shot Few-Shot

Valid Acc Partial Acc Full Acc Valid Acc Partial Acc Full Acc

Llama2
Grouping 49.3 9.0 0.0 50.2 28.9 1.3
Ordering 49.3 8.4 0.0 48.4 0.0 0.0
Mapping 50.3 8.3 3.4 55.3 15.8 8.9

Table 7: Model Accuracy on Results Validation and Rules Validation. The best results are both bold and underlined.

A.2 Task Setting

For the tasks evaluated in this research, we all ran-
domly generated 500 examples for each task. For
example, for the Character Mapping task, we ran-
domly sample 500 sentences from datasets with
character lengths from 20 to 100. The number of
examples is also the same for other tasks. To notice
that we have made sure that the possible combina-
tion of units is much larger than 500 examples so
that it is not likely that we may generate the same
examples twice in an experiment. Additionally, we
use five random seeds [714, 123, 889, 912, 743],
and the results are averaged over 5 random seeds.
By fixing random seeds. we can make sure that
each run produces the same generation of units, the
errors in rules or results, and the new rules in the
new given results.

A.2.1 Polygon Grouping Setting
We generate 30 polygons for each input example.
Those polygons are randomly generated from the
provided color list, sides number list, and material
list.

The sides number list is [3, 4, 5, 6, 7, 8, 9, 10,
11, 12]

The color list is [’red’, ’blue’, "while", "black",
"yellow", "purple", "gray", "cyan", "brown", "in-
digo"]

The material list is [’metal’, ’plastic’, "glass",
"sliver", "gold", "copper", "bronze", "diamond",
"jade"]

A polygon is generated through sampling from
each attribute.

A.2.2 Character Mapping Setting
The text is chosen from the aforementioned App-
Review dataset. We filter out sentences with char-
acter lengths either longer than 100 characters or
shorter than 20 characters. Based on such condi-
tions, we sample 500 examples from the filtered
dataset as the data to be evaluated.

A.2.3 Color Ordering Setting
The color list that is used in this research con-
tains the following colors [’Red’, ’Blue’, ’Green’,
’Yellow’, ’Orange’, ’Purple’, ’Pink’, ’Brown’,
’Black’, ’White’, ’Gray’, ’Silver’, ’Gold’, ’In-
digo’, ’Turquoise’, ’Cyan’, ’Magenta’, ’Laven-
der’, ’Maroon’, ’Beige’, ’Teal’, ’Navy’, ’Olive’,
’Coral’, ’Salmon’, ’Peach’, ’Ivory’, ’Tan’, ’Lilac’,
’Skyblue’, ’Mint’, ’Slate’, ’Turmeric’, ’Ruby’,
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’Emerald’, ’Tangerine’, ’Pewter’, ’Champagne’,
’Mauve’, ’Brick’, ’Forest’, ’Mustard’, ’Chocolate’,
’Sapphire’, ’Blush’, ’Ash’, ’Coral’, ’Steel’, ’Apri-
cot’, ’Pearl’]. Each time, we randomly sample
20 colors from the whole list and randomly rank
each color in the list to form the color preference
dictionary. When prompting the LLM to induce
rules based on correct output examples, we parti-
tion long color lists into several sub-lists to prevent
the model from directly copying the given results
to obtain the correct color preference without rea-
soning. The LLM should be able to merge those
lists to produce the whole color preferences list.

A.3 Prompt Examples

As illustrated in the examples, first, we prompt the
Role of the LLM to posit its general target of the
task. Then, we prompt with a more detailed expla-
nation of the tasks and provide detailed information
about what the task is. After the Problem Descrip-
tion, we write the Response Instruction, which illus-
trates what answer we expect the model to respond
with. We also added the Response Format to the
LLM to make it generate the content following that
format to let us extract the answers easily by pars-
ing the output of the LLM. Then, depending on the
task setting, we may attach the optional Few-Shots
Examples after the Response Format. Notice that
any content that is closed by the "" bracket pair
is a placeholder. It will be replaced by the actual
answer or prompted units. For example, "First Ex-
ample Rules" means that this is the first example
among few-shots examples. In the actual prompt,
it will be replaced by actual rules. Also, the same
for the "First Example Polygons", in which we will
prompt the model with actual polygons that the
model needs to group using the rules. Finally, af-
ter the Few-Shots Examples, we attach the actual
prompted problem to the model with corresponding
rules and polygons by replacing "Rules" and "Poly-
gons" with the actual initiated rules and polygons
for the problem.

