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Abstract

Linguistic features have a strong contribution
in the context of the automatic assessment of
text readability (ARA). They have been one of
the anchors between the computational and the-
oretical models. With the development in the
ARA field, the research moved to Deep Learn-
ing (DL). In an attempt to reconcile the mixed
results reported in this context, we present a
systematic comparison of 6 hybrid approaches
along with standard Machine Learning and DL
approaches, on 4 corpora (different languages
and target audiences). The various experiments
clearly highlighted two rather simple hybridiza-
tion methods (soft label and simple concatena-
tion). They also appear to be the most robust on
smaller datasets and across various tasks and
languages. This study stands out as the first to
systematically compare different architectures
and approaches to feature hybridization in DL,
as well as comparing performance in terms of
two languages and two target audiences of the
text, which leads to a clearer pattern of results.

1 Introduction

A significant proportion of the population suffers
from their poor reading skills in their everyday
life (Schleicher, 2019, 2022), for example to ac-
cess medical information (Friedman and Hoffman-
Goetz, 2006) or to process administrative tasks
(Kimble, 1992). This issue may be tackled with
Automatic Readability Assessment (ARA); for ex-
ample by automating recommendations of texts
suited to specific reading levels (Pera and Ng, 2014;
Sare et al., 2020).

ARA has leveraged automatic annotation of tex-
tual features, and Machine Learning (ML) algo-
rithms. In this context, ARA has largely been mod-
eled using feature engineering (Collins-Thompson,
2014; François, 2015; Vajjala, 2021). Current
works rely on distributed representations of texts
(i.e. embeddings) (Cha et al., 2017; Filighera et al.,

2019) and Deep Learning (DL) (Nadeem and Os-
tendorf, 2018; Azpiazu and Pera, 2019; Martinc
et al., 2021), yielding improvement over linguistic
feature-based systems (e.g., Deutsch et al. (2020);
Martinc et al. (2021) for English and Yancey et al.
(2021) for French). Consequently, DL has become
the new standard in ARA. However, linguistic fea-
ture engineering has not been completely discon-
tinued (Imperial, 2021; Weiss and Meurers, 2022).
We emphasize two main reasons for that. First, ob-
taining audience-specific data to produce large cor-
pora, required for DL, is difficult, and vanilla trans-
formers tend to achieve low performance on small
readability datasets (Lee et al., 2021). Second,
feature-based approaches bring knowledge from
cognitive psychology and the modelling of diffi-
culty (Chall and Dale, 1995), offering insights on
how textual characteristics affect readers (Javourey-
Drevet et al., 2022).

In this work, we focus on hybrid models as
a way to combine the accuracy of DL with the
grounded interpretability of features, with minimal
pre-training costs.1 We aim to identify an effective
architecture for combining linguistic features and
transformers for ARA, keeping in mind that there
may be an overlap of the information encoded in
both representations (Goldberg, 2019; Rosa and
Mareček, 2019; Jawahar et al., 2019; Kim et al.,
2020). Although this work focuses on ARA, the
methodology presented here can be applied to other
tasks, particularly those tasks that rely on a re-
stricted data set. The main contributions of this
paper are: (1) a systematic analysis of how hybrid
architectures compare with traditional ones2, (2)
recommendations for the best hybrid architecture
for ARA, and (3) a study of how those models are
impacted by corpora properties (e.g. language, or

1Note that other types of hybrid models, such as multi-
modal models, are outside the scope of this work.

2Developed model is available on gitlab.com/
rswilkens/linguistic-features-in-transformers.
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L1 vs. L2). The paper is structured as follows: we
discuss existing work in more details (Section 2),
we detail our approach (Section 3) and present the
results we obtained (Section 4). We then present
an in-depth error analysis (Section 5) before con-
cluding (Section 6).

2 Related Work

The inclusion of linguistic features in DL models
has been done in various areas of NLP. In some
cases, the purpose is to provide additional infor-
mation that a DL model does not have access to
(e.g. information about products (Amplayo et al.,
2022)). Additionally, linguistic information can be
included to facilitate the learning task, by providing
complementary information or information poorly
presented in the model. The inclusion of features in
DL requires changes in the architecture, which can
be done by adding additional layers or modifying
the existing ones3. In this section, we examine how
this modification in architecture is carried out in
NLP and particularly in ARA.

