
Findings of the Association for Computational Linguistics: EACL 2024, pages 252–263
March 17-22, 2024 c©2024 Association for Computational Linguistics

PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation

Nadav Benedek
Tel Aviv University

nadavbenedek@mail.tau.ac.il

Lior Wolf
Tel Aviv University
wolf@cs.tau.ac.il

Abstract

With the proliferation of large pre-trained lan-
guage models (PLMs), fine-tuning all model pa-
rameters becomes increasingly inefficient, par-
ticularly when dealing with numerous down-
stream tasks that entail substantial training
and storage costs. Several approaches aimed
at achieving parameter-efficient fine-tuning
(PEFT) have been proposed. Among them,
Low-Rank Adaptation (LoRA) stands out as
an archetypal method, incorporating trainable
rank decomposition matrices into each target
module. Nevertheless, LoRA does not consider
the varying importance of each layer. To ad-
dress these challenges, we introduce PRILoRA,
which linearly allocates a different rank for
each layer, in an increasing manner, and per-
forms pruning throughout the training process,
considering both the temporary magnitude of
weights and the accumulated statistics of the
input to any given layer. We validate the effec-
tiveness of PRILoRA through extensive exper-
iments on eight GLUE benchmarks, setting a
new state of the art.

1 Introduction

The current paradigm for natural language process-
ing tasks is to exploit pre-trained models, which
were trained using large amounts of data and ex-
pensive resources, and fine-tune them to various
downstream tasks (Brown et al., 2020; Liu et al.,
2019; Radford et al., 2019; He et al., 2021b; De-
vlin et al., 2019). Such fine-tuning was tradition-
ally conducted by gradient update of all parame-
ters of the model (Dodge et al., 2020; Raffel et al.,
2020; Qiu et al., 2020). With the ever increasing
size of models, such as Llama 7B-65B (Touvron
et al., 2023), Palm 540B (Chowdhery et al., 2022),
and others, trained with resources consisting of
hundreds of GPUs in parallel, which are available
only to some institutions and corporations, full fine-
tuning can become prohibitive, lengthy, and with

high carbon footprint (Luccioni et al., 2022). Addi-
tionally, fully fine-tuning this way requires storing
all parameters of the fine-tuned model for every
downstream task.

To tackle the aforementioned challenges, a few
research directions for Parameter-Efficient Fine-
Tuning (PEFT) were proposed. These directions
aim to maintain or even improve the accuracy of
a full fine-tuning approach, while training only a
small fraction of the parameters. One approach is
to add small modules to the base model, which is
kept frozen throughout the training process. Such
adapter tuning techniques (Rebuffi et al., 2017;
Houlsby et al., 2019; Pfeiffer et al., 2020; He et al.,
2022) add modules between the layers. The im-
plication, due to increased model depth, is longer
training time and higher latency during inference.
Alternatively, prompt and prefix tuning (Lester
et al., 2021; Li and Liang, 2021) attach trainable
tokens to the beginning of layers in the model, thus
potentially reducing its effective maximal token
length.

LoRA (Hu et al., 2022) fine-tunes linear layers
by viewing each layer as a matrix of weights W0,
freezing it, and adding to it a small rank matrix,
with the same shape as the original weight ma-
trix, that is obtained as a product of two low-rank
matrices A and B. The low-rank r is chosen to
be much smaller than the input dimension to the
layer, thereby significantly reducing the number of
trainable parameters. During LoRA training, only
the two low-rank matrices are updated, which are
usually 0.01% to 1.00% of the original parame-
ter count, depending on the low-rank of the two
matrices. In addition to being efficient and often
exceeding the performance of full fine-tuning (Hu
et al., 2022), this method has the advantage of be-
ing able to be merged back to the original matrix
during inference, without increasing latency. LoRA
has been used in various downstream tasks success-
fully (Schwartz et al., 2022; Lawton et al., 2023;

252

Dettmers et al., 2023)
One limitation of LoRA is that the low-rank r

is an arbitrarily set parameter, and in the original
LoRA it is set to be fixed across layers and weights.

Efforts were made to address the issue of the
fixed rank of LoRA. AdaLoRA (Zhang et al., 2023)
starts from an initial parameter budget, which is
slightly higher than the final budget, and then grad-
ually reduces it until matching the target by remov-
ing weights based on SVD.

In this work, we encourage the usage of linearly
increasing the rank from one layer to the next while
concurrently adhering to the same budget of pa-
rameters. As we show, this strategy provides a
distribution of the learned parameters that is bet-
ter than a uniform placement, or even the learned
alternatives.

