HierarchyNet: Learning to Summarize Source Code
with Heterogeneous Representations

Minh Huynh Nguyen®*; Nghi D. Q. Bui®} Truong Son Hy* *,

Long Tran Thanh', Tien N. Nguyeno
* FPT Software Al Center, ‘Department of Computer Science, Fulbright University, Viet Nam

‘Department of Mathematics and Computer Science, Indiana State University, USA

'Department of Computer Science, University of Warwick, UK

<>Computer Science Department, The University of Texas at Dallas, USA

Abstract

Code representation is important to machine
learning models in the code-related appli-
cations. Existing code summarization ap-
proaches primarily leverage Abstract Syntax
Trees (ASTs) and sequential information from
source code to generate code summaries while
often overlooking the critical consideration of
the interplay of dependencies among code el-
ements and code hierarchy. However, effec-
tive summarization necessitates a holistic anal-
ysis of code snippets from three distinct as-
pects: lexical, syntactic, and semantic informa-
tion. In this paper, we propose a novel code
summarization approach utilizing Heteroge-
neous Code Representations (HCRs) and our
specially designed HIERARCHYNET. HCRs
adeptly capture essential code features at lexi-
cal, syntactic, and semantic levels within a hier-
archical structure. HIERARCHYNET processes
each layer of the HCR separately, employing
a Heterogeneous Graph Transformer, a Tree-
based CNN, and a Transformer Encoder. In
addition, HIERARCHYNET demonstrates supe-
rior performance compared to fine-tuned pre-
trained models, including CodeT5, and Code-
BERT, as well as large language models that
employ zero/few-shot settings, such as CodelL-
lama, StarCoder, and CodeGen. Implementa-
tion details can be found at https://github.
com/FSoft-AI4Code/HierarchyNet.

1 Introduction

Summarizing code is crucial for aiding develop-
ers in comprehending and maintaining source code.
Yet, manual documentation is a laborious process.
An automated method is required to craft com-
ments efficiently. To generate precise summaries,
a model should grasp lexical, syntax, and semantic

*Equal contribution. Listing order is based on the alpha-
betical ordering of author surnames.

Emails: minhnh46 @fpt.com.vn, dqnbui.2016 @smu.edu.-
sg, truongson.hy @indstate.edu, long.tran-thanh @warwick.-
ac.uk, tien.n.nguyen @utdallas.edu

¥

aspects within the code. It’s imperative to capture
relationships such as data and control dependencies
among program elements to enhance code repre-
sentation learning for code summarization.

Early sequence-based techniques (Iyer et al.,
2016; Ahmad et al., 2020) treated code as a se-
quence of texts, but they did not take into account
the complex interdependence of program elements
in syntax or semantics. Structured-based approa-
ches (Alon et al., 2019a; LeClair et al., 2019; Shi
et al., 2021; Chai and Li, 2022) were later pro-
posed to better capture the syntactic information.
The state-of-the-art approaches, such as CAST (Shi
et al., 2021) and PA-Former (Chai and Li, 2022),
leverage the idea of hierarchically splitting the AST
into smaller parts based on its structure. CAST hi-
erarchically splits the AST’s code blocks based
on certain attributes, while PA-Former works by
treating statements as spans and splitting them into
(sub)-tokens. These code-hierarchy approaches
bring the benefits in terms of effective and af-
fordable training of neural models. However, a
common drawback is that they ignore the program
dependencies in code representations. There are
other lines of work leveraging graphs (LeClair
et al., 2020; Fernandes et al., 2019; Hellendoorn
et al., 2020a) that model program dependencies by
adding edges to the AST, in which the edges are the
dependencies derived from static analysis. How-
ever, these approaches do not take into account the
code hierarchy as the previous line of work.

We propose a novel approach called Heteroge-
neous Code Representation (HCR) to overcome
these limitations by combining the strengths of
both methodologies. HCR excels in encapsulating
crucial code attributes across lexical, syntactic, and
semantic dimensions within a hierarchical structure.
This structure organizes program elements based
on their features: sequences for code tokens, AST
subtrees for syntax, and graphs for dependencies.
Significantly, we adeptly capture program depen-

2355

Findings of the Association for Computational Linguistics: EACL 2024, pages 2355-2367
March 17-22, 2024 (©2024 Association for Computational Linguistics

https://github.com/FSoft-AI4Code/HierarchyNet
https://github.com/FSoft-AI4Code/HierarchyNet

———— AST edge
-+ Next Statement Edge
= = — * Data Flow Edge
— -=— = Control Dependence Edge

High-Level Layer

Method
declaration

G }

8 }

a) Abstract Syntax Tree

1~ public void addNum (int num){
2~ if (this.array == null){
3 this.array = new ArraylList<>(Q);

5~ j(f (um = { ———
sthis.array.addChum);«.
7 A\xhis.sizaﬁ DR

9 } Control dependence
Summary: add the number into the array if its value is larger than 0

Data dependence
- 2

m
Sequential dependence

Low-Level Layer
b) Heterogeneous Code Representation

Figure 1: Motivating Example on Heterogeneous Code Representation

dencies by abstracting coarse-grained nodes into
a higher-level layer and fine-grained nodes into a
lower-level layer. This strategy enhances the gen-
eration of summaries as our model gains a more
comprehensive understanding of the source code.

To process our representations, we introduce
a heterogeneous architecture, called HIERAR-
CHYNET, which comprises a Transformer Encoder
for processing lexical information, a Tree-based En-
coder for processing syntactic information, and a
Graph-based Encoder for capturing program depen-
dencies. These layers do not operate individually
but hierarchically, which intuitively captures the
relationships between program elements even bet-
ter. Our comprehensive evaluation across diverse
scenarios shows the effectiveness of our model in
code summarization compared to state-of-the-art
(SOTA) methods. Our model surpasses these meth-
ods in three distinct settings: (1) hierarchical neural
networks (NNs) of code akin to us, such as PA-
former and CAST; (2) fine-tuned SOTA pretrained
language models of code, such as CodeT5 and
CodeBERT; and (3) in-context learning of Large
Code Language Models using zero-shot and few-
shot settings, such as StarCoder and CodeGen.