2.1 Hybrid Models
Feature integration methods can be divided into
two categories, depending on whether integration
is direct or indirect.

Direct (or explicit) integration consists in con-
catenating feature vectors and embedding vectors.
This method is simpler to implement than the in-
direct method and is the most widely used. It en-
riches the networks’ input with fine-grained lin-
guistic information that may be under-represented
or particularly important in the networks’ embed-
dings. Balagopalan and Novikova (2020), for ex-
ample, connect the last layer of BERT to a vec-
tor of 119 lexical and syntactic features to im-
prove an Alzheimer’s Disease (AD) detection sys-
tem. The same method can be found in several
other systems: Complex Word Identification (Ortiz-
Zambrano et al., 2022); Automatic Essay Scoring
(Prabhu et al., 2022); Abusive Language Detec-
tion (Koufakou et al., 2020); Natural Language
Understanding (Zhang et al., 2020); and assigning
a CEFR (Common European Framework of Ref-
erence) level to a text4(Schmalz and Brutti, 2021).

3The modification of existing layers implies the invalida-
tion of pre-trained models, which represents a large training
cost and is therefore outside the scope of this work.

4Direct integration has also been used with non-linguistic
information: Zhang et al. (2021) and Amplayo et al. (2022)
integrate extra-textual data (e.g. user or product information)
in various classification contexts (mainly sentiment analysis).

Peinelt et al. (2021) proposed an alternative con-
catenation method by injecting pre-trained (non
contextual) embedding into the BERT architecture.
To that end, they projected the embedding sequence
to BERT’s internal dimensions and squashed the
output values to a range between -1 and 1.

Indirect (or implicit) integration consists in
orienting fine tuning by associating one or more
auxiliary tasks with the main task. For example,
Zhou et al. (2019) propose a multi-task architecture
which aims at simultaneously integrating morpho-
syntactic (POS-tagging), syntactic (component and
dependency parsing) and semantic (span and de-
pendency semantic role labeling) information into
the model.

2.2 Hybrid Models for ARA
Deutsch et al. (2020) investigated if adding
linguistic-based characteristics to deep learning
models can increase their performance in ARA.
They compared conventional ML (SVMs, Linear
Models, and Logistic Regression), CNNs, Trans-
former, and HANs to do this. They employed the
numerical output of a neural model as a feature
itself, concatenated with language data, and then
fed into one of the non-neural models. Deutsch
et al. (2020) identified strong differences in models
ranking depending on the corpora.

Imperial (2021) advocated for concatenating raw
embeddings with constructed language feature sets
and feeding them to typical machine-learning tech-
niques. Li et al. (2022) built a BERT-based model
with feature projection and length-balanced loss.
They derive a set of topic features by grouping
related words with similar difficulty levels. To
produce orthogonal features, these features are con-
catenated and projected (Qin et al., 2020) to the neu-
ral network features. According to Li et al. (2022)’s
ablation study, the most significant improvement is
related to the length-balanced loss they proposed,
whereas the features had a minor impact. Lee et al.
(2021) employed a soft labeling approach (i.e., the
fine-tuned BERT probabilities of the prediction are
concatenated with linguistic data), and used the
whole to train Random Forest models. Liu and
Lee (2023) compared hard labels (the fine-tuned
BERT prediction is concatenated with linguistic
data), following Deutsch et al. (2020), soft labels,
and sentence concatenated with features embed-
dings, for investigating passage-level ARA. They
found that Hard Labels and Soft Labels outperform
transformers, but the sentence concatenated model
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performed the poorest (similarly to a vanilla trans-
former model).

In order to give a first indication of the perfor-
mance of the different strategies for combining
features with transformers, Table 1 compiles the
performance of the different works presented in
this section. Thus, the initial observation points to
the use of soft labeling, but the number of features
is different between the works and the results using
concatenation are based on one corpus only.