A second contribution is obtained by pruning
matrix A. This is done by considering both the
elements of A and an exponential moving average
over the layer’s input. Although we prune, in most
cases, half of the elements of A, the main metric we
seek to improve by pruning is the overall accuracy
obtained after pruning.

We conduct extensive experiments over eight
different General Language Understanding Evalua-
tion (Wang et al., 2019) benchmarks, and present
evidence that the proposed method outperforms
LoRA and its recent variants, that both the linear
distribution of ranks and the specific pruning ap-
proach are beneficial, and that the method does not
require more GPU memory or training time than
the conventional LoRA, unlike recent extensions
of LoRA.

2 Related Work

In recent years, Parameter Efficient Fine-Tuning
(PEFT) has garnered increasing interest among re-
searchers as a means to reduce both the expenses
associated with fine-tuning and storing large-scale
pre-trained models and the time required for train-
ing. Various approaches have emerged, each ex-
hibiting distinct characteristics pertaining to mem-
ory utilization, storage requirements, and com-
putational overhead during inference. These ap-
proaches can be classified into two primary cate-
gories, namely, selective and additive PEFT meth-
ods, based on whether the original model parame-
ters undergo fine-tuning during the training phase.

Selective methods involve the selection and
modification of a model based on its original pa-

rameters. An early instance of this concept was
observed in the fine-tuning of only a subset of the
top layers of a network, as demonstrated by Don-
ahue et al. (2014), and by more recent work (Gheini
et al., 2021). In more recent developments, vari-
ous approaches have been proposed, each targeting
specific layers or internal modules of the model.
For instance, the BitFit method (Zaken et al., 2021)
updates only the bias parameters, resulting in a
substantial reduction in the number of trainable pa-
rameters, but at the cost of suboptimal performance.
Other methods use a scoring function when select-
ing trainable parameters (Guo et al., 2020; Sung
et al., 2021; Vucetic et al., 2022), while others se-
lect top parameters based on a Fisher information
calculation (Sung et al., 2021).

Additive methods represent an alternative to
full-parameter fine-tuning by introducing addi-
tional trainable parameters into the backbone net-
work. Adapters are a type of trainable component
initially applied in the context of multi-domain im-
age categorization by Rebuffi et al. (2017), that
were subsequently integrated into Transformer
networks, specifically in the attention and feed-
forward layers (Houlsby et al., 2019). Prefix-
Tuning and Prompt-Tuning (Li and Liang, 2021;
Lester et al., 2021) involve the addition of trainable
parameters preceding the sequence of hidden states
across all layers. LST (Ladder Side-Tuning) (Sung
et al., 2022) operates by short-cutting hidden states
from the original network into a compact trainable
side network, eliminating the need for backpropa-
gating gradients through the backbone network.

LoRA (Hu et al., 2022) emulates the adjustment
of the weight matrix in the model through the mul-
tiplication of two low-rank matrices. Notably, the
trained parameters resulting from this process can
be incorporated seamlessly into the original net-
work during the inference phase without incurring
additional computational overhead.

Recently, hybrid approaches have emerged, com-
bining the selective and additive methods and pre-
senting a unified framework (Chen et al., 2023;
He et al., 2022; Mao et al., 2021). Other methods
are based on the hypothesis that parameter redun-
dancy exists in PEFT modules, therefore pruning
the trainable parameters to achieve superior fine-
tuning performance (Bai et al., 2022).

Network pruning methods (Molchanov et al.,
2016; Hassibi et al., 1993; Frankle and Carbin,
2019; Liu et al., 2018; Han et al., 2015b) reduce
the size of the network by removing or shrinking

253

matrices from the network, which effectively is
equivalent to setting them to zero. Such methods
require further full re-training, or other computa-
tionally intensive iterations.

Magnitude Pruning (Han et al., 2015a; Gale
et al., 2019) removes individual parameter weights
when the magnitude is below a certain threshold.
The threshold is determined either based on the
relative magnitude to other weights in the same
parameter or layer (Zhu and Gupta, 2018), or for
the whole network (Liu et al., 2018).