To summarize, our key contributions include:

(1) Heterogeneous Code Representation: a novel
code representation that incorporates sequences,
trees, and graphs to effectively capture the lexical,
syntactic, and semantic aspects of source code.

(2) HIERARCHYNET: a novel hierarchical neu-
ral network architecture, designed in a modular
manner, where each module in the architecture is
responsible for processing each layer in the Hetero-
geneous Code Representation. The key modules
include the Transformer Encoder, Tree-based CNN,
and Heterogeneous Graph Transformer, as well as
a novel Hierarchy-Aware Cross Attention module
for attending to information across layers.

(3) In our comprehensive evaluation on various
established datasets for code summarization, in-
cluding TL-CodeSum (Hu et al., 2018), DeepCom
(Hu et al., 2020a), and FunCom (LeClair et al.,
2019), HIERARCHYNET shows significantly supe-
rior performance compared to the baselines. In a
variety of settings, HIERARCHYNET outperforms a
wide range of models: (1) similar hierarchical NNs
of code, such as PA-former and CAST; (2) fine-
tuned SOTAs that are pretrained language models
of code, such as CodeT5 and CodeBERT; and (3)
in-context learning of Large Code Language Mod-
els using zero-shot and few-shot settings, such as
CodeLlama, StarCoder, and CodeGen.

(4) We make our source code and imple-
mentation easy to reproduce via an anony-
mous link, allowing for future improvements for
the research community: https://github.com/
FSoft-AI4Code/HierarchyNet.

2 Related Work

Code Summarization Research in generating
the descriptions for source code has evolved
through various techniques. Initially, sequence-
based methods treated code as text (Lyer et al.,
2016; Ahmad et al., 2020; Wei et al., 2019),
disregarding syntactic or semantic dependencies
among program elements. For example, Neu-
ralCodeSum (Ahmad et al., 2020) is a purely
transformer-based approach that receives code to-
kens and generates summaries. Structure-based
and tree-based approaches were also proposed to
capture the syntax of source code (Tai et al., 2015;
Mou et al., 2016a; Bui et al., 2021b; LeClair et al.,
2019; Hu et al., 2020a; Peng et al., 2021b; Shi et al.,
2021; Chai and Li, 2022). For instance, TreeL-
STM (Tai et al., 2015) employs bottom-up node ac-
cumulation, while TPTrans (Peng et al., 2021b) in-
tegrates AST path information into the transformer.

2356

https://github.com/FSoft-AI4Code/HierarchyNet
https://github.com/FSoft-AI4Code/HierarchyNet

CAST (Shi et al., 2021) and PA-former (Chai and
Li, 2022) are currently the state-of-the-art meth-
ods with the same key idea of breaking the code
into a structural hierarchy. Finally, graph-based
techniques were used to capture code semantics
by adding inductive bias into the AST through se-
mantic edges, turning it into a graph (LeClair et al.,
2020; Fernandes et al., 2019; Hellendoorn et al.,
2020a). However, they still encounter challenges
in representing code hierarchy and program depen-
dencies, as well as neural networks to handle them.

Pretrained Language Models for Source Code
Besides code summarization, language models of
code generally support various code understand-
ing tasks, such as code generation (Feng et al.,
2020a; Wang et al., 2021b; Elnaggar et al., 2021),
code completion (Feng et al., 2020a; Wang et al.,
2021b; Peng et al., 2021a), program repair (Xia
et al., 2022), etc. A large body of recent work
employs language models from natural language
processing for code (Feng et al., 2020a; Wang et al.,
2021b; Guo et al., 2020; Ahmad et al., 2021; Bui
et al., 2021a; Elnaggar et al., 2021; Peng et al.,
2021a; Kanade et al., 2020; Chakraborty et al.,
2022; Ahmed and Devanbu, 2022; Niu et al., 2022),
applying similar pretraining strategies as used for
natural languages. Despite their promising per-
formance, these pretrained models have not been
empirically demonstrated to effectively capture se-
mantics in source code, such as data, control flows,
and other program dependencies among code el-
ements. In contrast, incorporating code-specific
features into representations as inductive biases has
been shown to increase the model’s knowledge (Al-
lamanis et al., 2018a; Hellendoorn et al., 2020b).

3 Motivation

Let us use an example to motivate and illustrate the
key ideas of our solution. Figure 1 shows a code
snippet and its corresponding summarization. The
task is to collect the positive numbers into an array.
To generate an accurate summary, a model needs
to capture code features at the lexical, syntactic,
and semantic levels. For example, at the lexical
level, the sub-tokens add, num, and array should
resemble words in the summary. The tokens ‘>’
and ‘@’ correspond to the texts ‘larger than’
and ‘@’ in the summary. At the syntactic level, the
model should recognize code structures, such as
the if statement at line 5 indicating a conditional
sentence in the summary.

Importantly, the control and data dependencies
among the statements could provide valuable in-
sights into the intended execution order. Ignoring
control dependencies hinders the model’s ability to
capture such intentions because the sequential or-
der in the code may not reflect the execution order.
For example, despite their sequential order, the exe-
cution of the statement at line 6 is not guaranteed to
follow the statement at line 5, as it is dependent on
the outcome of the if condition at line 5. Moreover,
the data dependency via the variable num at line 5
and line 6 is also crucial for summarization as it
indicates that only positive numbers are collected.

Previous approaches, such as those outlined in
LeClair et al. (2020), Fernandes et al. (2019), and
Hellendoorn et al. (2020a), utilize heuristics from
static analysis to connect nodes in the AST to rep-
resent dependencies. However, the large size of the
AST can pose challenges for a model to effectively
capture dependencies among distant nodes (Alon
and Yahav, 2021). In contrast, state-of-the-art ap-
proaches such as CAST (Shi et al., 2021) and
PA-Former (Chai and Li, 2022) create a hierar-
chy among code elements by splitting the AST into
smaller parts. However, these methods do not main-
tain program dependencies among the elements.