3 Methodology

In order to find the best approach for combining
features and embeddings for ARA, we carried out a
systematic comparison of architectures by compar-
ing hybrid and non-hybrid (baselines) architectures.
To this end, we selected 4 readability corpora with
various characteristics (Section 3.1), on which we
computed linguistic features (Section 3.2) before
comparing the performance of the 8 architectures
described in Section 3.3. To this aim, we split each
corpus into train, validation and test sets (60/20/20)
using stratified cross validation with groups defined
based on target difficulty level and text genre (when
available). For comparing performance, we applied
the Friedman and Mann-Whitney U tests.

3.1 Corpora

Assessing our architectures requires corpora in
which the reading difficulty of each text has been
evaluated according to a reference difficulty scale5,
In this work, we opted for 4 corpora that cover two
readability tasks (one targeting native speakers and
the other targeting language learners) as well as
two languages (English and French)6.

French as Native Language (FLM7) (Wilkens
et al., 2022a) is composed of 334 text documents
from Belgian school material. They are divided
into 9 levels (from grade 4 to grade 12) and three
domains (History, Science, and French language).
The level of a text is the level of the textbook it was
taken from.

French as Foreign Language (FLE8) (François
and Fairon, 2012; Yancey et al., 2021) is composed
of 2,734 text documents extracted from French as

5All corpora use a discrete scale for difficulty level, except
for CLEAR, which uses a continuous scale.

6We did not consider corpora where perfect performance
has been demonstrated (Lee et al., 2021), as this would limit
the models’ comparison.

7Français Langue Maternelle
8Français Langue Étrangère

a foreign language (FFL) textbooks published be-
tween 2001 and 2018. The level of each document
ranges across five CEFR levels (Council of Europe,
2001) and is the same as the textbook from which
it was taken.

Cambridge (Xia et al., 2016) is a collection of
330 reading texts from the Cambridge English Ex-
ams, explicitly designed for L2 learners at different
proficiency levels. The corpus is divided into five
CEFR levels, depending on the proficiency levels.

Clear (Crossley et al., 2021) is a set of 4,716 ex-
cerpts (written between 1875 and 1922) scored by
1,116 teachers from CommonLit Ease according to
their easiness for a student (8 to 17 y/o in the Amer-
ican curriculum), where the final text readability
score is the probability of text easiness based on
the Bradley-Terry model.

3.2 Linguistic Feature Annotation

Before comparing our different architectures, we
needed to identify the relevant features for each
corpus. The first challenge is to identify tools that
annotate both languages in a similar way. In this
sense, the FABRA toolkit (Wilkens et al., 2022a)
and its English version (Wilkens et al., 2022b) are
suitable options. This toolkit annotates numerous
linguistic variables relevant for readability. Since
many of these variables are at the word or sentence
level, the toolkits use various statistical aggregators
(e.g., mean, percentile and skewness) to create the
features for each text aiming at a more detailed
description of the linguistic variables.9

After the 4 corpora were annotated, we had to
identify an appropriate set of features to be used
in the hybrid models. To this end, we opted for
the mRMR (Maximum Relevance Minimum Re-
dundancy) method10 (Ding and Peng, 2003). More
specifically, following Zhao et al. (2019), we used
the FCQ variant of mRMR (a combination of Ran-
dom Forest, Randomized Dependence Coefficient,
and Quotient). We explored 10 different sizes of
feature sets (10, 20, 30, 40, 50, 100, 200, 300, 400,
and 500). Finally, each of these sets was compared
using a regression model, and the set of features
used in the best performing model for each corpus

9A list of the variables is available at https://cental.
uclouvain.be/fabra.

10mRMR is a greedy algorithm that chooses the best feature
and appends it to the previously selected features on each iter-
ation. The idea is that at each iteration, the algorithm chooses
the feature with maximum relevance to classify the target (i.e.,
univariable classification) and minimum redundancy with the
features chosen in previous iterations.
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Architecture WeeBit OSE Cambridge
Concatenation BERT, SVM, 54 features (Imperial, 2021) - 0.704 -
Concatenation BERT, Log. Regression, 54 features (Imperial, 2021) - 0.732 -
Concatenation + Projection BERT, 255 features (Li et al., 2022) 0.927 0.994 0.877
Soft-Label ROBERTA, Random Forest, 255 features (Lee et al., 2021) 0.902 0.995 0.752
Soft-Label BART, Random Forest, 255 features (Lee et al., 2021) 0.905 0.971 0.727
Soft-Label BERT, SVM, 86 features (Deutsch et al., 2020) 0.877 - -

