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Abstract

Factual knowledge encoded in Pre-trained Lan-
guage Models (PLMs) enriches their represen-
tations and justifies their use as knowledge
bases. Previous work has focused on probing
PLMs for factual knowledge by measuring how
often they can correctly predict an object entity
given a subject and a relation, and improving
fact retrieval by optimizing the prompts used
for querying PLMs. In this work, we consider
a complementary aspect, namely the coherency
of factual knowledge in PLMs, i.e., how of-
ten can PLMs predict the subject entity given
its initial prediction of the object entity. This
goes beyond evaluating how much PLMs know,
and focuses on the internal state of knowledge
inside them. Our results indicate that PLMs
have low coherency using manually written,
optimized and paraphrased prompts, but includ-
ing an evidence paragraph leads to substantial
improvement. This shows that PLMs fail to
model inverse relations and need further en-
hancements to be able to handle retrieving facts
from their parameters in a coherent manner,
and to be considered as knowledge bases.

1 Introduction

Pre-trained Language Models (PLMs) are probed
for factual knowledge to investigate their usage as
knowledge bases, and gain a better understanding
of the rich representations they provide (Petroni
et al., 2019). Previous extensions have focused
on extracting more facts (Zhong et al., 2021; Li
et al., 2022b), increasing the consistency of PLMs
to paraphrased prompts (Elazar et al., 2021), iden-
tifying the parts of PLMs that are responsible for
storing knowledge (Dai et al., 2022) and updating
facts in them (Meng et al., 2022, 2023).

More recently, Berglund et al. (2023) study the
generalization abilities of PLMs from “A is B” to
“B is A”, and show that if a PLM is trained on “The
capital of Malta is Valetta” it will not be able to
correctly answer the question: “Which country has
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Figure 1: Probing coherency in PLMs. 1) The PLM
makes a prediction based on an entity S and a relation.
2) The PLM makes a second prediction based on the
same relation and its first prediction O′. 3) If the PLM
predicts S in the second step it shows coherent behavior.

Valetta as its capital?”. In this work, we introduce
an intrinsic and complementary aspect, namely the
coherency of PLMs with respect to factual knowl-
edge. Coherency is not concerned with correctness
of the PLMs’ predictions, but with the internal
state of knowledge in PLMs and its consistency.
More concretely, we first ask a PLM to answer the
question: “What is the capital of Malta?”, and if
it answers “Berlin”, we ask it to answer the ques-
tion: “Which country has Berlin as its capital?”,
and if it answers “Malta”, then we say that the PLM
has answered coherently (even though the answer
is factually wrong). Note that in practice we use
Cloze prompts instead of questions to make the
task closer to language modeling (see Figure 1). In-
tuitively, if a human can tell the capital of a country
given that country’s name, then she is also able to
tell the country given its capital’s name. Given that
PLMs are queried with a subject and a relation to
extract a object, we define coherency as the abil-
ity of the PLM to infer the subject given its initial
prediction for the object entity and vice versa.

Our contributions are the following: (1) we in-
troduce coherency to investigate the internal state
of factual knowledge in PLMs; (2) we evaluate
different PLMs, showing that they have low co-
herency; (3) we show that optimized and para-
phrased prompts do not improve coherency, but the
use of evidence paragraphs substantially improves
coherency. We make our code available.1

1https://github.com/paulyoussef/coherency
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2 Coherency

PLMs are known to capture vast amount of facts
from their pre-training corpora. This has encour-
aged the community to consider using them as
knowledge bases (KBs) (Petroni et al., 2019; Sung
et al., 2021), which can be constructed without
expensive annotations, and which can easily be
queried using natural language. However, the use
of PLMs as KBs has many limitations (AlKhamissi
et al., 2022). For example, PLMs are quite sensi-
tive to their prompts, and cannot be easily updated
with new facts. Factual knowledge in PLMs is esti-
mated by evaluating how often PLMs can correctly
predict an object entity O, given a subject entity
S and a relationR, when provided with a prompt
which contains the subject and the relation: t(S,R),
where t is a function that maps a subject entity and
a relation to a prompt in natural language that con-
tains the given entity and expresses the relation
in natural language, e.g., (Malta, capital-of)
→ “The capital of Malta is [MASK]”. In
this work, we focus on evaluating the coherency
of PLMs with respect to the factual knowledge
stored in their parameters, i.e., how often can PLMs
predict S using t(O′,R), given that it predicted
O′ using t(S,R). For example, “The capital
of [MASK] is Berlin” → Malta is coherent
with “The capital of Malta is [MASK]” →
“Berlin”. We do not evaluate if the predictions are
factually correct, because we are interested in the
coherency of the PLMs’ world view, regardless of
its correctness .We show and discuss correctness
scores in Appendix A.