We also show the prompt of other symbolic tasks.
The prompts used for Character Mapping in all
tasks are in Figure 5 and 6, which shows the prompt
for Rules Application, Rules Induction, Results Val-
idation, Rules Validation, and Rules Incorporation,
respectively.

The prompts used for Polygons Grouping in all
tasks are in Figure 7 and 8, which shows the prompt
for Rules Application, Rules Induction, Results Val-

idation, Rules Validation, and Rules Incorporation,
respectively.

The prompts used for Color Ordering in all tasks
are in Figure 9 and 10, which shows the prompt for
Rules Application, Rules Induction, Results Vali-
dation, Rules Validation, and Rules Incorporation,
respectively.
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Model Task Zero-shot Few-Shot

Valid Acc Partial Acc Full Acc Valid Acc Partial Acc Full Acc

Llama2
Grouping 48.0 2.7 0.0 50.6 13.4 0.0
Ordering 42.1 4.4 0.0 42.1 4.6 0.0
Mapping 51.3 8.5 0.0 51.3 21.1 7.7

Table 8: Model Accuracy on Incorporation. The best results for one LLM between different tasks are underlined,
and the best results of all models are both bold and underlined.

You are a helpful assistant, and you are supposed to 
follow the instructions that I give to you and perform the 
task as far as you can. Here, we want to transform the 
source text to the altered text by following the rules given 
below.
Problem Description
------
You will be given a set of rules that maps an English 
character to another character. You are supposed to follow 
the rules and transform the source text into the altered text.

Rules 
------
Below are the character mapping rules that map each 
English character to another English character. Those 
rules work for both Uppercase and Lowercase:
{Rules}

Response Instruction 
------
Your final answer to this problem should contain the 
following information:
1. The text that is mapped.

Response Format 
------
Following the Response Instruction, the format should be:
Result:
Altered: MappedText
The above MappedText is just a variable which is the text 
that is mapped from the original text. Replacing it with the 
text that is mapped.

Question
------
Now try your best to map the Original text to the Altered 
text using the above rules and Response Format:
Original: {Original}

Remember your response must follow the response format.

You are an inductive reasoner, and you can induct rules from 
examples correctly. You are given pairs of source text and altered text, 
and you are supposed to find the rules that map each English character 
to another. 

Problem Description
------
You are given a set of pairs of source text and altered text, and you are 
supposed to find out the rules that map each English character in the 
source text to the corresponding altered text. You should ignore the 
non-English characters like space, numbers, question marks, etc. You 
should also ignore the case of the English character, which means you 
should treat the uppercase and lowercase as the same character.

Response Instruction
------
Your final answer to this problem should contain the following 
information:
1. The rules are used to map each English character to another.
2. Do not produce redundant rules, which means if there are two rules 
that map the same character to the same character, you should only 
respond to one of them.
3. The mapping character should be an uppercase English character.

Response Format
------
Rules:
Original: x1 -> Altered: y1
Original: x2 -> Altered: y2
……
Above Sides x1, y1, x2, and y2 are just variables, replacing them with 
English characters, which should be only uppercase English characters.

Question
------
Now try your best to induct the mapping rules from the following 
Original and Altered pair:
Original: {Original}
Altered: {Altered}
Remember your response should follow the response format.

You are an accurate error-checking assistant, and you can identify errors correctly. 
You have access to several pre-defined rules that map each English character to 
another English character, and you are given an Original and Altered text pair. The 
Altered string is obtained by mapping each English character in the Original text 
one by one using those pre-defined rules. However, the mapping for each character 
may not be correct. You are supposed to find out whether the mapping from the 
Original to the Altered text is correct or not. If not, locate the position of the error 
character and rectify it.

Problem Description
------
You are given a set of rules that maps each English character to another English 
character. You are supposed to check whether we can get the altered text from the 
original text using those rules. If not, where is wrong and locate the error.