Table 1: Summary of F1 measures of readability hybrid models

is chosen.11

3.3 Models
In this work, we explored 8 different architectures12

(see Figure 1), which may be organized into three
groups, based on the features integration method.
A key element in the performance of these architec-
tures is the linguistic features to be used. However,
considering the different types of corpora explored
in this work, it is natural to have different feature
sets depending on the language and task. There-
fore, the features are considered as a parameter for
the architecture.

Baselines (no integration): As a basis for com-
parison with non-hybrid methods, we considered
two baselines that do not combine features with
deep learning. The first method, based on deep
learning exclusively, uses transformers (henceforth
TR), more specifically the RoBERTa architecture.
This choice was based on the decision to use the
same architecture for both languages, where there
are fewer models available for French. The sec-
ond method, based on features exclusively, consists
in classical statistical methods. In order to remain
consistent with the soft label architecture, we chose
to use a Random Forest (RF).

Direct (or explicit) integration: We explored
two direct integration methods. The first one is soft-
labeling. For the soft-label (SO), we followed the
architecture employed by Lee et al. (2021) for read-
ability (see Section 2.2). Note that, in the context
of a regression task, there is no difference between
soft and hard label. The second method consists in
feeding the concatenation between the document
encoded by the transformer architecture (i.e. CLS)
and the features to the MLP, as in various related

11We trained the regressor and used its predictions to evalu-
ate the set’s quality. In this assessment, we split each corpus
into 80% train and 20% evaluation. This split is the same as
the first fold of the cross-validation splits used in the models’
evaluation.

12The range of hyperparameters and the selected values for
each architecture are described in Appendix A.

(a) Direct (or explicit) integration (architectures, top to bottom
SO, SC, CM and C2)

(b) Indirect (or implicit) integration (architectures, top to bot-
tom IF and IV)

Figure 1: The 6 hybrid architectures explored in this
work

works (Section 2). We considered the following
flavors of implementation (exemplified in Figure
1a). Simple Concatenation (SC), which simply
combines the feature vector with the CLS vector
and this concatenated vector feeds the output layer
(MLP). In this architecture, the MLP is expected
to be able to learn the target along with the map-
ping between the feature and transformer spaces.
By adding an MLP between the features and the
concatenation, we could simplify the task by allow-
ing the network to separate the mapping between
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the spaces and/or even create a richer representa-
tion of the features. This architecture, here named
Concatenate MLP (CM), allows for greater ex-
ploration of the search space by adding a few more
parameters to the network (5 × n). In the scope
of our work, we used an MLP with a first dense
layer of 4×n neurons, followed by a dropout layer
(10%), followed by a dense layer of 2 × n neu-
rons that feeds a layer of n neurons (output), where
n is the number of features. Following the same
idea of including MLPs, the latest variant of the
concatenation architecture, Concatenate 2xMLP
(C2), also adds an MLP between the encoder out-
put and the concatenation. Thus, the concatenation
is performed on the output of two MLPs.

Indirect (or implicit) integration: Language
features can also be imprinted on the network
through the use of auxiliary tasks, following a
multi-task approach. Here, we tested this idea by
exploiting the same features used by the concatena-
tion and RF architectures. Alternatively, we could
exploit classic NLP tasks as proposed by Zhou et al.
(2019), but this would prevent us from controlling
indirect features learned by other tasks, making
the comparison between the architectures unfair, as
this architecture would have access to different in-
formation. The first implicit architecture explored
in this work, Implicit Features (IF), learns each
feature with an independent regression task using
an MLP. Thus, the network has n + c output lay-
ers (where c is the number of output neurons of
the target task; in a regression c = 1). Since n
can vary depending on the corpus and can have a
value considerably higher than c, the network could
easily overlook the target task. In order to avoid
this possible issue, we considered a weight of 0.5
for the loss associated with the target task and 0.5
for the sum of the other losses. IF assumes inde-
pendence between features, which is not always
required. We therefore proposed a simple variation
of this architecture to exploit this aspect. In this
variant, named Implicit Feature Vector (IV), all
the features are grouped into a single output vector
of size n. The two implicit models used the same
hyperparameter range as the baseline transformers.
See Figure 1b for IF and IV architectures.