3 Background

Transformer Models. Transformer (Vaswani
et al., 2017) is a sequence-to-sequence architec-
ture that makes use of self-attention. Typically,
it consists of several stacked blocks, where each
block contains two sub-modules: a multi-head at-
tention (MultiHead) and a fully connected feed-
forward network (FFN). Given the input sequence
X ∈ Rn×d of n tokens of dimension d, MultiHead
performs the attention function using h heads, al-
lowing each segment of the d space to attend to a
different value projection of another token:

MultiHead (X) = [head1, .., headh]Wo ∈ Rn×d

headi = Softmax
(
XWqi(XWki)

⊤
√
dh

)
(XWvi)

where the square brackets denote a concatenation
along the second dimension, Wo ∈ Rd×d and
Wqi ,Wki ,Wvi ∈ Rd×dh are parameters of head
i, per block, and the softmax is applied to each
row. dh is typically set to d

h . The output of the
MultiHead is fed into the FFN, consisting of two
linear transformations with a ReLU non-linearity
in between:

FFN(X) = ReLU(XW1+b1)W2+b2, where
W1 ∈ Rd×dm and W2 ∈ Rdm×d are parameters of
the block. Lastly, a residual connection is applied
and a layer normalization (Ba et al., 2016).

Adapters. (Houlsby et al., 2019; Pfeiffer et al.,
2020) The adapter technique injects a module be-
tween the transformer layers, such that the input is
down-projected to a lower-dimensional space using
Wdown ∈ Rd×r, followed by non-linearity σ, and
up-projected using Wup ∈ Rr×d, combined with a
residual connection:

h = x+ σ(xWdown)Wup (1)

Low Rank Adaptation. LoRA (Hu et al., 2022)
freezes the pre-trained model weights and injects
two trainable rank decomposition matrices into
each layer of the Transformer architecture, greatly
reducing the number of trainable parameters for
fine-tuning tasks. For a linear layer h = W0x, the
LoRA-modified forward function is:

h = W0x+∆Wx = W0x+BAx (2)

where W0,∆W ∈ Rd1×d2 , A ∈ Rr×d2 and
B ∈ Rd1×r with r ≪ {d1, d2}. A is Gaussian
initialized and B is zero initialized, in order to
have ∆W = 0 at the beginning of the fine-tuning
training. Hu et al. (2022) apply LoRA to the query
and value parameters (i.e, Wq and Wv) in the
multi-head attention, without modifying the other
weights. He et al. (2022) extend it to other weight
matrices of the feed-forward network, for an in-
creased performance.

4 Method

Our proposed method, PRILoRA (Pruned and
Rank-Increasing Low-Rank Adaptation), is com-
prised of two main components that integrate with
the LoRA fine-tuning: (i) Linear distribution of low
ranks across the layers in the network, and (ii) On-
going pruning of the A matrix of the LoRA, based
on the layer’s input activations and the weights of
the LoRA A matrix.

4.1 Linear Distribution of Ranks
While LoRA distributes the learned parameters uni-
formly, one can distribute these differently. For
example, one can assign a lower rank to some of
the layers and a higher rank to others.

Recall that the trainable parameters in LoRA are
the matrices A and B. Each has one dimension
that is fixed according to the layer’s structure, and
one dimension that is the low rank r. Since both
the time complexity (train or test) and the memory
complexity of a layer are linear in both the input
and the output dimensions of each layer, and since
only one dimension of A and B depends on r, the
overall complexity of LoRA is linearly dependent
on the sum of the ranks in all modified layers.

The way that we distribute the learned parame-
ters is motivated by the results provided by (Zhang
et al., 2023), which demonstrate that the top lay-
ers require more adaptation. Considering that one
cannot focus only on the top layers, since the other

254

layers also need to adapt (see Sec. 6), and to pro-
mote simplicity, we employ a linear distribution of
ranks.

In the linear distribution of ranks, we allocate a
different low-rank for every layer in the model, in
a linearly increasing manner. Specifically, for the
DeBERTaV3-base model, we start from the first
layer, applying a low-rank of rs = 4, and growing
linearly, up to the twelfth layer, where we apply
rf = 12, such that the average rank across layers is
8. We allocate the same low-rank to all weights in
a given layer, regardless of the matrix type (query,
key, value, etc.). This makes the total number of
parameters identical to the LoRA method.

4.2 Ongoing Importance-Based A-weight
Pruning

We employ pruning as a form of dynamic feature
selection, which allows the fine-tuning process to
focus on some of the layer’s input at each bottle-
neck index at every pruning iteration. The intuition
is that since the capacity of the update matrix BA
is low, it would be beneficial to attend only to the
important input dimensions.