We propose the Heterogeneous Code Represen-
tation (Figure 1b) to restructure code into hierar-
chical layers, abstracting meaningful entities such
as statements or expressions into single nodes in
a higher layer. Importantly, HCR also enables the
representation of dependencies, including data,
control, sequential, and syntactic dependencies.
We introduce a heterogeneous neural network uti-
lizing an appropriate neural network at each level:
a transformer encoder for code tokens, a tree-based
encoder for AST subtrees, and a graph neural net-
work for the coarse-grained dependencies. This ap-
proach reduces the computational workload and im-
proves capturing the dependencies between distant
nodes in an AST (an issue with the prior works).

4 Heterogeneous Code Representation

This section presents the Heterogeneous Code Rep-
resentation (HCR) that integrates both hierarchical
structure of source code as well as program de-
pendencies among program elements. Figure 2
(left-side) displays the three layers of Heteroge-
neous Code Representation (HCR). The first layer,
denoted by the "Linearized AST Sequence," is a
sequence of nodes L from the serialization process

2357

Heterogeneous Code Hierarchy Representation

Hierarchy Net

Output probabilities;

| ! @) ” |
: Graph-level : : Gl Transformer :
1 1 [} !
' int getMaxNum(int a, int b) " Decoder :
; s 7N ¥ (m,d) (| m— ' :
i & intmax=a </ - : ey "A‘,; ‘ a : ® - 00000 - |
: S asredge > . s 7 lwa |
& oredee [a<b k i L (m+1,d) '
& 4 CDedge —> return max <« v :' i
(&‘\ 7 NSedge —> max=b i : |
§ , S (m, d) Y 2d (k',d) | :
- . Lo o Tree-based y , . :
o Sul:tree IeVE{ &I =3 ret_stmt _; e D - () Hierarchy-aware ;
SO Vi A — BN |
P /B e gy, - NN :
Y AST sequence .-~/ 5 (k,d) [AN (K',d) I '
! iden)("assi_stmt (" 1d [ret_stmt M return Transformer [: o
! max = return Encoder mmdia & TokenIndexSelector | & -
' | Q x 1 a c QO x Il o £
: “ : e 5 g s |
H k nodes " £ 5 € 2 !
; 1. int getMaxNum(int a, int b){ I n = =
: 2. intmax=a; flattening i! :number of nodes in the linearized AST sequence '
: 3. if(a<b) AST i1 m :number of subtree and non-subtree nodes in the graph :
4. max = b; Parser " k' : number of token nodes in the linearized AST sequence 1
5. return max; 11 d :dimension size :

6.} i

Figure 2: HIERARCHYNET Architecture

of the Abstract Syntax Tree (AST) of the given
program. The second layer, the "Subtree-level,"
represents the statement and expression-level pro-
gram elements, each represented by a significantly
smaller subtree T consisting of nodes from the
original AST 7. Finally, the last one is the highest-
level and coarsest-grained layer, the "Graph level",
which is represented by a graph G consisting of
nodes from 7", enriched by semantic edges such as
control and data dependencies. Such dependencies
are built from static program analysis. Next, we
will present in details each layer in our model.

4.1 Serialized AST Sequence

We begin by parsing a program into an Abstract
Syntax Tree (AST) T'. Each token node contains a
non-empty token, which is often made up of mul-
tiple sub-tokens. To incorporate these sub-tokens,
we insert new sub-token nodes as children of the
corresponding token node. The AST is then serial-
ized to create a sequence of nodes L. Specifically,
we convert the AST into a sequence of nodes by a
traversal such that the original token order is main-
tained (Figure 2). Formally, the linearized AST
sequence L = [l1,1s, ..., 1},] (where k is the size of
T) represents the lowest level of HCRs.

4.2 Syntactic Level

A function is usually a combination of many state-
ments and expressions, each of which often rep-
resents a sufficient amount of information to un-
derstand how/what it does. We extract the AST
subtrees corresponding to statements and expres-

sions. These subtrees are then abstracted by replac-
ing them with placeholder nodes in 7', resulting in
a smaller tree 7. This process is done through a
depth-first traversal of the AST, where subtrees are
replaced and further traversal is halted at the sub-
tree’s root node. This results in a new tree 7" and a
set of subtrees ST, with some nodes in 7" pointing
to elements in SI", which forms the second level in
our HCRs. Note: some nodes in L do not belong
to any subtrees (non-subtree nodes).

4.3 Semantic Level

We use the reduced AST T" and incorporate seman-
tic edges among the nodes to create graph G (as
depicted in Figure 2). Our graph includes four dis-
tinct edge types: AST edges, Data-flow (DF) edges,
Control-dependence (CD) edges, and Next-subtree
(NS) edges. These edges represent various forms
of connections between program elements, such as
code structures, data and control dependencies, and
sibling statements in the source code.

5 Neural Network Architecture

This section explains the neural network architec-
ture for our HIERARCHYNET method (Figure 2).
Each node /; in a sequence of nodes L has two at-
tributes: token and type. The initial representation
of each node [; is computed by concatenating the
embeddings of its foken and its type. These embed-
dings can be looked up from two learnable embed-
ding matrices (token and type). We denote s; be the
initial embedding of the node /;,: € N;0 < ¢ < k
where k£ is the length of L.

2358

The neural network architecture, HIERAR-
CHYNET, consists of the following components.

5.1 Transformer Encoder

The Transformer Encoder encodes the linearized
AST sequence L to capture lexical values. It takes
initial embeddings [s1, 9, ..., S | as input and pro-
duces the output [, ha, ..., hy] .

5.2 Tree-based Encoder

This layer’s primary role is to process the subtrees
in the Subtree layer. Additionally, it also embeds
non-subtree nodes in the L by applying a non-linear
transformation. To model local patterns and hierar-
chical relations among nodes within the same sub-
tree, all subtrees are passed through a Tree-based
CNN (Mou et al., 2016b). An attention aggregation
method (Alon et al., 2019b) is then employed to
encode each subtree as an embedding vector, using
a global attention vector ov. The output of this layer
are denoted as {t;};~; where m is the number of
subtrees and non-subtree nodes.

5.3 Heterogeneous Graph Transformer

After obtaining the embeddings of all the subtrees,
we further encode the dependencies among the
nodes in the heterogeneous graph G. We adapt
the Heterogeneous Graph Transformer (HGT) (Hu
et al., 2020b) to process the graph effectively. The
outputs are the vectors {n;};~; that not only bring
textual information (by Transformer Encoder and
next-subtree edges) but also are contextualized by
the locally hierarchical structures of the subtrees
and dependence information that are unique char-
acteristics in source code.