Coherency can be easily calculated for 1-1 rela-
tions, but is more challenging, if we consider N-1
or N-M relations, since multiple entities could be
correct when trying to predict the subject entity. To
address this, we exclude all correct entities except
the ground truth subject S in the second inference
step, following Bordes et al. (2013) and Petroni
et al. (2019). Since PLMs are known to have cer-
tain biases and are sensitive to the prompts, we
start with predicting the object given the subject
in a first round. In a second round, we start by
predicting the subject given the object. The com-
plete algorithm for estimating coherency in PLMs
for all types of relations is shown in Algorithm 1.
After estimating coherency for each relation, we
macro-average over all relations, because we are
interested in the average performance for the use
case of PLMs-as-KBs, which involves storing facts

from different types of relations.

Algorithm 1: Coherency in PLMs
Input: PLM, dataset with n relations
Output: coherency
scores_per_relation = []
// iterate over relations
for i← 1 to n do

scores = []
// iterate over instances
for j ← 1 to m do

// round 1: start with object
O′

j = PLM(ti(Sj ,Rj))
exclude correct answers except Sj
S ′j = PLM(ti(O′

j ,Rj))

if partial_match(S ′j , Sj) then
scores.append(1)

else
scores.append(0)

// round 2: start with
subject

S ′j = PLM(ti(Oj ,Rj))
exclude correct answers except Oj

O′
j = PLM(ti(S ′j ,Rj))

if partial_match(O′
j , Oj ) then

scores.append(1)
else

scores.append(0)

scores_per_relation.append(mean(scores))
return mean(scores_per_relation )

3 Experimental Setup

Here, we describe the data and PLMs, which we
use, and our experiments in detail.

3.1 Data
In our experiments, we use the T-REx (Elsahar
et al., 2018) subset of LAMA (Petroni et al., 2019),
which is often used to estimate factual knowledge
in PLMs. T-REx consists of 41 relations with their
corresponding templates, and subject-object pairs,
for which the relations hold in English. For each
of the relations, a manually-written template is
provided, which we use to construct the prompts.
Some statistics and an example from the T-REx
subset are shown in Table 10 in Appendix D.

3.2 How coherent are PLMs?
In this experiment, we aim to find out how coherent
are PLMs. We mostly focus on PLMs which are
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trained to fill in the blanks based on context, since
these make use of a bidirectional context, and we
expect them to perform better than autoregressive
PLMs on this task. More specifically, we consider
BERT (Devlin et al., 2019), InformBERT (Sadeq
et al., 2022), T5 (Raffel et al., 2020), and T5-
SSM (Guu et al., 2020; Roberts et al., 2020). In-
formBERT adapts the masking strategy of BERT to
focus on more informative tokens. T5-SSM models
are additionally trained with Salient Span Masking
objective (SSM), which masks only named entities
in the pre-training phase. More information about
the models are provided in Appendix C. If avail-
able, we consider several sizes of the same model
in order to investigate the effect of scaling PLMs
on coherency. For BERT-based models, we only
consider entities that correspond to one token, in
order to adhere to the task format from pre-training.
We evaluate all models in a zero-shot setting with
no finetuning, since we are interested in the co-
herency of factual knowledge in PLMs after the
pre-training phase. For BERT-based models, we
choose the token with the highest probability. For
T5-models, we use beam search with 10 beams.
We use partial match, which returns true if one of
the two predictions is contained in the other after
converting both to lower case, when comparing the
predictions against the ground truth entities.

For completeness, we also evaluate on autore-
gressive PLMs. More specifically, we consider
GPT-2 (Radford et al., 2019) and GPT-Neo (Gao
et al., 2020; Black et al., 2021). For autoregres-
sive PLMs, we use typed querying (Kassner et al.,
2021), i.e., we extract a probability distribution
over a pre-defined set of entities from the model,
and choose the most probable entity as the final
prediction. Typed querying makes it easy to extract
valid answers (entities) from the PLMs’ outputs,
but also makes the task easier for PLMs since it
restricts the output space. We extend the templates
from LAMA such that the subject/object entities
appear at the very end. We consider autoregressive
PLMs only in this experiment.