4 Results

4.1 Feature Selection

Among the 10 features sets obtained with mRMR,
we selected the top features for each corpus based

Figure 2: Distribution of the absolute value of correla-
tions between selected features and regression task

on MSE on the development set. We tested regres-
sion with MLP and XGBoost by looking at R2 and
RMSE. As the R2 of the MLP model was very low
in all corpora, we discarded it. See Appendix B
for the performance of these models for each set of
features. As expected, the feature sets are different
for each corpus. Therefore, we use 20, 200, 200
and 500 features respectively for Cambridge, FLE,
FLM and CLEAR. The distribution of each feature
set with the regression target is showed in Figure 3.
We also noticed that no feature is shared between
the 4 corpora and only 8 are shared between 3 cor-
pora, all of them illustrating lexical phenomena.
Metrics of lexical diversity, such as the Corrected
Type-Token Ratio (CTTR) of all types of content
words, and verb frequency are observable in both
English corpora and respectively the FLM and FLE
corpus. The remaining 6 features, shared by the
two French corpora and CLEAR, illustrate ortho-
graphic neighborhood and 5 different flavors of
words imageability, varying only in the way the
feature distribution was aggregated (80 percentile,
average, interquartile range, kurtosis, and 3rd quar-
tile).

4.2 Comparing the performance of the 8
architectures

The results (mean and standard deviation) of the
8 architectures trained in a regression task can be
seen in Table 2. The first surprising result is the ex-
tremely low R2 value for some models in the FLM
corpus (e.g., C2 and IV for FLM), which means
that the model is worse than the average of the re-
gression target. Looking at all results directly, we
notice that the Soft Label (SO) and Simple Concate-
nation (SC) architectures often have the best results.
Looking at the statistical significance, the first con-
clusion is that the differences in architecture do
not generate strong differences between the results.
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Table 2: Results by model and corpus. Metrics are average RMSE, MAE, R2 and R (and standard deviation).
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For example, the only statistically different models
for the Cambridge corpus – for all four measures –
are TR and C2. Similarly, for FLM, the TR model
is the only one with varying performance in the 4
measures, and the R2 measure has no discriminat-
ing power in the statistical analysis of performance
of this corpus; furthermore, we observed no differ-
ence between C2, SC and SO for the 4 measures. A
more distinct trend can be seen with CLEAR and
FLE, where SO has the best performance (or no
statistical difference from the best score) in both
corpora for the 4 measures, and, similarly, IF for
the CLEAR corpus and, on a smaller scale, SC for
the FLE corpus (where no difference was observed
regarding the MAE and R metrics).

Looking at the results in a nutshell, we compared
how many times an architecture obtained the best
score (or is not statistically different from the best).
By combining this information and the evaluation
measure, we can calculate how many times on av-
erage an architecture was the best. In addition, this
measure allows us to group the averages (through
the mean) to obtain a single value per architecture.
In this way, we found the following values for each
architecture: SO 3.8, SC 2.5, IF 2.3, CM 2.0 RF
1.8, IV 1.5, C2 0.8, and TR 0.5.

Although these values indicate a general rank-
ing, they do not account for the degree of variabil-
ity in predictions (in other words, a model with a
different rank may or may not produce very dif-
ferent predictions). Aiming to shed light on this,
we compared the mean of the absolute difference
between the scores of the evaluation metrics for
all architectures (corpora and models). The top
three architectures obtained the following values of
RMSE, MAE, R2 and R respectively: 0.01, 0.05,
0.00 and 0.00 for SO, 0.04, 0.17, 0.03 and 0.03 for
SC, and 0.22, 0.15, 0.19 and 0.19 for IF.