Rules 
------
Below are the rules that map each English character to another English character. 
Those rules work for both Uppercase and Lowercase:
{Rules}

Notice: Those rules only work for the English alphabet, and if you encounter non-
English characters like space, numbers, question marks, etc, you don't have to 
check it.

Response Instruction 
------
Your final answer to this problem should contain the following information:
1. Whether we can obtain the altered text by following the rules given above. 
2. If the result is invalid, respond with the rectified Altered result.

Response Format 
------
Following the Response Instruction, the format should be:
Validation Result:
Valid or Invalid
Rectified Results:
1. If the result is Valid, you respond with There is no character to correct.
2. If the result is Invalid, you respond with the rectified altered text in the 
following format.
Altered: RectifiedAlteredText
The above RectifiedAlteredText is just a variable, and you should replace it with 
the actual rectified altered text.

Question
------
Now try your best to answer the question for the following Original and Altered 
pair:
Original: {Original}
Altered: {Altered}
Remember your response should follow the response format.

Mapping Rule Application Mapping Rules Induction Mapping Results Validation

Figure 5: Prompt Template for Mapping in Rules Application, Rules Induction and Results Validation

You are an error rectifier. You have access to several pre-defined rules that map each English character 
to another English character, and you are given an Original and Altered text pair. The Altered string is 
obtained by mapping each English character in the Original text one by one using those pre-defined 
rules. 

Problem Description
------
Some problems may happen to those rules due to some unexpected reasons; some of those rules may be 
disturbed, so the rules may not be correct anymore. You are supposed to rectify those rules by 
observing the Original and Altered string pair, where the Altered string pair is mapped by previous 
undisturbed correct rules. By checking the rules and the Original and Altered string pair, you can 
identify whether the given rules are correct or not.

Response Instruction 
------
Your final answer to this problem should contain the following information:
1. Are the rules correct or not? 
2. If not correct, what is/are the rectified one/ones. 
3. If there are examples provided, follow the procedure for how examples solve the problem.

Response Format 
------
Correct Rules or Not:
Yes or No
Rectified Rules:
1. If the result is Yes, you should respond with there is no rule to correct.
2. If the result is No, you should respond to the rectified rule/rules.
For example: Original: x1 -> Altered: y1
Here, x1 and y1 are just variables that represent English characters and do not have actual meanings; 
you should replace them with actual English characters based on your analysis.

Question
------
Try your best to answer the question using the above Response Format to determine whether the 
following rules contain incorrect rules or not:
{Rules}

Following is the correct ordered list of colors:
Original: {Original}
Altered: {Altered}

Now, you need to induct whether there are wrong rules existing in the given pre-defined mapping rules, 
and your response should follow the response format.

You are an inductive reasoner. You have access to several pre-defined rules that map each English 
character to another English character, and you are given an Original and Altered text pair. The Altered 
string is obtained by mapping each English character in the Original text one by one using those pre-
defined rules. 

Problem Description
------
We have derived several rules based on previous Original and Altered pairs observations. Now, we 
have new data, and the problem is whether the new data can provide new rules or not. You are 
supposed to analyze whether the new pair can provide additional information or not. If the new pair 
presents new mapping rules, you should be able to identify them and incorporate them into the rules.

Response Instruction 
------
Your final answer to this problem should contain the following information:
1. Does the Original and Altered pair provide new information or not 
2. If it provides new information, what new rule can be inducted? 
3. If there are examples provided, you should try to follow the procedure of how examples solve the 
problem.

Response Format 
------
New Information Contained:
Yes or No
New Rules Inducted:
1. If you answer No in New Information Contained, you should respond with No.
2. If the answer Yes in New Information Contained, respond with the new inducted rules in the 
following format.
For example:
Original: x1 -> Altered: y1
Here, x1 and y1 are just variables that represent English characters and do not have actual meanings, 
and you should replace them with actual English characters based on your analysis.

Question
------
You have access to the following rules:
{Rules}

You have access to the following Original and Altered pairs:
Original: {Original}
Altered: {Altered}

Now, you need to check whether we can induct new rules from the given Original and Altered pair. 
Remember your response should follow the response format.