3.3 Do optimized prompts improve
coherency?

Optimizing prompts leads to better fact re-
trieval (Zhong et al., 2021). In this experiment,
we investigate whether optimized prompts lead
to higher coherency as well. We utilize Shin
et al. (2020)’ optimized prompts for T-REx. These
prompts differ from one model to another, and from

the models we consider, optimized prompts are
only available for BERT models.

3.4 Does providing an evidence paragraph
increase coherency?

PLMs can fill in the blanks based on the knowledge
they have stored in their parameters (parametric
knowledge), or based on information that is pro-
vided in their inputs (contextual knowledge). The
latter boils down to extracting the right informa-
tion from the input. Previous work has shown that
providing evidence paragraphs as additional inputs
makes PLMs’ predictions more factual (Petroni
et al., 2020). Here, we investigate how these evi-
dence paragraphs affect the coherency of factual
knowledge in PLMs. The provided evidence para-
graphs from LAMA contain a Wikipedia paragraph
that expresses the facts. We append the evidence
paragraphs to the inputs from the first experiment.

3.5 Is Coherency stable across paraphrased
prompts?

PLMs are known to be sensitive to the provided
prompts, i.e., small insignificant changes, that pre-
serve the meaning cause the PLMs to change their
predictions (Elazar et al., 2021). As a result, re-
trieving facts from PLMs is highly affected by
the prompts used. In this experiment, we con-
sider the effect of using paraphrased prompts on
coherency. Does coherency stay the same across
different prompts or is it highly variant? We eval-
uate whether coherency varies with paraphrased
prompts from Elazar et al. (2021)’s ParaRel dataset.
ParaRel provides paraphrases for 38 of the 41 rela-
tions in T-Rex. For each one of the 38 relations, we
randomly select a template from ParaRel, and mea-
sure how coherency is changed over 10 runs. We
consider bert-base and t5-base for this experiment.

4 Results and Discussion

The results for the first three experiments are shown
in Table 1. We show the results for autoregressive
PLMs separtely in Table 2, because we probe au-
toregressive PLMs with typed querying. We do
not evaluate if the predictions are factually correct.
For correctness scores see Table 4 in Appendix A.
Since we considered only one-token entities from
T-REx for BERT models, we show a normalized
version of the results on this subset for better com-
parability in Table 6, and the results with the total
number of instances in Table 7 in Appendix A.
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PLMs show poor coherency. We notice that all
PLMs have poor coherency. Autoregressive PLMs
perform even worse than masked PLMs, even
though the task is made easier for them through
typed querying (cf. Section 3.2). The poor per-
formance of autoregressive PLMs might be due
to their unidirectional training objective, whereas
masked PLMs make use of a bidirectional context.
Increasing the number of parameters in T5 models
leads to consistent improvements in performance.
However, this does not generalize to the BERT
models (bert-base performs better than bert-large),
and to the T5 models that are trained with SSM
(t5-large-ssm performs better than t5-3b-ssm). The
SSM objective is beneficial for the large variant of
T5 (t5-large-ssm improves by 6.5 percentage points
over t5-large, and even outperforms t5-3b, which
has 4 times as many parameters). Contrarily, this
improvement does not generalize to the 3b variant
(t5-3b outperforms its SSM counterpart). Inform-
BERT falls short of normal BERT, even though it
was shown to outperform BERT, when it comes to
facts retrieval (Sadeq et al., 2022). Hence, better
facts retrieval does not necessarily affect coherency
positively. In general, scaling and entity-centric
training objectives have to some extent a positive ef-
fect on coherency. We also notice that in most cases
models perform worse in the first round. Round
1 can be more difficult, since it may involve pre-
dicting a specific subject based on a generic object
in the second step (e.g.,“[MASK] is located in
Bern”), whereas the second round goes into oppo-
site and easier direction (“University of Bern
is located in [MASK]”). PLMs are known to
not provide specific answers (Huang et al., 2023).