5.4 Graph Aggregation (GraphAggr)

Upon completion of the HGT processing, it is es-
sential to aggregate the individual nodes within the
graph into a vector that represents the graph. Simi-
lar to the tree aggregation technique employed in
the Tree-based Encoder, an attention mechanism
is utilized to aggregate the nodes and generate a
graph embedding, denoted as g, by using the global
attention vector 5. This graph embedding g encap-
sulates the overall semantic meaning of the code.

5.5 Token Index Selector

The TokenIndexSelector layer utilizes the output
of the Transformer Encoder as input and serves
to retain the embeddings of nodes /; that possess
non-empty token attributes while discarding those

that do not. The rationale is that the Transformer
Encoder effectively encodes textual meaning but is
inadequate in encoding syntax (as represented by
the type attribute), which could potentially intro-
duce noise to subsequent layers (such as the Gating
Layer and Transformer Decoder). It is worth noting
that the Subtree layer effectively encodes syntax
information using Tree-based CNN. Formally, let
H' be the sequence of the elements h; such that /;
is a token node, for all 0 < ¢ < k. We denote the
members of H' by h'l, h'g, ey h;a where k' is the
number of token nodes in the L.

5.6 Hierarchy-Aware Cross Attention

Although information is gathered in a bottom-up
manner, there may still be missing connections
between layers. To address this issue, we intro-
duce the Hierarchy-aware Cross Attention (HACA)
layer, which enables the TokenIndexSelector layer
to focus on the information from the HGT layer.
This layer, depicted in Figure 2, calculates the at-
tention of each token toward nodes in the structure
(tree + graph). Keys K and values V' are derived
from the combination of the nodes’ embeddings
{n;}i~, and the graph embedding g. Additionally,
a token can occur multiple times in a code snip-
pet, even with the use of positional encoding, the
vectors of these tokens may be similar. To dif-
ferentiate these occurrences, we concatenate their
corresponding subtrees. For example, by examin-
ing the subtrees, we can discern the different roles
of the variable a at lines 1 and 2. We enhance the
distinctions by concatenating h; and {; to create
the vector query ¢;; formally, ¢; = foa([R},£:])
where f., is a projection from R* to R? . Then
the cross-attention is computed as usual, that is

T
softmax (QL) V where dj, is the inner dimension

e
size of each attention layer. This layer produces
!
{ci}le where c¢; is the fused hierarchical context
dedicated to the token node corresponding to h;,
forall 0 < i < k'

5.7 Gating Layer

The HACA layer is responsible for calculating at-
tention scores across different layers, but it does
not perform information integration. We introduce
the Gating layer to combine the information across
different layers in the hierarchy, serving as the in-
put for the Transformer Decoder. The goal is to

combine the outputs {c; }1-; of HACA with the lex-

2359

TL-CodeSum dataset

FunCom dataset

Model
BLEU Meteor Rouge-L. Cider BLEU Meteor Rouge-L Cider
Training from scratch
HDeepCom 23.32 13.76 33.94 1.74 25.71 15.59 36.07 1.42
ASTAttGru 30.78 17.35 39.94 2.31 28.17 18.43 39.56 1.90
NCS 40.63 24.86 52.00 347 29.18 19.94 40.09 2.15
CodeAstnn 41.08 24.95 51.67 349 28.27 18.86 40.34 1.94
CAST 45.19 27.88 55.08 395 31.55 21.10 42.71 2.31
PA-former 46.01 28.05 56.12 4.04 3194 20.88 42.73 2.29
Fine-tuning
CodeBERT-base 39.84 23.64 48.54 328 31.87 21.19 42.99 2.30
CodeT5-base 47.02 30.01 57.68 413 3275 21.40 43.20 241
In-context Learning
CodeGen-Multi 2B (zero-shot) ~ 7.51 3.42 2.86 0.05 12.52 8.64 14.55 0.23
CodeGen-Multi 2B (one-shot) 11.62 7.59 17.21 037 21.65 14.30 29.51 1.14
CodeGen-Multi 2B (two-shot) 11.70 7.76 17.68 039 23.19 15.59 3243 1.32
StarCoder (zero-shot) 13.12 12.55 24.01 0.58 19.05 16.72 28.65 0.81
StarCoder (one-shot) 14.41 11.36 24.46 0.65 23.04 15.93 32.51 1.35
StarCoder (two-shot) 15.66 12.10 26.32 0.74 2421 16.65 34.35 1.48
HIERARCHYNET 48.01 30.30 57.90 420 3343 21.70 43.42 242

Table 1: Comparative Code Summarization Performance on TL-CodeSum and FunCom Datasets (RQ1).

ical information of {hi}f;l To balance the two
sources of information, we propose to add a suffi-
cient amount of context from ¢; to h;. We take in-
spiration from the gating layer in Cho et al. (2014),
and modify it to achieve this goal. Specifically,
the ratio between the two sources is controlled by
the graph embedding, as g is the highest level of
abstraction and contains a global understanding of
the code. Formally, the computation can be summa-
rized as: \ = sigmoid(Wg+b), where W € R4,
be R or W e Rd, b € R are learnable param-
eters, and d is the dimension of the vector g. We
then apply a non-linear projection f, to map ¢; onto
the space of h; and form the hierarchy-aware hid-
den state by: €; = M.(¢;) + (1 — A)h;. Finally,

{ei}f;l are final encoder hidden states.

5.8 Transformer Decoder

Unlike the vanilla Transformer Decoder (Vaswani
et al., 2017), we need to combine the two sources,
including hierarchy-aware textual information (the
output of Gating layer) and the structural/semantic
meaning (the output of HGT and GraphAggr).
Therefore, in HIERARCHYNET, we leverage the
serial strategy (Libovicky et al., 2018) in comput-
ing the encoder-decoder attention one by one for
each input encoder. The key and value sets of
the first cross-attention come from the output of
HGT and GraphAggr. Those sets of the other cross-
attention are from the output of Gating layer.