Mapping Rules Validation Mapping Rules Incorporation

Figure 6: Prompt Template for Mapping in Rules Validation and Rules Incorporation
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You are a helpful assistant, and you are supposed to 
follow the instructions that I give to you and perform the 
task as far as you can. Here, we want to group different 
polygons into different groups based on their 
characteristics.

Problem Description
------
You will be given the possible attributes of different 
polygons with different Sides Numbers, Colors, and 
Materials. You will also be given the grouping rules that 
describe what types of polygons should be grouped 
together. You are supposed to group those polygons into 
different groups based on the grouping rules.

Attributes
------
Sides Numbers: {SidesNumber}
Colors: {Colors}
Materials: {Materials}

Response Instruction 
------
Your final answer to this problem should contain the 
following information:
1. The polygons that belong to each group. 

Response Format 
------
Following the Response Instruction, the format should be:
Grouping Result:
Group 0:  Polygon x1, Polygon x2, …
Group 1:  Polygon y1, Polygon y2, …
…
The above format is just an example, and you should 
replace x1, x2, y1, and y2 with actual polygons based on 
your analysis. The order of polygons in each group does 
not matter.

Question
------
Below are the grouping rules that describe what types of 
polygons should be grouped together:
{Rules}

Now try your best to use those grouping rules to group the 
following polygons. Your response should follow the 
Response Format.
{Polygons}

You are an inductive reasoner, and you can induct rules from 
examples correctly. You are given several polygons with different 
attributes like the Number of Sides, Colors, and Materials of Polygons. 
Additionally, you will be given a grouping result that those polygons 
are classified into different groups. You are supposed to find the 
grouping rules.

Problem Description
------
We first let you know the possible attributes for those polygons. Each 
polygon is a combination of those attributes. Then, we give you all the 
polygons that might be used for this problem. Now you have all the 
attributes and all the polygons, we give you the grouping results, and 
you are supposed to find the grouping rules that can be applied to 
those polygons to obtain the grouping results.

Attributes
------
Sides Numbers: {SidesNumber}
Colors: {Colors}
Materials: {Materials}

Response Instruction
------
Your final answer to this problem should contain the following 
information:
1. The rules that are used to group those polygons.

Response Format
------
Grouping Rules:
1. Polygons with x Sides, y Color, and z should be grouped together.
……
Above Sides x, y, and z are just variables, replacing them with actual 
numbers, color, and materials when producing the answer

Question
------
You have access to the following polygons:
{Polygons}

These are the grouping results for the above polygons with those 
attributes:
{GroupingResult}

Now, you need to induct the grouping rules following the above 
Problem Description, Response Instruction, and Response Format. 

You are an accurate error-checking assistant, and you can identify errors correctly. You 
have access to several pre-defined rules that illustrate the grouping rules that you can 
use to group different polygons into different groups. You will be given grouping 
results and grouping rules and polygons. However, the grouping may not be correct. 
You are supposed to find out whether the grouping results are correct or not. If not, 
locate the error and rectify it.
Problem Description
------
You are given a set of grouping results of different polygons. You know the grouping 
rules and information about all the polygons. However, the grouping results may not be 
correct. You are supposed to find out whether the grouping results are correct or not. If 
it is incorrect, you should be able to locate and rectify the error.

Attributes
------
Below are all the attribute options for a polygon to have:
Sides Numbers: {SidesNumber}
Colors: {Colors}
Materials: {Materials}

Response Instruction 
------
Your final answer to this problem should contain the following information:
1. Is the grouping result of polygons correct or not.
2. If the grouping results are not correct, give the rectified grouping result. 

Response Format 
------
Following the Response Instruction, the format should be:
Validation Result:
Correct or Incorrect
Rectified Results:
1. If the result is Correct, you respond with None.
2. If the result is Invalid, you respond with a new grouping result.
Group x: Polygon z_1, Polygon z_2, Polygon z_3..
Group y: Polygon n_1, Polygon n_2, Polygon n_3..
…
Above Group x, y, z_x and n_x are just variables, replacing it with actual group name 
when producing an answer

Question
------
You have access to the following polygons:
{Polygons}

Below are the rules that are used to group different polygons into different groups:
{Rules}

These are the grouping results for the above polygons with those attributes following 
the above rules:
{GroupingResult}

Now you need to check whether the grouping results are correct or not based on given 
polygons and rules. If not, give the rectified results, and your response must follow the 
response format. 