We show the results per relation type in Table 5
in Appendix A. The evaluation dataset contains 2 1-
1 relations , 23 N-1 relations and 16 N-M relations
with 3 of the 16 N-M relations being symmetric.
Most PLMs have high coherency on 1-1 relations,
but the number of instances for these relations is
limited (747 at most), on N-1, N-M and symmet-
ric relations the performance drops significantly.
This shows that N-1 and N-M relations are chal-
lenging for PLMs not just with respect to facts
retrieval (Petroni et al., 2019), but also with respect
to developing a coherent knowledge state.

We also show and categorize examples from dif-
ferent PLMs in Table 8 in Appendix B. In general,
one can notice that incoherent predictions are due
to : 1) The answer being incorrect in the first step,
making it more difficult to predict the answer in the

second step (rows 6-7); 2) The templates being not
specific enough allowing for non-factual comple-
tions (row 8); 3) missing context to retrieve correct
relation for non 1-1 relations (row 3).

Optimizing prompts does not help. Optimized
prompts lead to a drop in coherency in the second
experiment (see results under optimized prompts
in Table 1) l. This shows that prompts that bet-
ter retrieve object entities does not help retrieve
the corresponding subject entities. Previous work
showed that optimized prompts overfit the facts dis-
tribution of objects (Cao et al., 2021), which might
negatively affect their ability to retrieve the subject
entities. This is also evident by the difference in
scores between the two rounds.

Evidence paragraphs improve coherency. In-
cluding evidence paragraphs in the inputs substan-
tially improves performance (see results under ev-
idence paragraphs in Table 1). This shows that
PLMs are better at extracting answers from their in-
puts than recalling them from their parameters. In
fact, adding an evidence paragraph reduces the per-
formance gaps among models of different sizes and
pre-training objectives. This suggests that retrieval-
based approaches are indeed a promising alterna-
tive to scaling language models (Kandpal et al.,
2023). Still, coherency is not high under this set-
ting as well. We believe this is due to the PLMs fail-
ing to extract the correct entities or to the conflicts
between contextual and parametric knowledge in
PLMs (Neeman et al., 2023).

Coherency varies across paraphrases. Table 3
shows the minimum, average and maximum co-
herency scores with paraphrased prompts. A break-
down in relations is available in Appendix A
(Fig. 2).2 As with fact retrieval, the results indi-
cate that prompts have a significant effect on the
performance. For example, there are more than 25
percentage points difference in coherency between
the min and max scores for t5-base. Still, even
when considering the best prompts, the overall co-
herency score is low.

In general, our analysis shows that PLMs do
not possess a coherent knowledge state. The low
coherency might be due: 1) The fact that PLMs
make predictions based on shallow surface level
features (Poerner et al., 2020; Li et al., 2022a),
which makes PLMs output relevant but incoherent

2Note that, for this experiment, we use only 38 of the 41
relations in T-Rex – The ones for which paraphrases exist.
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and non-factual predictions (for an example see
row 6 in Table 8). This is inherent to all PLMs,
and requires further architectural improvements;
2) The training data for PLMs, which might be
biased towards certain entities (the more frequent
ones); 3) The uni-directional training in the case of
autoregressive PLMs that makes PLMs sensitive to
the order in which the entities are observed.

Model Round 1 Round 2 Avg.

bert-base-uncased 9.74 11.81 10.78
bert-large-uncased 9.83 10.29 10.06
InformBERT 8.04 11.55 9.79
t5-base 9.02 10.29 9.66
t5-large 9.07 12.03 10.55
t5-3b 8.62 23.90 16.26
t5-large-ssm 9.89 24.23 17.06
t5-3b-ssm 8.97 20.88 14.92
w/ optimized prompts
bert-base-uncased 1.52 12.80 7.16
bert-large-uncased 1.87 7.38 4.62
w/ evidence paragraphs
bert-base-uncased 22.30 39.87 31.09
bert-large-uncased 21.05 41.98 31.52
InformBERT 43.07 46.40 44.74
t5-base 41.40 58.31 49.85
t5-large 31.46 55.15 43.31
t5-3b 27.06 62.89 44.98
t5-large-ssm 50.17 43.97 47.07
t5-3b-ssm 48.52 41.81 45.17

Table 1: Coherency score per round and on average
for different PLMs using manually-written, optimized
prompts and evidence paragraphs. The highest perfor-
mance under each category is in bold, and the best
performance overall is underlined.