One aspect that needs to be studied for a thor-
ough analysis of the results is the impact of corpus
size. Indeed, the different corpora we used vary
in their number of samples (from 330 to 4,716
samples). To account for this difference, we cre-
ated subsamples of the 2 largest corpora (respect-
ing the distribution of level and gender), to reach
the same number of samples as the two other cor-
pora. We named these subsamples as FLEsmall and
CLEARsmall.13 On these subsamples, we observed
that SO is the best model in FLEsmall, but has no

13The small samples were generated taking into account the
distribution of the regression target and the genres.

difference from SC, TR and RF (it kept the same
tendency except for RF). As for CLEARsmall, we
observed a remarkable difference where R2 scores
of IV and SO are now different from the best score,
and we can no longer observe significant differ-
ences with the other three scores.

Concerning the average ranking of how many
times an architecture obtained the best score (or is
not statistically different from the best), we note a
difference in ranking order, now becoming SO 3.5,
SC 3.0, CM and RF 2.8, IF 2.0, C2 1.5, and TR 1.0.
Despite those differences, the top two are the same.

Studying the absolute mean difference between
the evaluation metrics for all architectures, the top
three architectures obtained the following values
of RMSE, MAE, R2 and R respectively 0.01, 0.24,
0.00 and 0.00 for SO, 0.05, 0.32, 0.05 and 0.05 for
SC, 0.04, 0.32, 0.04 and 0.04 for CM, and 0.04 0.30
0.03 and 0.03 for RF. In this scenario, where all the
corpora have a small size, there is an improvement
in the RF architecture and a considerable reduction
in the TR architecture performance (known for its
data hunger), where it obtained an average absolute
difference of 0.25 for RMSE, 0.82 for MAE, 0.22
for R2 and 0.22 for R.

This quantitative evaluation allows us to state
that the SO architecture has the best overall per-
formance, followed by the SC architecture, con-
sidering the 8 architectures tested. To the best
of our knowledge, there are no other studies in
the literature that compare those two architectures.
Moreover, the existing work on readability is heav-
ily biased towards using classification algorithms,
which limits comparison with our results. How-
ever, the regression approach applied here allowed
us to make proper use of the CLEAR corpus and
to account for the ordinal nature of ARA task. In
the end, despite the differences, our results are in
line with the initial observations in the literature
summarized in Table 1.

In summary, we observe that:

• explicit feature integration models outperform
implicit ones and baselines;

• the explicit architecture Soft-label (SO) show
higher overall performance and the second-
best architecture being Simple Concatenation
(SC) on both corpora sizes studied;

• the impact of the differences between the ar-
chitectures is reduce with small corpora, but
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the ranking of the two best architectures re-
mained the same; and

• statistical machine learning models perform
better than the transformers architecture with
small corpora.

5 Error analysis

Readability assessment can be strongly influenced
by the genre of the documents (Nelson et al., 2012;
Dell’Orletta et al., 2014). To investigate this effect
in the context of our experiments, we computed the
best models’ performance scores on each genre of
the FLE Corpus (i.e., informative, narrative, dia-
logue, mail/e-mail and miscellany) and the CLEAR
Corpus (i.e., informational and literature). Results
are presented in Table 3. We did not observe a
clearly stronger impact of genre on one architec-
ture over the other ones, but we have observed that
they perform differently for each genre. We noted
that models perform consistently well on the in-
formative genre, with an R of approximately 0.85.
They perform worst on the miscellaneous genre in
the FLE Corpus (R of 0.75 for SO and 0.77 for SC),
which, despite being the biggest sample with 611
texts, is mostly composed of unusual text formats
for readability tasks (e.g., poems, menus, songs,
and advertisements). On the other end of the scale,
the dialogue and mail/e-mail genres (composed of
shorter sentences and numerous personal pronouns)
show the highest performance scores, especially for
the SO model. As for the narrative genre, compa-
rable to the latter two in terms of sample size, it
is interesting to note that even though the R and
R2 scores are comparable, their RMSE and MAE
scores on this genre reveal a statistically poorer
performance. This indicates that the order of the
levels was learned, but the range was not properly
learned.