Grouping Rules Application Grouping Rules Induction Grouping Results Validation

Figure 7: Prompt Template for Grouping in Rules Application, Rules Induction and Results Validation

You are an error rectifier. You have access to several pre-defined rules that illustrate the grouping rules 
you can use to group different polygons into different groups. You will be given the grouping results and 
grouping rules and polygons. However, the grouping rules may not be correct. You are supposed to find 
out whether we can obtain the grouping results following the grouping rules. If not, locate the error of the 
rules and rectify it. 

Problem Description
------
Some problems may happen to group rules due to some unexpected reasons. Some of those rules may be 
disturbed, so the rules may not be fully correct. You are supposed to rectify those rules by observing the 
grouping results of polygons. By checking the rules and the grouping results, you can identify whether or 
not the given rules are correct.

Attributes
------
Below are all the attribute options for a polygon to have:
Sides Numbers: {SidesNumber}
Colors: {Colors}
Materials: {Materials}

Response Instruction 
------
Your final answer to this problem should contain the following information:
1. Are the rules correct or not. 
2. If not correct, what is/are the rectified one/ones. 

Response Format 
------
Following the Response Instruction, the response format is as follows:
Correct Rules or Not:
Yes or No
Rectified Rules:
1. If the result is Yes, you should respond with “There is no rule to correct”.
2. If the result is No, you should respond with the rectified rule/rules in the following format: 
1. The wrong rule: x1 Sides, y1 Color, and z1 -> The correct rule: x2 Sides, y2 Color, and z2
….
The above x1 and x2, y1 and y2, z1 and z2 are just variables. You should replace it with the actual 
number of sides, colors, and materials. Remember, the wrong rule and the correct rule should be 
separated by “->” and are in one line.
Especially, x1, y1, and z1 are the variables for wrong sides, color, and material, and x2, y2, and z2 are the 
variables for correct sides, color, and material.

Question
------
Below are the polygons for this example:
{Polygons}

Below are the rules that are used to group different polygons into different groups, which may be 
incorrect:
{Rules}

These are the correct grouping results for the above polygons with those attributes:
{GroupingResult}
Now, you need to check whether the grouping rules are correct or not. If not, give the rectified results, 
and your response must follow the response format. 

You are an inductive reasoner. You have access to several pre-defined rules that hat illustrate the grouping rules 
that group different polygons into different groups. You will be given the grouping results, grouping rules, 
polygons, and available attributes of polygons. However, the grouping rules may not be complete. You are 
supposed to find out whether we can obtain new grouping rule/rules from the grouping results. If yes, discover new 
rules. 

Problem Description
------
We have derived several rules based on previous observations of the grouping results of polygons. Now, we have 
new data, and the problem is whether the new data can provide new rules or not. You are supposed to analyze 
whether the new grouping results can provide additional information or not. If the new grouping results present 
new grouping rules, you should be able to identify them and incorporate them into the current rules.

Attributes
------
Below are all the attribute options for a polygon to have:
Sides Numbers: {SidesNumber}
Colors: {Colors}
Materials: {Materials}

Response Instruction 
------
Your final answer to this problem should contain the following information:
1. Do the grouping results provide new information or not?
2. If given grouping results provide new rule/rules, what is/are the new rule/rules that can be inducted from the 
grouping results? 

Response Format 
------
Following the Response Instruction, your response should follow the following format:
New Rules or Not:
Yes or No
Added Rules:
1. If the above result is No, you should respond with “There is no rule to add” after Added Rules.
2. If the above result is Yes, you should respond  with the added rule/rules after Added Rules in the following 
format:
1. Polygons with x Sides, y Color, and z should be grouped together.
......
Above x, y, and z are just variables, replacing them with actual numbers, colors, and materials when producing 
answers.