5 Related Work

Reversal curse. Berglund et al. (2023) investi-
gate the generalization abilities of autoregressive
PLMs from one data form, that is encountered dur-
ing training (A is B), to another (B is A), showing
a generalization failure. Berglund et al. (2023) re-
fer to this generalization inability in autoregressive
PLMs as the reversal curse. Our work is close

Model Round 1 Round 2 Avg.

gpt2 0.24 3.98 2.11
gpt-neo-1.3B 0.44 12.85 6.65
gpt-neo-2.7B 0.56 11.82 6.19

Table 2: Coherency score per round and on average for
autoregressive PLMs using manually-written prompts.
The highest performance is in bold. Autoregressive
PLMs are probed using typed querying.

Model Min. Avg. Max. #Instances
bert-base-uncased 3.74 11.16 19.25 2852
t5-base 6.51 16.88 31.69 27788

Table 3: Coherency scores with different paraphrases.
We show the results with the worst/average/best per-
forming prompts per relation.

but complementary to theirs. We focus on the co-
herency of the internal state of factual knowledge
in autoregressive and masked PLMs, regardless of
how correct the PLMs’ predictions are.

Factual knowledge in PLMs. PLMs contain vast
amounts of linguistic (Tenney et al., 2019; Jawahar
et al., 2019), commonsense (Davison et al., 2019)
and factual knowledge (Roberts et al., 2020) that is
captured during pre-training. Many works focus on
factual knowledge in PLMs (Youssef et al., 2023),
since factual knowledge is said to contribute to
the rich presentations produced by PLMs, and po-
tentially justifies the use of PLMs as KBs (Petroni
et al., 2019; Ye et al., 2022). For example, Shin et al.
(2020); Zhong et al. (2021) optimize prompts to
extract more facts from PLMs, Elazar et al. (2021);
Fierro and Søgaard (2022) investigate the sensi-
tivity of PLMs to paraphrased prompts, (Malkin
et al., 2022; Wang et al., 2023) debias the outputs of
PLMs for better facts extraction, Meng et al. (2022,
2023) address editing facts in PLMs to make it pos-
sible to correct and update facts. However, these
works collectively focus on extrinsic aspects. We
focus on a more intrinsic aspect, i.e., the coherency
of factual knowledge inside PLMs. This comple-
ments aspects addressed in previous work.

6 Conclusion

In this work, we focused on evaluating the co-
herency of factual knowledge in PLMs. We consid-
ered the use of manually-written, optimized, and
paraphrased prompts. Our results indicate poor co-
herency. The inclusion of an evidence paragraph
leads to substantial improvements. This shows that
PLMs can leverage contextual knowledge better
than parametric knowledge and highlights the im-
portance of retrieval-augmented PLMs. We believe
that further improvements are needed to improve
coherency in PLMs, and to consider them as alter-
natives to KBs. We believe that future work should
focus on further improving PLMs on the architec-
tural level, the data level, and the interface between
them (pre-training objectives).
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7 Limitations

Coherency can be easily determined using 1-1 re-
lations. For N-1 or N-M relations, some potential
answers should be excluded. However, it is quite
difficult to exclude every possible answer for cer-
tain relations (e.g., everyone who is an English
native speaker) from the model’s vocabulary. We
only excluded answers that are present in LAMA,
following previous work (Bordes et al., 2013) and
(Petroni et al., 2019). This might have had a nega-
tive effect on the results (cf. Section 4, discussion
of lower scores in round 1).
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A Additional Results

Correctness. We investigate how correct the
PLMs’ predictions are. For each instance, we count
how often the first prediction in the first round (c1),
and in the second round (c2) were correct. We only
consider the first predictions in each round, since
having the incorrect answer in the first inference
step of each round makes it more difficult for the
model to answer correctly in the second inference
step. We also report how often are all predictions
correct (all correct). We calculate each score for
all relations, and average over all relations. Results
are shown in Table 4. We notice that for all models
the c1 scores are higher than the c2 scores. We
believe this is because in the first inference step in
round 1, models predict object entities, whereas in
the first step of round 2 they predict subject enti-
ties. Predicting subject entities is more difficult,
since their corresponding mask tokens are placed
at the beginning of the templates. This allows for
valid completions that do not contain any entities.
For example, if the template is “[MASK] is the
capital of Malta”, then “It” is also a valid com-
pletion with no entities. Additionally, predicting
the subject entity based on the object entity might
be ambiguous (see discussion in Section 4).

Coherency scores per relation type. Coherency
scores per relation type are shown in Table 5.