4.2.1 Importance Matrix
Each transformer layer, whether it is a projection
associated with key, query, or value, or one of the
FFN layers has some weight matrix W . It also has
some input X ∈ Rb×n×d, where b is the batch size,
n is the number of tokens, and d is the dimension.
We abuse the notation slightly and also write X for
the second layer of the FFN, although, in this case,
the dimension is dm, which is typically larger than
d. In our framework we maintain, throughout the
training process, an Exponential Moving Average
of the L2 norm of the rows of each such input X,
as depicted in Figure 1.

For each batch, we consider the tensor that has a
dimension of b× n× d, square all elements, sum
across the first and second dimensions, obtaining
a vector of size d, and take the square root of each
vector element, to get x.

The exponential moving average x̄ is updated
between batches by the following rule

x̄ = 0.9x̄+ 0.1x (3)

We next compute, for every weight matrix W ,
or, more specifically, for A ∈ Rr×d2 , which is the
associated half-decomposition of ∆W , an impor-
tance matrix S of the same size as A. S is inspired

b,n
X

d

A

low rank

B

L2 Norm x

S

maskprune

d

W

Figure 1: The schematics of PRILoRA on a single layer.
The blue path demonstrates a frozen linear layer. We
omitted the bias for simplicity. The yellow path depicts
LoRA; dropout and scaling were omitted for simplicity.
In the green path of PRILoRA, the input tensor X of
the layer is fed into L2 norm calculation. Then, the ex-
ponential moving average vector x̄ is updated and kept
as a state of the layer. When it is time for pruning, the
absolute value of the elements of A is calculated, and
together with x̄, the importance matrix S is computed.
In every row of S, the lowest elements, as defined by
the prune ratio, are being selected to form the mask.
The mask is used to zero out elements in the A matrix.

by Wanda (Sun et al., 2023), and is the element-
wise multiplication of the absolute value of A with
the relevant moving average vector x̄ (recall that
there is one x̄ to each weight matrix W):

Sij = |Aij |x̄j (4)

Note that all values of x̄ are positive, since they
represent a mean norm. Therefore, all elements of
S are positive, too.

4.2.2 Pruning
Every 40 steps in the training process, we prune
each of the A-matrices, in accordance with the
associated importance matrix S. To do so, we
consider the n lowest elements of every row i =
1 . . . r of S and create a binary mask M ∈ Rr×d2 .
Each mask element Mij indicates whether Sij is
among the n lowest values of row i of S. n is
determined by the prune ratio; a higher ratio means
more weights are being zeroed out. We then zero
out the elements in A using the mask M .

Note that zeroing out an element of A does not
prevent this element from becoming non-zero im-
mediately in the next training step. However, prun-
ing this way changes the training dynamics and
encourages A to be sparse. Figure 2 shows five ran-
dom weights during training of different datasets. It
can be seen that some weights can survive pruning,
some weights remain in the pruning region since

255

0 250 500 750 1000 1250 1500 1750 2000
0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0 250 500 750 1000 1250 1500 1750 2000

0.03

0.02

0.01

0.00

0.01

0.02

(a) (b)

0 200 400 600 800 1000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 250 500 750 1000 1250 1500 1750
0.04

0.03

0.02

0.01

0.00

0.01

0.02

(c) (d)

Figure 2: Five weights values over time on four different GLUE tasks: (a) RTE task, in layer 5, value_proj parameter;
(b) MRPC task, in layer 6, query_proj parameter; (c) SST-2 task, in layer 7, key_proj; (d) CoLA task, in layer 8,
attention.output parameter.

they cannot escape fast enough, and some weights
avoid being pruned completely.

5 Experiments

We apply PRILoRA to DeBERTaV3-base (He et al.,
2021a) (184 million parameters), and evaluate the
method on eight natural language understanding
benchmarks included in the General Language Un-
derstanding Evaluation - GLUE (Wang et al., 2019).
Summary of the GLUE benchmarks can be found
in Table 6. We use PyTorch (Paszke et al., 2019)
and Hugging Face Transformers (Wolf et al., 2019)
to implement the algorithms. All the experiments
are conducted on NVIDIA GeForce RTX 2080 Ti
GPUs. Due to limited GPU memory size, we leave
similar analysis of large-scale models, such as T5-
3B, Llama, and others, to future research.

5.1 Baselines

Full fine-tuning: In the fine-tuning stage, the
model is initialized with the pre-trained parame-
ters, and all model parameters go through gradient
updates.