Question
------
Below are the polygons for this example:
{Polygons}

Below are the rules that are used to group different polygons into different groups, which may be incomplete:
{Rules}

Below are the grouping results for the above polygons with those attributes:
{GroupingResult}

Now you need to check whether the grouping results provide new rules or not and your response must follow the 
response format. 

Grouping Rules Validation Grouping Rules Incorporation

Figure 8: Prompt Template for Grouping in Rules Validation and Rules Incorporation
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You are a helpful assistant, and you are supposed to 
follow the instructions that I give to you and perform the 
task as far as you can. Here, we want to sort the given 
color lists that follow certain color preferences.

Problem Description
------
You will be given a set of rules that presents the color 
preferences. You will be given an unordered color list, 
and you should output the ordered list following the color 
preferences.

Color Set
------
You have access to the following colors:
{colors}

Response Instruction 
------
Your final answer to this problem should contain the 
following information:
1. The resorted color list that is based on the given color 
preferences and unordered color list.

Response Format 
------
Following the Response Instruction, the format should be:
Sorted Color List:
1. Color_1.
2. Color_2.
3. Color_3.
…
The above Color_x is just a variable here that does not 
hold any actual meaning. You should replace Color_x
with actual colors from the given data.

Question
------
You have access to the following color preference rules 
that describe the correct color preference rank that you 
can use to sort the following unordered color list but do 
not output the color preference rank directly, and you 
should sort the following color list according to the 
following color preference rules:
{color_preference}

Now try your best to sort the following unordered color 
list according to the given color preference rules above, 
and your response should follow the response format. 
Don’t just copy the color preference rank above, but try to 
sort the following color list according to the given color 
preference rules above:
{UnOrderedLists}

You are an inductive reasoner, and you can induct rules from 
examples correctly. You are given an ordering result that the elements 
of the ordered result are different colors. You are supposed to find out 
the preference of the different colors, which means what color has the 
highest rank.

Problem Description
------
You are given an ordered list where, instead of ordering the numbers, 
the elements of the ordered list are colors. Through analyzing the 
unordered list and the ordered list, you are required to find out the rank 
of different colors.

Color Set
------
You have access to the following colors:
{colors}

Response Instruction
------
Your final answer to this problem should contain the following 
information:
1. The analyzed ranks of different colors.

Response Format
------
Color Ranking:
1. Rank 1 Color_1
2. Rank 2 Color_2
3. Rank 3 Color_3
4. Rank 4 Color_4
……
Color_x above is just a variable here that does not hold any actual 
meaning. You should replace Color_x with actual colors from the 
given data.

Question
------
Now try your best to induct the mapping rules from the following 
Original and Altered pair:
Original: {Original}
Altered: {Altered}

Remember your response should follow the response format.

You are an accurate error-checking assistant, and you can identify errors correctly. You 
have access to pre-defined ordering rules that show the preference of colors, and you 
are given ordering results based on those pre-defined ordering rules. However, the 
grouping results may not be correct. You are supposed to find out whether the given 
ordering results are correct or not. If not, you should be able to identify the errors and 
correct them.

Problem Description
------
You are given pre-defined ordering preferences that show the preference of colors, and 
you are given ordering results based on those pre-defined ordering rules. However, the 
grouping results may not be correct. You are supposed to find out whether the given 
ordering results are correct or not. If not, you should be able to identify the errors and 
correct them.

Color Set
------
You have access to the following colors:
{colors}

Response Instruction
------
Your final answer to this problem should contain the following information:
1. Whether the given ordering results are correct or not.
2. If not, what is/are the error/errors and the rectified one/ones.

Response Format
------
Correct Results or Not:
Yes or No
Rectified Results:
1. If the result is Yes, you should respond with “There is no error to correct”.
2. If the result is No, you should respond with the rectified pair of colors in the 
following format, which means the color with the wrong priority (left-hand side) should 
be replaced with the right-hand side color.
For example:
The correct ordering results are:
Wrong Priority Color: Color_x -> Rectified Priority Color: Color_y
......
Color_x and Color_y above is just a variable that does not hold any meaning. You 
should replace Color_x with actual colors from the given data.