Coherency on a subset. Table 6 shows a nor-
malized version of the coherency scores using
manually-written prompts.

Coherency over relations with different para-
phrases. Figure 2 shows the average coherency
scores with standard deviation over different rela-
tions when using paraphrased prompts. Note that
bert-base-uncased has less relations than t5-base
(36 vs. 38), since some relations ended up with no
instances after excluding multi-token entities. In
general, we notice high standard deviation for most
relations.

Coherency scores with the number of instances.
Table 7 shows the coherency scores with the size
of the test set in instances.

B Examples

We show examples of several failures from differ-
ent prompts and categorize these in Table 8.

C Additional Details on Masked
Language Models

Masked PLMs are trained to predict one or several
tokens given a context. This is considered a gener-
alization of the conventional language modeling ob-
jective that predicts the next token based on its left
context. BERT (Devlin et al., 2019), an encoder-
only model, was trained using the Maksed Lan-
guage Modeling (MLM) objective. T5, an encoder-
decoder model, was also trained using a variant
of the MLM objective in addition to a mixture
of supervised tasks. In the Salient Span Masking
(SSM) versions of T5, the models are additionally
trained by masking only entities to push the model
to focus more on these (Guu et al., 2020; Roberts
et al., 2020). Similarly, Sadeq et al. (2022) leverage
pointwise mutual information to mask salient to-
kens in an unsupervised manner. Table 9 provides
an overview of the architecture and the number of
parameters for each model.

D Choice of Datasets

The LAMA probe (Petroni et al., 2019) has been
proposed to assess how much factual knowledge
is contained in PLMs. We believe it is suitable
for the experiments we conduct, since it consists
of (subject, relation, object) triples. This allows
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Model c1 c2 All correct #relations #Instances

bert-base-uncased 30.77 8.55 4.27 39 2919
bert-large-uncased 25.96 8.39 4.22 39 2919
InformBERT 22.33 5.97 4.34 39 2926
t5-base 11.03 6.21 1.30 41 29672
t5-large 14.77 6.26 1.70 41 29672
t5-3b 20.93 6.10 2.33 41 29672
t5-large-ssm 18.42 4.69 2.73 41 29672
t5-3b-ssm 19.61 4.28 2.96 41 29672

Autoregressive PLMs
gpt2 7.70 0.43 0.04 41 29672
gpt-neo-1.3B 17.65 0.93 0.13 41 29672
gpt-neo-2.7B 18.50 1.31 0.22 41 29672
w/ optimized prompts
bert-base-uncased 25.27 1.49 0.02 39 2919
bert-large-uncased 31.92 2.94 0.10 39 2919
w/ evidence paragraphs
bert-base-uncased 46.98 19.97 11.12 39 2919
bert-large-uncased 49.66 20.27 12.98 39 2919
InformBERT 49.42 45.92 24.95 39 2926
t5-base 59.77 39.28 23.99 41 29672
t5-large 59.31 27.57 15.77 41 29672
t5-3b 57.35 23.17 11.73 41 29672
t5-large-ssm 44.47 47.61 23.10 41 29672
t5-3b-ssm 41.44 46.40 21.41 41 29672

Table 4: Correctness scores in the first inference step of the first round (c1), the second round (c2), and in all
inference steps (all correct). Results are averaged over all relations. BERT-based models have less relations and
instances, because we consider only one-token entities for these models.

Relation Type 1-1 N-1 N-M symmetric All

Model Coherency #Instances Coherency #Instances Coherency #Instances Coherency #Instances Coherency #Instances

bert-base-uncased 84.11 232 5.93 633 8.10 2054 12.57 1927 10.78 2919
bert-large-uncased 82.71 232 6.65 633 5.38 2054 15.10 1927 10.06 2919
InformBERT 81.03 232 5.28 637 6.91 2057 18.46 1929 9.79 2926
t5-base 36.84 747 8.55 16838 7.84 12087 8.61 2882 9.66 29672
t5-large 48.90 747 6.90 16838 11.02 12087 14.87 2882 10.55 29672
t5-3b 61.21 747 14.84 16838 12.68 12087 21.41 2882 16.26 29672
t5-large-ssm 75.96 747 17.22 16838 9.46 12087 7.44 2882 17.06 29672
t5-3b-ssm 76.36 747 13.94 16838 8.66 12087 13.00 2882 14.92 29672