Bitfit: (Zaken et al., 2021) A sparse fine-tuning
method where only the bias-terms of the model (or
a subset of them) are being modified.

HAdapter: (Houlsby et al., 2019) Inserts
adapter layers between the self-attention module,
the FFN module, and the subsequent residual con-
nection. There are two fully connected layers with
biases in an adapter layer with a non-linearity in
between.

PAdapter: (Pfeiffer et al., 2020) Inserts the
adapter after the FNN module and LayerNorm.

LoRA: (Hu et al., 2022) Adds trainable pairs of
rank decomposition matrices in parallel to existing
weight matrices. The number of trainable param-

256

eters is determined by the rank r and the shape of
the original parameters.

AdaLoRA: (Zhang et al., 2023) Parameterizes
the incremental updates in the form of singular
value decomposition, for a given parameter.

5.2 Implementation details

In our research, we experimented with different
distributions while keeping the total number of pa-
rameters invariant and found that the configuration
{rs = 4, rf = 12} was optimal, together with the
hyper-parameters which are specified in Table 7.
The fact that higher layers require more parame-
ters for LoRA fine-tuning may indicate that higher
layers in Transfomer-based models capture deeper
levels of understanding, and therefore when fine-
tuning a pre-trained language model, more focus
must be put on deeper layers than on lower layers
that require less modification or adaptation to the
downstream task in question.

5.3 Main results

We compare PRILoRA with the baseline meth-
ods. Table 1 shows our results on the GLUE de-
velopment set (Appendix A). PRILoRA achieves
best average score, best result in six out of the
eight datasets, and in all datasets better results
than HAdapter, PAdapter and LoRA, with approxi-
mately the same number of parameters.

Note that when counting the number of param-
eters, we do not discount for pruned parameters.
However, with a pruning ratio of 0.5 in most bench-
marks, a quarter of the learned parameters (half the
parameters of the A matrices) are zero. A more
precise count of parameters would, therefore, be
closer to one million parameters and not 1.33M.

5.3.1 Ablation Study
In table 2 we present an ablation study for
PRILoRA, on four GLUE tasks: SST-2, CoLA,
RTE and MRPC. We aim to analyze both the rank
distribution across layers and the pruning method.

For the rank distribution study we: (i) remove
the linear distribution component of our method, re-
taining the pruning component alone with identical
rank at each layer; (ii) replace the 4−→12 distribu-
tion by 12−→4; (iii) attach LoRA adapter to only the
last layer, with a higher rank of 24 (Concentrated
Distribution).

For the pruning method study we: (i) remove the
importance pruning component, retaining increas-
ing rank distribution 4 −→ 12; (ii) prune the rows of

B matrix instead of A, by collecting an exponen-
tial moving average of B input norm, instead of the
input to A (or the layer); (iii) similarly, prune B
columns instead of rows; (iv) prune the columns of
A randomly, instead of PRILoRA method, but with
the same prune ratio. During all ablation tests, per
benchmark, we keep the same hyper-parameters
and change only a single component. For all cells
in the table, the same single seed is used.

Rank Distribution As can be seen, removing
the linear distribution of the low-rank and fixing a
constant rank across all layers, such that the total
number of parameters stays the same as in LoRA,
but applying pruning, reduces the results in all tests.
Removing the linear distribution nonetheless out-
performs LoRA results, signalling that pruning is
indeed an essential component of the method. For
example, PRILoRA with no linear distribution on
the SST-2 benchmark reaches 96.10, while LoRA
is 94.95, and on CoLA it is 72.17 versus 69.82.

Interestingly, changing the order of the rank allo-
cation, to be 12−→4, reduces the performance signif-
icantly; for example, a decrease of 73.08 −→ 69.73
on the CoLA benchmark, and 93.14 −→ 91.91 on the
MRPC benchmark. Inverting the rank allocation
order diminishes performance below fixed-rank al-
location across layers. This provides additional
support in the need to allocate more parameters to
the top layers.

Lastly, attaching LoRA only to the last layer
yields the lowest average results across the rank
distribution ablation study, for example 89.95 ver-
sus 93.14 on MRPC when the full method is used.

Pruning Method Ablating pruning completely,
reduces the performance. For instance, on CoLA
it is reduced 73.08 −→ 71.31. This is higher than
LoRA (69.82), pointing to the positive effect of
the rank-increasing distribution. When we prune
matrix B instead of A, we obtain results similar
to no pruning at all, suggesting that pruning B did
not yield any discernible benefits.