Question
------
You have access to the following color preference rules that describe the correct color 
preference:

{color_preference}

You have the following Ordered Color results that may not be correct:

{OrderedLists}

Now you need to induct whether the ordered colors follows the color preference rules 
or not and your response should follow the response format.

Ordering Rules Application Ordering Rules Induction Ordering Results Validation

Figure 9: Prompt Template for Ordering in Rules Application, Rules Induction and Results Validation

You are an accurate error-checking assistant, and you can identify errors correctly. You have access to 
pre-defined ordering rules that show the preference of colors, and you are given ordering results based 
on those pre-defined ordering rules. However, the color preference rules may not be correct. You are 
supposed to find out whether the given preference rules are correct or not. If not, you should be able to 
identify the errors and correct them.

Problem Description
------
You have access to pre-defined ordering rules that show the preference of colors, and you are given 
ordering results based on those pre-defined ordering rules. However, the color preference rules may not 
be correct. You are supposed to find out whether the given preference rules are correct or not. If not, 
you should be able to identify the errors and correct them.

Color Set
------
You have access to the following colors:
{colors}

Response Instruction
------
Your final answer to this problem should contain the following information:
1.Whether the given ordering rules are correct or not.
2.If not, what is/are the error/errors and the rectified one/ones.

Response Format
------
Correct Rules or Not:
Yes or No
Rectified Rules:
1. If the result is Yes, you should response with “There is no error to correct” following the Rectified 
Rules.
2. If the result is No, you should respond the rectified rule/rules only of the error rules in the following 
format. 
Rank a : Color_x.
Rank b : Color_y.
Rank c : Color_z.
……
Color_x, Color_y, Color_z above is just a variable here that does not hold any actual meaning. You 
should replace them with actual colors from the given color set.
The a, b, and c after the RANK represent the rectified rank of the color. You should replace them with 
actual correct rank of the color.

Question
------
You have access to the following color preference rules that may contain incorrect rules:

{color_preference}

Following is the correct ordered list of colors:

{OrderedLists}

Now you need to induct whether there are wrong rules existing in the given pre-defined color 
preference rules and your response should follow the response format.

You are an inductive reasoner. You have access to several pre-defined rules that hat illustrate the grouping 
rules that group different polygons into different groups. You will be given the grouping results, grouping 
rules, polygons, and available attributes of polygons. However, the grouping rules may not be complete. You 
are supposed to find out whether we can obtain new grouping rule/rules from the grouping results. If yes, 
discover new rules. 

Problem Description
------
We have derived several rules based on previous observations of the grouping results of polygons. Now, we 
have new data, and the problem is whether the new data can provide new rules or not. You are supposed to 
analyze whether the new grouping results can provide additional information or not. If the new grouping 
results present new grouping rules, you should be able to identify it and incorporate them into the current rules.

Attributes
------
Below are all attribute options for a polygon to have:
Sides Numbers: {SidesNumber}
Colors: {Colors}
Materials: {Materials}

Response Instruction 
------
Your final answer to this problem should contain the following information:
1. Do the grouping results provide new information or not?
2. If given grouping results provide new rule/rules, what is/are the new rule/rules that can be inducted from the 
grouping results? 

Response Format 
------
Following the Response Instruction, your response should follow the following format:
New Rules or Not:
Yes or No
Added Rules:
1. If the above result is No, you should respond with “There is no rule to add” after Added Rules.
2. If the above result is Yes, you should respond  with the added rule/rules after Added Rules in the following 
format:
1. Polygons with x Sides, y Color, and z should be grouped together.
……
Above x, y, and z are just variables, replacing them with actual numbers, colors, and materials when 
producing answers.

Question
------
You have access to the following original color preference rules that may be incomplete:

{color_preference}

Following is the ordered list of colors that may provide new information:

{OrderedLists}

Now you need to induct whether we can induct new rule/rules from the given results, and your response 
should follow the response format. Remember that the new rule/rules should be in the new incorporated color 
preference rather than the original given color preference.

Ordering Rules Validation Ordering Rules Incorporation

Figure 10: Prompt Template for Ordering in Rules Validation and Rules Incorporation
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