Autoregressive PLMs
gpt2 0.26 747 1.46 16838 3.27 12087 0.16 2882 2.11 29672
gpt-neo-1.3B 3.40 747 9.71 16838 2.65 12087 0.19 2882 6.65 29672
gpt-neo-2.7B 4.59 747 6.37 16838 6.14 12087 0.51 2882 6.19 29672
w/ optimized prompts
bert-base-uncased 1.46 232 7.54 633 7.35 2054 2.36 1927 7.16 2919
bert-large-uncased 2.38 232 6.85 633 1.66 2054 7.23 1927 4.62 2919
w/ evidence paragraphs
bert-base-uncased 87.78 232 26.49 633 30.27 2054 22.66 1927 31.09 2919
bert-large-uncased 90.30 232 28.13 633 28.65 2054 26.61 1927 31.52 2919
InformBERT 84.06 232 42.05 637 43.43 2057 31.86 1929 44.74 2926
t5-large-ssm 84.73 747 46.38 16838 43.35 12087 32.50 2882 47.07 29672
t5-3b-ssm 86.95 747 44.80 16838 40.47 12087 27.10 2882 45.17 29672
t5-base 73.86 747 49.91 16838 46.77 12087 30.37 2882 49.85 29672
t5-large 66.94 747 42.65 16838 41.30 12087 26.10 2882 43.31 29672
t5-3b 74.16 747 45.32 16838 40.84 12087 26.93 2882 44.98 29672

Table 5: Coherency scores per relation type.

2350



1-1
_P1

37
6

1-1
_P3

6

N-1_
P1

03

N-1_
P1

27

N-1_
P1

31

N-1_
P1

36

N-1_
P1

38

N-1_
P1

40

N-1_
P1

59

N-1_
P1

7

N-1_
P1

76

N-1_
P1

9

N-1_
P2

0

N-1_
P2

64

N-1_
P2

76

N-1_
P2

79

N-1_
P3

0

N-1_
P3

61

N-1_
P3

64

N-1_
P3

7

N-1_
P4

07

N-1_
P4

49

N-1_
P4

95

N-1_
P7

40

N-M
_P1

01

N-M
_P1

06

N-M
_P1

08

N-M
_P1

30
3

N-M
_P1

41
2

N-M
_P1

78

N-M
_P1

90

N-M
_P3

9

N-M
_P4

63

N-M
_P4

7

N-M
_P5

30

N-M
_P9

37

Relation

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

Pe
rfo

rm
an

ce

Average Performance for each Relation with Standard Deviation

(a) bert-base-uncased

1-1
_P1

37
6

1-1
_P3

6

N-1_
P1

03

N-1_
P1

27

N-1_
P1

31

N-1_
P1

36

N-1_
P1

38

N-1_
P1

40

N-1_
P1

59

N-1_
P1

7

N-1_
P1

76

N-1_
P1

9

N-1_
P2

0

N-1_
P2

64

N-1_
P2

76

N-1_
P2

79

N-1_
P3

0

N-1_
P3

61

N-1_
P3

64

N-1_
P3

7

N-1_
P4

07

N-1_
P4

13

N-1_
P4

49

N-1_
P4

95

N-1_
P7

40

N-M
_P1

01

N-M
_P1

06

N-M
_P1

08

N-M
_P1

30
3

N-M
_P1

41
2

N-M
_P1

78

N-M
_P1

90

N-M
_P2

7

N-M
_P3

9

N-M
_P4

63

N-M
_P4

7

N-M
_P5

30

N-M
_P9

37

Relation

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e 

Pe
rfo

rm
an

ce

Average Performance for each Relation with Standard Deviation

(b) t5-base

Figure 2: Average coherency with standard deviation when using paraphrased prompts over different relations.
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Model Coherency #Instances
bert-base-uncased 10.78 2919
bert-large-uncased 10.06 2919
InformBERT 9.79 2919
t5-base 10.64 2919
t5-large 12.45 2919
t5-3b 17.39 2919
t5-large-ssm 16.76 2919
t5-3b-ssm 14.57 2919

Autoregressive PLMs
gpt2 2.36 2919
gpt-neo-1.3B 4.89 2919
gpt-neo-2.7B 11.50 2919

Table 6: Coherency of different PLMs on a subset
of one-token entities using BERT’s tokenizer with
manually-written prompts.