A plausible argument is that the input activa-
tion shape of A and B is very different, for ex-
ample 768 versus 8, in the case of most weights
in DeBERTaV3-base model, and a low-rank of 8.
Choosing to row-prune matrix B with a prune ra-
tio of 0.5, essentially means eliminating 4 out of
8 cells in every B row, which can be too aggres-
sive. Additionally, doing the same process on B
columns can create situations where a complete
row of B is zeroed out, which means that the cor-

257

Table 1: Results with DeBERTaV3-base on GLUE development set. The best results on each dataset are shown in
bold. We report the average correlation for STS-B (Pearson, Spearman). We report matched accuracy for MNLI.
Full FT, HAdapter and PAdapter represent full fine-tuning, Houlsby adapter, and Pfeiffer adapter, respectively. We
report the mean and standard deviation of three runs using different random seeds. We report the baseline results
from Zhang et al. (2023). Higher is better for all metrics.

Method #Param
MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All

Acc Acc Mcc Acc Acc Acc Acc Corr Avg.

Full FT 184M 89.90 95.63 69.19 92.40 94.03 83.75 89.46 91.60 88.25

BitFit 0.1M 89.37 94.84 66.96 88.41 92.24 78.70 87.75 91.35 86.20

HAdapter 1.22M 90.13 95.53 68.64 91.91 94.11 84.48 89.95 91.48 88.28
PAdapter 1.18M 90.33 95.61 68.77 92.04 94.29 85.20 89.46 91.54 88.41
LoRAr=8 1.33M 90.65 94.95 69.82 91.99 93.87 85.20 89.95 91.60 88.50
AdaLoRA 1.27M 90.76 96.10 71.45 92.23 94.55 88.09 90.69 91.84 89.46
PRILoRA 1.33M 90.75 96.21 72.79 92.45 94.44 89.05 92.49 91.92 90.01

[PRILoRA SD] ±0.03 ±0.30 ±1.28 ±0.05 ±0.14 ±1.04 ±0.57 ±0.14 ±0.44

Table 2: Ablation study results on the same single seed.

SST-2 CoLA RTE MRPC

PRILoRA 96.44 73.08 90.25 93.14

Fixed distribution 96.10 72.17 88.81 92.16
Inverted distribution 95.99 69.73 88.09 91.91
Concentrated dist. 95.07 69.92 87.73 89.95

No pruning 96.22 71.31 89.89 92.09
Prune B rows 96.10 71.41 89.89 91.67
Prune B cols. 96.22 71.46 88.81 91.42
Prune A rand cols. 94.84 70.75 88.09 89.22

responding output cell of LoRA will be zero as
well. Furthermore, the compressed low-rank la-
tent input to matrix B already encapsulates the
essential information, so pruning it deteriorates the
performance.

Finally, performing a random pruning of
columns in A with the same prune ratio, produces
the lowest results in the Pruning Method ablation
study.

5.3.2 Pruning Ratio Study for PRILoRA
We would like to learn how aggressive pruning
should be, that is, how much sparsity should be
injected into the LoRA weights in order to reach
peak performance. We chose four GLUE tasks,
and for each task and for each prune ratio in {0.25,

0.50, 0.75} we ran the fine-tuning three times, each
time with a different seed. We report the average
result and standard deviation across the different
seeds.

Table 3 shows that for the selected tasks, the op-
timal pruning ratio is 0.5. However, specifically for
the STS-B task, a random hyper-parameter search
yielded an optimal pruning ratio of 0.75, as can be
seen in Table 7.

5.3.3 Training Cost Study for PRILoRA
We present the training cost comparison between
PRILoRA and LoRA, using the DeBERTaV3-base
model, on NVIDIA GeForce RTX 2080 Ti GPUs.
For the two methods, the batch size is 32.

Table 4 shows that PRILoRA has zero increase
in number of trainable parameters in comparison
to LoRA, and a negligible increase in training time
per epoch.

For comparison, AdaLoRA (Zhang et al., 2023)
speed per batch is 11% slower than LoRA in the
MNLI benchmark and 16% slower in the SST-2
benchmark, and with a slightly larger memory foot-
print.

However, analyzing the training time per batch
does not suffice. Once we know that the training
step time in PRILoRA is similar to LoRA, we want
to delve deeper and analyze the number of steps
required until reaching peak performance on the
evaluation metric.