6 Empirical Evaluation

We have conducted several experiments to evaluate
HIERARCHYNET. We seek to answer the following
research questions:

1. RQI. [Automated Evaluation]. How well does
HIERARCHYNET perform in code summariza-
tion compared with the SOTA approaches?

2. RQ2. [Human Evaluation]. How well does Hi-
ERARCHYNET perform in code summarization
in a human study with human evaluation?

3. RQ3. [Ablation Study]. How well do different
components in HIERARCHYNET contribute to
its overall code summarization performance?

6.1 Automated Evaluation (RQ1)

Datasets. To ensure a comprehensive compari-
son with several SOTA baselines, we considered
multiple well-established datasets for code summa-
rization, namely TL-CodeSum (Hu et al., 2018),
DeepCom (Hu et al., 2020a), FunCom (LeClair
et al., 2019), and FunCom-50 (Chai and Li, 2022).
Note that different baselines use distinct datasets
and achieve SOTA results. The FunCom-50 dataset
was used by PA-Former (Chai and Li, 2022), but
with a number of samples filtered out from Fun-
Com, approximately 50% of the data. We followed
the original dataset’s partition in FunCom (LeClair
et al., 2019) for training, testing, and validation.

2360

M DeepCom FunCom-50
odel
BLEU Meteor Rouge-L F1 BLEU Meteor Rouge-L F1
Training from scratch
HDeepCom 32.18 21.53 49.03 50.75 35.06 22.65 53.35 54.81
SiT 35.69 24.20 53.75 55.72 4212 26.82 59.33 60.84
GREAT 36.38 24.18 53.61 55.46 43.29 27.44 60.36 61.83
NCS 37.13 25.05 54.80 56.68 43.36 27.54 60.41 61.86
TPTrans 37.25 25.02 55.00 56.88 43.45 27.61 60.57 62.03
CAST 38.03 25.27 54.95 56.83 43.58 27.67 60.52 61.98
PA-former 39.67 26.21 56.18 58.12 44.65 28.27 61.45 62.86
Fine-tuning
CodeBERT-base 37.42 25.49 55.07 56.93 46.20 30.51 61.43 63.77
CodeT5-base 38.60 26.30 56.31 5842 46.88 30.72 61.47 63.88
In-context Learning
CodeGen-Multi 2B (zero-shot) 11.20 4.85 4.73 5.04 13.38 4.03 2.88 3.00
CodeGen-Multi 2B (one-shot) 17.12 13.09 23.21 2449 21.08 14.29 25.68 26.56
CodeGen-Multi 2B (two-shot) ~ 17.81 13.81 24.62 26.04 21.78 14.78 26.89 27.84
StarCoder (zero-shot) 16.03 15.34 24.55 26.27 19.22 18.65 29.74 31.17
StarCoder (one-shot) 18.78 15.68 27.33 2895 23.93 17.97 31.25 32.13
StarCoder (two-shot) 19.29 16.07 28.09 290.68 25.18 18.45 32.59 33.68
CodeLlama 13B (zero-shot) 13.28 12.88 19.17 21.00 14.79 5.19 21.40 21.67
CodeLlama 13B (one-shot) 17.05 15.70 28.23 30.33 19.20 16.57 27.96 30.03
CodeLlama 13B (two-shot) 20.29 16.14 39.63 42.01 21.52 16.52 36.49 32.40
HIERARCHYNET 43.64 29.22 59.00 60.53 51.12 34.13 65.43 66.64

Table 2: Comparative Code Summarization Performance on DeepCom and FunCom-50 Datasets (RQ1).

Baselines. We compared HIERARCHYNET
against three categories of baselines. The first
category includes the baselines trained from
scratch without utilizing pretrained checkpoints.
Examples include CAST (Shi et al., 2021)
and PA-Former (Chai and Li, 2022), which
are consciously designed to incorporate code
structures. Additional baselines in this category,
grouped by code representation and neural
architecture, including sequence-based models
(NCS (Ahmad et al., 2020)), structure-based
and tree-based models (ASTAttGru (LeClair
et al.,, 2019), HDeepCom (Hu et al.,, 2020a),
TPTrans (Peng et al., 2021b), TreeLSTM (Tai
et al., 2015), CodeASTNN (Shi et al., 2021),
SiT (Hongqiu et al., 2021)), and graph-based
models (GREAT (Hellendoorn et al., 2020a)).

The second category comprises fine-tuned base-
lines for code summarization from well-known
pretrained models. For representative models, we
fine-tune CodeT5-base (Wang et al., 2021a) and
CodeBERT-base (Feng et al., 2020b), considering
CodeTS5 as the state-of-the-art for code summariza-
tion and CodeBERT as a widely-used model.

The third category encompasses large language
models that can perform in-context learning for
code understanding tasks using zero-shot, one-shot,
or few-shot learning approaches. For this category,

we used CodeLlama 13B (Roziere et al., 2023),
StarCoder (Li et al., 2023) and CodeGen-Multi 2B
(Nijkamp et al., 2023).

Metrics. We employ BLEU (Papineni et al.,
2002), Meteor (Banerjee and Lavie, 2005), Rouge-
L (Lin, 2004), Cider (Vedantam et al., 2015) and
F1-score, which are commonly used as the evalua-
tion metrics for code summarization.

Results. The results shown in Table 1 and 2 indi-
cate that HIERARCHYNET exhibits superior perfor-
mance compared to the CAST and PA-former meth-
ods by a significant margin on the four datasets.
Specifically, HIERARCHYNET achieves an aver-
age improvement of 4.46 and 3.48 BLEU scores
over CAST and PA-former, respectively. Notably,
PA-Former, which is currently considered the state-
of-the-art baseline, only outperforms CAST by an
average of 1 BLEU score. Furthermore, HIERAR-
CHYNET also consistently surpasses CodeT5-base
and CodeBERT-base and outperforms Large Lan-
guage Models for code such as CodelLlama, Star-
Coder and CodeGen-Multi 2B in all three prompt-
ing scenarios (zero/one/two-shot) on the datasets.
In conclusion, the results show that HIERAR-
CHYNET, which utilizes a hierarchical-based archi-
tecture and dependencies information, significantly
improves code summarization performance.