us to evaluate, how often PLMs can predict one
entity (either the subject or object) given the other
entity and the relation. Additionally, LAMA cov-
ers 41 relations of different types, which helps us
provide a coherency estimate based on all of these
relations. See Table 10 for an overview. We also
used the ParaRel dataset (Elazar et al., 2021). This
dataset has been proposed to measure the sensitiv-
ity of PLMs to paraphrased prompts with respect
to factual knowledge. Similarly, we use ParaRel
to investigate how the coherency score is affected
by paraphrased prompts. All the datasets we used
are in English. Additionally, we used the prompts
obtained by Autoprompt (Shin et al., 2020) to in-
vestigate the effect of having optimized prompts on
the performance. We manually create prompts for
autoregressive PLMs. These templates are included
with our code. 3

E Computational Resources

In all of our experiments, we use a NVIDIA A100
GPU with 80GB of memory. Our experiments took
roughly 25 GPU days.

3https://github.com/paulyoussef/coherency

Model Coherency #Instances
bert-base 10.78 2919
bert-large 10.06 2919
InformBERT 9.79 2926
t5-base 9.66 29672
t5-large 10.55 29672
t5-3b 16.26 29672
t5-large-ssm 17.06 29672
t5-3b-ssm 14.92 29672

Autoregressive PLMs
gpt2 2.11 29672
gpt-neo-1.3B 6.65 29672
gpt-neo-2.7B 6.19 29672
w/ optimized prompts
bert-base 7.16 2919
bert-large 4.62 2919
w/ evidence paragraphs
bert-base-uncased 31.09 2919
bert-large-uncased 31.52 2919
InformBERT 44.74 2926
t5-base 49.85 29672
t5-large 43.31 29672
t5-3b 44.98 29672
t5-large-ssm 46.78 29482
t5-3b-ssm 45.17 29672

Table 7: Coherency for different PLMs using manually-
written, optimized prompts and evidence paragraphs.
The highest performance under each category is in bold,
and the best performance overall is underlined.
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Type Model Relation Forward Backward ID
Coherent
& Correct

bert-base-
uncased

edmonton,
alberta

edmonton is the capital
of [MASK]
→ alberta

[MASK] is the capital
of alberta
→ edmonton

1

Coherent
& Incorrect

t5-large Brunei,
Malay

The official language
of Brunei is [MASK]
→ Bruneian

The official lan-
guage of [MASK] is
Bruneian
→ Brunei

2

Incoherent
& Correct (1st)

bert-base-
uncased

lucknow,
urdu

The official language
of lucknow is [MASK]
→ urdu

The official language
of [MASK] is urdu
→ maldives

3

gpt-neo
2.7B

Topeka,
Kansas

Topeka is the capital of
[MASK]
→ Kansas

Kansas’s capital is
[MASK]
→ Quebec City

4

Repetition informBERT iPhone,
Apple

iPhone is produced by
[MASK]
→ apple

[MASK] is produced
by apple
→ apple

5

Incoherent
& Incorrect

bert-large-
uncased

lille, nord lille is the capital of
[MASK]
→ france

[MASK] is the capital
of france
→ lyon

6

Repetition t5-base Germany,
Berlin

The capital of Ger-
many is [MASK]
→ Frankfurt am Main

The capital of [MASK]
is Frankfurt am Main
→ Frankfurt am Main

7

Pronoun bert-base-
uncased

munich,
germany

munich is located in
[MASK]
→ bavaria

[MASK] is located in
bavaria
→ it

8

Table 8: Examples from different PLMs.
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Model #Parameters Architecture
bert-base 110M encoder-only
bert-large 345M encoder-only
InformBERT 110M encoder-only
t5-base 220M encoder-decoder
t5-large 770M encoder-decoder
t5-3B 3B encoder-decoder
t5-11B 11B encoder-decoder
gpt-2 117M decoder-only
gpt-neo 1.3B 1.3B decoder-only
gpt-neo 2.7B 2.7B decoder-only

Table 9: Models with number of parameters and archi-
tectures. SSM variants of t5 have the same number of
parameters as their normal counterparts.

#Relations #Instances Example
41 29672 X was born in Y

Table 10: Statistics of LAMA and an example.

Dataset License
LAMA CC-BY-NC 4.0
ParaRel MIT License
Optimized prompts Apache License 2.0

Table 11: Licenses of the datasets used in this work.
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