Table 5 presents the number of steps required

258

Table 3: Performance vs Pruning Ratio. Each cell in the table shows the average across three different seeds,
together with the standard deviation.

SST-2 CoLA RTE MRPC

Prune 0.25 96.10 ± 0.34 71.43 ± 0.30 87.73 ± 1.25 91.34 ± 0.99
Prune 0.50 96.21 ± 0.30 72.79 ± 1.28 89.05 ± 1.04 92.49 ± 0.57
Prune 0.75 95.95 ± 0.17 70.63 ± 1.56 87.73 ± 0.73 90.85 ± 0.51

Table 4: Comparison of memory consumption and time
per epoch in training, between PRILoRA and LoRA on
NVIDIA GeForce RTX 2080 Ti GPU, with a batch size
of 32. All models have 1.33M parameters.

Dataset Method GPU Mem Time/epoch

MNLI
LoRA 9.559 GB 117 min

PRILoRA 9.559 GB 120 min

SST-2
LoRA 9.559 GB 24 min

PRILoRA 9.559 GB 23 min

QQP
LoRA 9.559 GB 109 min

PRILoRA 9.559 GB 110 min

Table 5: Number of steps to evaluation peak point, on
four selected GLUE tasks.

SST-2 CoLA RTE MRPC

PRILoRA 9875 12375 1875 1750
LoRA 6500 8000 3250 1250

for each method until reaching its peak evaluation
performance. Evidently, there is no clear winner
with respect to the number of steps or time re-
quired to reach peak performance. Both LoRA
and PRILoRA have the same order of magnitude.
Since one often trains beyond the peak point, the ta-
ble does not indicate that one method is preferable
to the other in this respect.

6 Discussion

Moving from one task to another requires an adap-
tation of both the input and the output domain.
While the input domain of large language mod-
els may be comprehensive enough to support new
downstream tasks, the generation of the output is
very much context-and-task-dependent.

Therefore, it should not come as a surprise that
fine-tuning requires more adaptation of the top lay-

ers, which are closer to the output, than of the
earlier, input-processing, layers.

However, if one is to change only the top layers,
as we showed in the ablation study, there would
not be enough co-adaptation of the earlier layers to
enable the top layers to produce the required out-
put. It seems, therefore, that the gradual increase
in the allocated resources, which we apply, is a
reasonable strategy.

7 Conclusions

In this paper, we introduced PRILoRA, a novel, yet
simple and parameter-efficient method for improv-
ing low-rank adaptation during fine-tuning. Our ex-
tensive experiments encompass eight GLUE bench-
marks across multiple seeds, illustrating the effec-
tiveness of PRILoRA. Notably, we achieve superior
performance compared to state-of-the-art metrics
while maintaining the same number of trainable
parameters, reducing the non-zero parameters by
a quarter on most benchmarks, and adhering to
the same memory constraints and running time per
epoch.

8 Limitations

Our work has some limitations. We pushed
the limits of our computational resources, utiliz-
ing NVIDIA GeForce RTX 2080 Ti GPUs, to
conduct the experiments presented in this study
across the eight GLUE benchmarks. We employed
the PRILoRA-modified DeBERTaV3-base model,
which consists of 184 million parameters.

These experiments are of the same scale as the
most related work (Zhang et al., 2023). However,
the full potential of the method could be realized on
larger models trained on more extensive datasets,
and by using larger batches that can fit into GPU
memory, allowing examination of the method on
additional downstream tasks, such as question an-
swering and text summarization.

259

Acknowledgments
This work was supported by a grant from the Tel
Aviv University Center for AI and Data Science
(TAD).

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Yue Bai, Huan Wang, Xu Ma, Yitian Zhang, Zhiqiang
Tao, and Yun Fu. 2022. Parameter-efficient masking
networks. Advances in Neural Information Process-
ing Systems, 35:10217–10229.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li,
Alex Smola, and Diyi Yang. 2023. Parameter-
efficient fine-tuning design spaces. arXiv preprint
arXiv:2301.01821.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-
man, Ning Zhang, Eric Tzeng, and Trevor Darrell.
2014. Decaf: A deep convolutional activation feature
for generic visual recognition. In International con-
ference on machine learning, pages 647–655. PMLR.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574.

Mozhdeh Gheini, Xiang Ren, and Jonathan May. 2021.
Cross-attention is all you need: Adapting pretrained
transformers for machine translation. arXiv preprint
arXiv:2104.08771.

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.
Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463.

Song Han, Huizi Mao, and William J Dally. 2015a.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015b. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 1135–1143.