2361

Graph

ID Tokens Subtrees BLEU Meteor Rouge-L Cider
AST edges NS edges CDedges DF edges
1 v - - - - - 40.63 24.86 52.00 3.47
2 v v - - - - 44.16 28.19 55.48 3.77
3 v v 4 - - - 45.37 28.43 55.72 391
4 v v v - v - 46.54 29.39 56.70 4.04
5 v v 4 - - 4 46.61 2941 56.64 4.03
6 v v 4 - v 4 4746 30.15 57.63 4.14
7 v v 4 4 - - 4544 28.24 54.72 3.89
8 v v 4 4 v - 46.84 29.40 56.88 4.05
9 v v 4 4 - v 4726 30.10 57.64 4.12
10 v v v v v v 48.01 30.30 57.90 4.20
Table 3: Results of Ablation Study on Heterogeneous Code Representation (RQ3)

6.2 Human Evaluation (RQ2) Methods Naturalness Usefulness
In line with prior work on code summarization (Iyer CAST 2.76 248
etal., 2016; Shi et al., 2021; Chai and Li, 2022), we PA-former 2.77 2.50
conducted a user study with the participation of five HIERARCHYNET 2.81 2.52

software development experts to examine the effi-
cacy of our method in practice. We presented each
participant with 100 random examples from the
testing segment of the FunCom dataset, along with
three respective summaries produced by HIERAR-
CHYNET, PA-former, and CAST. In order to avoid
potential biases, we do not provide the ground truth,
and summaries of different methods are randomly
tagged with placeholder names. Following Shi et al.
(2021); Chai and Li (2022), we adopt two human
evaluation criteria: 1) naturalness: grammar, flu-
ency, and readability of generated summaries. 2)
usefulness: to what extent generated summaries
are useful to comprehend the code. Each aspect
is divided into three standards rating from 1 to 3,
with higher scores indicating better performance.
The final score for each criterion is the average
of all samples. As shown in Table 4, HIERAR-
CHYNET outperforms both CAST and PA-former
in terms of naturalness and usefulness.

7 Model Analysis (RQ3)

7.1 Study on Heterogeneous Code
Representation (HCR)

We investigated the influence of the HCR com-
ponents on code summarization performance us-
ing the TL-CodeSum dataset, as shown in Table 3.
Starting with only the AST-sequence layer resulted
in suboptimal performance. Incorporating Subtree
and Graph layers incrementally improved results.
Our AST-edge-focused experiment at the Graph

Table 4: Results of User Study (RQ2)

level surpassed CAST’s performance (Table 1), sug-
gesting our hierarchy’s superiority. While the CD
and DF edges notably impact performance, NS
edges are less crucial. Still, excluding any edges
reduces performance, indicating that the dependen-
cies positively contributed to the performance.

7.2 Study on HierarchyNet

Method BLEU Meteor Rouge-L Cider
HIERARCHYNET 48.01 3030 5790 4.20
w/o Hierarchy-aware 46.63 2949 56.63 4.03
w/o TokenlndexSelector 45.70 2839 55.06 3.93

Table 5: Ablation Study of HIERARCHYNET (RQ3)

Decoding strategy BLEU Meteor Rouge-L Cider

serial decoding 48.01 3030 57.90 4.20
only Gating layer’s output 45.34 2828 55.33 3.89
concat 4722 2941 5645 4.10

Table 6: Ablation Study on Decoding Strategy (RQ3)

In addition, we aim to demonstrate the signif-
icance of our proposed layers in Hierarchy Net,
including Hierarchy-Aware Cross-Attention (abbre-
viated as Hierarchy-Aware) and TokenIndexSelec-
tor, on the TL-CodeSum dataset. The result (Table
5) shows that the removal of any of these com-

2362

ponents significantly degrades performance. This
confirms that the Transformer architecture alone
is not sufficient to encode both textual and struc-
tural/semantic meanings of code, thus highlighting
the importance of explicitly integrating semantic
and structural information using Hierarchy-Aware
Attention. Additionally, we found that removing
TokenIndexSelector has a negative impact on per-
formance, which is likely due to the redundant
information in the sequence fed to the Decoder.
To show the effectiveness of the serial decoding
with the two consecutive cross attention in the De-
coder, we compare to two alternatives that just use a
cross attention in the Decoder. Specifically, the first
option calls for utilizing the Gating layer’s output.
The other way is concatenating the TokenIndexS-
elector’s output, HGT’s output and GraphAggr’s
output into single extended sequences, which are
then fed to the Decoder. As shown in Table 6, more
information employed in the Decoder in the latter
strategy leads to the better performance compared
to only Gating layer’s output. However, combining
our proposed code hierarchy representation with
the serial decoding achieves the highest results.

7.3 Comparison with LLLMs

Model Average word count
StarCoder (zero-shot) 10.64
StarCoder (one-shot) 7.59
StarCoder (two-shot) 8.12

CodeGen 2B (zero-shot) 4.95
CodeGen 2B (one-shot) 8.46
CodeGen 2B (two-shot) 8.49

References 9.97

Table 7: Comparative Results with LLMs regarding the
Average Word Count of Summaries

Given that LLMs may potentially generate re-
sponses longer and more detailed than the ground
truth, our objective is to thoroughly analyze and
ensure the fairness of our evaluation. We present
the average word count of summaries generated
by LLMs compared to references on DeepCom in
Table 7. Notably, LLMs like StarCoder and Code-
Gen 2B tend to produce shorter summaries than the
ground truth. Although, in the zero-shot setting,
StarCoder can generate slightly longer summaries,
this difference is negligible. As a result, summaries
generated by LLMs are considered to be of similar
length to the references in the ground truth.

Moreover, the experimental results reveal a sub-
stantial performance disparity between our pro-
posed method and large language models across
all metrics. Specifically, in terms of Rouge-L, the
gaps amount to approximately 10, 30, and 30 when
compared to StarCoder on FunCom, DeepCom,
and FunCom-50, respectively. Regarding Meteor,
these are 5, 13, and 15, respectively. The study
(Roy et al., 2021) shows that there is a statistically
significant difference in performance between mod-
els whose performance difference is greater than
10 points. Furthermore, it finds that for the gaps
exceeding 10 points, the metrics, like Rouge-L and
Meteor, strongly agree with human assessment.