Babak Hassibi, David G Stork, and Gregory J Wolff.
1993. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural
networks, pages 293–299. IEEE.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021a.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021b. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

260

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram
Galstyan, and Greg Ver Steeg. 2023. Neural archi-
tecture search for parameter-efficient fine-tuning of
large pre-trained language models. arXiv preprint
arXiv:2305.16597.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 4582–
4597. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2018. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-
Laure Ligozat. 2022. Estimating the carbon footprint
of bloom, a 176b parameter language model. arXiv
preprint arXiv:2211.02001.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Madian
Khabsa. 2021. Unipelt: A unified framework for
parameter-efficient language model tuning. arXiv
preprint arXiv:2110.07577.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2016. Pruning convolutional
neural networks for resource efficient inference.
arXiv preprint arXiv:1611.06440.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing

Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, 63(10):1872–
1897.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. Advances in neural informa-
tion processing systems, 30.

Eli Schwartz, Assaf Arbelle, Leonid Karlinsky, Sivan
Harary, Florian Scheidegger, Sivan Doveh, and
Raja Giryes. 2022. Maeday: Mae for few
and zero shot anomaly-detection. arXiv preprint
arXiv:2211.14307.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Infor-
mation Processing Systems, 35:12991–13005.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021.
Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems,
34:24193–24205.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

261

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Danilo Vucetic, Mohammadreza Tayaranian, Maryam
Ziaeefard, James J Clark, Brett H Meyer, and War-
ren J Gross. 2022. Efficient fine-tuning of bert mod-
els on the edge. In 2022 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pages 1838–
1842. IEEE.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. ArXiv preprint,
abs/1910.03771.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations.

Michael Zhu and Suyog Gupta. 2018. To prune, or
not to prune: Exploring the efficacy of pruning for
model compression. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Workshop Track
Proceedings. OpenReview.net.

A GLUE Dataset

Here is a summary of the benchmarks and met-
rics we used from the GLUE (Wang et al., 2019)
dataset.

B PRILoRA GLUE Training Details

For all benchmarks we used a linear rank distri-
bution from 4 to 12 (4,5,6,6,7,8,8,9,10,10,11,12),
such that the average rank is 8 (ranks rounded
to integers). All eight benchmarks were trained
using linear learning-rate scheduling, with the
initial learning rate reported as learning rate,
and the number of epochs for the scheduler
as epochs. The runs were stopped after stop
epoch epochs. Hyper-parameters: learning rate,
batch size, # epochs, decay and prune ratio
were randomly searched over the space {6 ×
10−5, 1 × 10−4, 2 × 10−4, 6 × 10−4, 1 × 10−3,
1.2 × 10−3, 1.5 × 10−3, 2 × 10−3, 2.3 × 10−3},

{4, 8, 16, 32}, {10, 30, 50, 60, 70}, {0, 0.1, 0.01},
{0.25, 0.50, 0.75} correspondingly. For all bench-
marks and methods the max seq length is 128.

262

https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

Table 6: Summary of the GLUE dataset

Corpus Task #Train #Dev #Label Metrics

Single-Sentence Tasks
CoLA Grammatical Acceptability 8.5k 1k 2 Matthews corr
SST-2 Sentiment 67.3k 872 2 Accuracy

Pairwise Text Tasks
MNLI NLI (Entailment) 392k 9.8k 3 Matched Accuracy
RTE NLI (Entailment) 2.5k 277 2 Accuracy
QQP Semantic Equivalence 364k 40k 2 Accuracy
MRPC Semantic Equivalence 3.7k 408 2 Accuracy
QNLI Question Answering 105k 5.5k 2 Accuracy
STS-B Similarity 5.7k 1.5k 1 Pearson/Spearman corr

Table 7: Hyper-parameters of PRILoRA for GLUE benchmark.

Dataset learning rate batch size # epochs stop epoch decay prune ratio

MNLI 1× 10−4 32 70 5 0.01 0.50
RTE 1.2× 10−3 32 70 25 0.01 0.50
QNLI 1× 10−4 32 60 3 0.01 0.50
MRPC 1× 10−3 32 60 15 0.01 0.50
QQP 6× 10−4 32 10 10 0.01 0.50
SST-2 6× 10−5 32 60 5 0.01 0.50
CoLA 2× 10−4 4 70 6 0.01 0.50
STS-B 2.3× 10−3 32 30 30 0.10 0.75

263