8 Conclusion

We introduce an innovative framework for code
summarization that combines Heterogeneous Code
Representations (HCRs) with HIERARCHYNET, a
neural architecture tailored for processing HCRs.
Our HCRs capture critical code attributes across
lexical, syntactic, and semantic levels by organiz-
ing coarse-grained code elements into a higher-
level layer while integrating fine-grained program
elements into a lower-level layer. HIERARCHYNET
is engineered to handle each layer of the HCR inde-
pendently, enabling the representation of informa-
tion gathered at the fine-grained level as input at the
coarse-grained level. The core concept of HIERAR-
CHYNET lies in integrating multi-level code rep-
resentations and program dependencies. Our em-
pirical evaluations demonstrate that our approach
surpasses various state-of-the-art techniques across
diverse settings, including structure-based models
(CAST, PA-Former), fine-tuned pretrained mod-
els (CodeT5, CodeBERT), and in-context learning
(CodeLlama, StarCoder, CodeGen). Our ablation
study shows that all of the components in HIER-
ARCHYNET contribute positively to its high per-
formance. We also conducted a human study to
evaluate the code summarization results produced
by HIERARCHYNET. The results show that human
subjects highly regarded the code summarizaiton
results from our model.

Acknowledgments

The co-author, Tien N. Nguyen, was supported in
part by the US National Science Foundations grant
CNS-2120386 and the National Security Agency
grant NCAE-C-002-2021.

2363

Limitations

Our approach presents opportunities for improve-
ment.

1. First, our Heterogeneous Code Representations
(HCRs) with coarse-grained semantic edges
have proven effective for code summarization.
However, there may be potential for further en-
hancement by exploring alternative options for
cross-layer semantic edges, such as connecting
nodes at the fine-grained level with nodes at
the coarse-grained level. This could be benefi-
cial for other code representation learning tasks,
such as variable name prediction (Allamanis
et al., 2018b) and data flow analysis using neu-
ral models (Gu et al., 2021). Our next step is
to conduct further research on extending HCRs
to include these alternative options and evaluate
their performance on other code representation
learning tasks.

2. Second, while HIERARCHYNET effectively
processes the HCRs, there is room for further
optimization. We chose the layers in the HI-
ERARCHYNET based on heuristics, resulting
in the HGT being the best option for process-
ing graphs. At the subtree-level, we chose the
TBCNN as it is more computationally efficient
compared to other state-of-the-art methods for
processing ASTs, such as TreeCaps (Bui et al.,
2021b). However, our approach can be consid-
ered a framework rather than a single neural
model, so other advancements in tree- or graph-
based models or sequence-based models can
easily be incorporated to improve performance.

3. Finally, we did not provide any analysis on the
explainability of our model. Explainability is an
important aspect of code learning models (Bui
et al., 2019; Bielik and Vechev, 2020; Zhang
et al., 2020; Rabin et al., 2021), and is crucial
for the real-world usage of practitioners in code
summarization. Our current model design has
the potential to support explainability in the fu-
ture, as the inputs of the high-level layer are
computed based on the attention aggregation
mechanism, with each input being assigned an
attention score. These attention scores can be
used to visualize and explain the importance of
code elements in a hierarchical way. We will
explore this extension as a future work.

Ethics Statement

Our framework aims to revolutionize the way soft-
ware is modeled by taking a new approach with a
broader impact in the field. While language models
for code have shown impressive performance and
have the potential to boost developer productivity,
they still face challenges with computational cost
and memory consumption. For example, when
modeling code and software at the repository
level, such as on Github, the Al framework must
consider the context of the current code being
edited, as well as additional contexts from other
files or API calls from external libraries. This is a
dependency on a larger scale level in the context of
software modeling. Currently, language models
typically only model code within the scope of a
function or within a single file for tasks such as
code summarization or generation. However, this
limitation may not be due to the language model it-
self, but rather the infrastructure of supported IDEs
and the software modeling approach. We propose a
more realistic way to represent programs as "reposi-
tory=>file=>class=>function=>statement=>token."
The simplest way to model such a hierarchy is
to treat them all as a very large sequence and
use Large Language Models to model it, but
this results in large memory consumption and
expensive computational costs. A more affordable
approach is to represent large software as modules,
where each module can be represented differently
at each level. Each layer may require dependency
analysis or not, depending on its characteristics.
For example, the semantic edges used to connect
components clearly differ at each level, requiring
careful design of them. Existing approaches to
representing the entire program as a graph will fail
in this case because the set of semantic edges are
designed the same for all nodes without treating
them differently. Also, each of the modules can
be preprocessed separately on different computing
units and aggregated later to achieve efficient com-
putation cost and save memory. We have already
demonstrated efficacy when modeling the program
at three levels: "function=>statement=>token" and
plan to extend this further. Our natural way of
structuring the source code hierarchically is also
aligned well with the advances in programming
language and software engineering research in
program representations. We believe our solution
can be viewed as a framework and opens up a new
research direction for representing software.

2364

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998-5007, On-
line. Association for Computational Linguistics.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021. Unified Pre-training for
Program Understanding and Generation. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pages 2655—
2668. Association for Computational Linguistics.

Toufique Ahmed and Premkumar Devanbu. 2022. Mul-
tilingual training for software engineering. In Pro-
ceedings of the 44th International Conference on
Software Engineering, pages 1443—1455.

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2018a. Learning to represent pro-
grams with graphs. In International Conference on
Learning Representations.

Miltiadis Allamanis et al. 2018b. Learning to represent
programs with graphs. In International Conference
on Learning Representations.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2019a. code2seq: Generating Sequences from
Structured Representations of Code. In International
Conference on Learning Representations.

Uri Alon and Eran Yahav. 2021. On the bottleneck of
graph neural networks and its practical implications.
In International Conference on Learning Representa-
tions.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-
hav. 2019b. Code2vec: Learning distributed repre-
sentations of code. Proc. ACM Programming Lan-
guages, 3(POPL):40:1-40:29.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Pavol Bielik and Martin Vechev. 2020. Adversarial ro-
bustness for code. arXiv preprint arXiv:2002.04694.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2019. Aut-
ofocus: interpreting attention-based neural networks
by code perturbation. In 2019 34th IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering (ASE), pages 38—41. IEEE.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021a.
Self-supervised contrastive learning for code retrieval
and summarization via semantic-preserving transfor-
mations. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 511-521.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021b.
Treecaps: Tree-based capsule networks for source
code processing. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence.

Lei Chai and Ming Li. 2022. Pyramid attention for
source code summarization. In Advances in Neural
Information Processing Systems.

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding,
Premkumar T Devanbu, and Baishakhi Ray. 2022.
Natgen: generative pre-training by “naturalizing”
source code. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,

pages 18-30.

Kyunghyun Cho, Bart van Merriénboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder—decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statistical
Translation, pages 103—111, Doha, Qatar. Associa-
tion for Computational Linguistics.

Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs,
Tamas Feher, Christoph Angerer, Silvia Severini,
Florian Matthes, and Burkhard Rost. 2021. Code-
trans: Towards cracking the language of sili-
con’s code through self-supervised deep learning

and high performance computing. arXiv preprint
arXiv:2104.02443.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020a. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536—1547. Association
for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020b. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536-1547, Online. Association for Computational
Linguistics.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Structured neural summariza-
tion. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net.

2365

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=H1ersoRqtm
https://openreview.net/forum?id=H1ersoRqtm

Jiazhen Gu, Huanlin Xu, Haochuan Lu, Yangfan Zhou,
and Xin Wang. 2021. Detecting deep neural network
defects with data flow analysis. In 2021 51st Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pages
188-195. IEEE.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh,
Petros Maniatis, and David Bieber. 2020a. Global
relational models of source code. In International
Conference on Learning Representations.

Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh,
Petros Maniatis, and David Bieber. 2020b. Global
relational models of source code. In International
Conference on Learning Representations.

Wu Hongqiu, Zhao Hai, and Zhang Min. 2021. Code
summarization with structure-induced transformer.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics (ACL).

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.
Deep code comment generation. In Proceedings of
the 26th Conference on Program Comprehension,
ICPC 18, page 200-210, New York, NY, USA. As-
sociation for Computing Machinery.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020a.
Deep code comment generation with hybrid lexical
and syntactical information. Empirical Software En-
gineering, 25(3):2179-2217.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou
Sun. 2020b. Heterogeneous Graph Transformer. In
WWW °20: The Web Conference 2020, Taipei, Tai-
wan, April 20-24, 2020, pages 2704-2710. ACM /
IW3C2.

Srinivasan lyer, loannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073-2083, Berlin, Germany. Association for Com-
putational Linguistics.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Learning and evaluating con-
textual embedding of source code. In International
Conference on Machine Learning, pages 5110-5121.
PMLR.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In Proceedings of
the 28th international conference on program com-
prehension, pages 184—195.

Alexander LeClair, Siyuan Jiang, and Collin McMil-
lan. 2019. A neural model for generating natural

language summaries of program subroutines. In Pro-
ceedings of the 41st International Conference on Soft-
ware Engineering, ICSE ’19, page 795-806. IEEE
Press.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, Jodo Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Ur-
vashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov,
Fedor Zhdanov, Manuel Romero, Tony Lee, Na-
dav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Mufoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023. Starcoder: may the source be with
you! CoRR, abs/2305.06161.

Jindrich Libovicky, Jindrich Helcl, and David Marecek.
2018. Input combination strategies for multi-source
transformer decoder. In Proceedings of the Third
Conference on Machine Translation: Research Pa-
pers, WMT 2018, Belgium, Brussels, October 31 -
November 1, 2018, pages 253-260. Association for
Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin.
2016a. Convolutional neural networks over tree struc-
tures for programming language processing. In AAAI
Conference on Artificial Intelligence.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin.
2016b. Convolutional neural networks over tree
structures for programming language processing. In
AAAI Conference on Artificial Intelligence.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

Changan Niu, Chuanyi Li, Vincent Ng, Jidong
Ge, Liguo Huang, and Bin Luo. 2022. Spt-
code: sequence-to-sequence pre-training for learning
source code representations. In Proceedings of the
44th International Conference on Software Engineer-
ing, pages 2006-2018.

2366

https://doi.org/10.1145/3366423.3380027
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL 02, page 311-318, USA.
Association for Computational Linguistics.

Dinglan Peng, Shuxin Zheng, Yatao Li, Guolin Ke,
Di He, and Tie-Yan Liu. 2021a. How could neu-
ral networks understand programs? In International
Conference on Machine Learning, pages 8476—8486.
PMLR.

Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and Zhi
Jin. 2021b. Integrating tree path in transformer for
code representation. In Advances in Neural Informa-
tion Processing Systems.

Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun
Yu, Lingxiao Jiang, and Mohammad Amin Alipour.
2021. On the generalizability of neural program
models with respect to semantic-preserving program
transformations. Information and Software Technol-
ogy, 135:106552.

Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova.
2021. Reassessing automatic evaluation metrics for
code summarization tasks. In Proceedings of the
29th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2021,
page 1105-1116, New York, NY, USA. Association
for Computing Machinery.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang,
Shi Han, Dongmei Zhang, and Hongbin Sun. 2021.
Cast: Enhancing code summarization with hierar-
chical splitting and reconstruction of abstract syntax
trees. In Conference on Empirical Methods in Natu-
ral Language Processing.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the

7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pages 1556—
1566. The Association for Computer Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566—4575.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021a. CodeTS5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696-8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021b. Codet5: Identifier-aware uni-
fied pre-trained encoder-decoder models for code
understanding and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696-8708. Association for Computa-
tional Linguistics.

Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019.
Code generation as a dual task of code summarization.
Advances in neural information processing systems,
32.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2022. Practical program repair in the era
of large pre-trained language models. arXiv preprint
arXiv:2210.14179.

Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu,
and Zhi Jin. 2020. Generating adversarial exam-
ples for holding robustness of source code processing
models. In 34th AAAI Conference on Artificial Intel-
ligence.

2367

https://doi.org/10.1145/3468264.3468588
https://doi.org/10.1145/3468264.3468588
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.3115/v1/p15-1150