We also investigated the effect of the task on
model performance to assess whether readability
predictions could be influenced by the audience
(i.e., L1 vs. L2). To ensure a fair comparison
between our corpora of different sizes, we used
the FLEsmall and CLEARsmall corpora in this study.
Models’ performance scores are statistically higher
for L2 than for L1 reading (Table 2), which could
be explained by several L2 features available in
FABRA. Similarly, we compared the performance
metrics obtained on English and French corpora
and observed that, for the same task (L1 or L2),
models perform consistently better on English cor-

pora. The differences observed are striking for
the error-based metrics (RMSE and MAE), even
though the ranking of architectures remains unaf-
fected for both languages.

Given the large number of features available af-
ter the automatic annotation, we investigated the
occurrence of features associated with the predic-
tion error of the models. In this study, the feature
selection method described in Section 3.2 was used
to select the top 100 features associated with error
(i.e, statistical residuals). First of all, it is interest-
ing to note that some features used by the models
are still correlated with error, hinting that architec-
tures might not have exploited all the information
available in the features. The FLM corpus is the
most impacted since the intersection between error-
related (100 features) and available in the training
(200 features) includes 9 features for SC and 20
for SO. Moreover, we can note that, while lexical
features account for roughly half this intersection
for both models, discourse features accounts for
30% in SC, but for only 17% in SO. For each ar-
chitecture, we then looked at the intersections of
these feature lists (error-related and feature set) for
the two languages (English and French) and the
two tasks (L1 and L2). For the SC architecture, the
size of the feature intersections for French (10) and
English (11) is larger than for L1 (4) and L2 (3).
If we compare the two architectures, we observe
that the intersections tend to be smaller for SO than
for the SC, suggesting that this model might be
able to make better use of the features, which could
then be an explanation for his marginal superiority.
We also noted that the large proportion of lexical
features for French (80% vs. 10% for English) is
specific to the SC architecture. However, in both
models, the intersection for French only includes
lexical and syntactic features, and does not include
any features related to relationships beyond the
sentence level, contrary to English.

6 Conclusion

In this paper, seeking to combine the accuracy of
DL with the theory-grounded interpretability of
features, we carried out a systematic investigation
of how to combine transformers and linguistic fea-
tures. To this end, we compared 8 different archi-
tectures (6 hybrid and 2 baselines) on 4 corpora
(in different languages and readability tasks). We
observed that a Soft Label architecture obtained the
best overall performance, followed by Simple Con-
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INFORMATIVE NARRATIVE

Models RMSE MAE R2 R RMSE MAE R2 R
SC 0.80 (.13) 0.61 (.10) 0.68 (.11) 0.85 (.04) 0.87 (.21) 0.65 (.14) 0.61 (.20) 0.81 (.08)
SO 0.78 (.04) 0.63 (.03) 0.69 (.03) 0.84 (.02) 0.83 (.11) 0.67 (.10) 0.66 (.09) 0.82 (.06)

MAIL/EMAIL MISCELLANY

Models RMSE MAE R2 R RMSE MAE R2 R
SC 0.76 (.07) 0.57 (.05) 0.67 (.07) 0.84 (.02) 0.90 (.06) 0.67 (.04) 0.52 (.07) 0.77 (.02)
SO 0.66 (.05) 0.48 (.04) 0.75 (.04) 0.88 (.03) 0.86 (.03) 0.66 (.03) 0.56 (.03) 0.75 (.02)

DIALOGUE

Models RMSE MAE R2 R
SC 0.58 (.08) 0.40 (.06) 0.62 (.1) 0.82 (.05)
SO 0.48 (.05) 0.33 (.05) 0.75 (.06) 0.87 (.03)

(a) FLE corpus
INFORMATIVE LITTERATURE

Models RMSE MAE R2 R RMSE MAE R2 R
SC 0.62 (.04) 0.49 (.03) 0.66 (.04) 0.85 (.02) 0.67 (.06) 0.55 (.05) 0.46(.10) 0.81(.02)
SO 0.56 (.02) 0.45 (.02) 0.72 (.03) 0.85 (.02) 0.53 (.01) 0.42 (.01) 0.66 (.02) 0.82 (.01)

(b) CLEAR corpus

Table 3: Results by genre

catenation. In addition, we explored how language,
readability tasks and corpus size impact the perfor-
mance of these architectures, as well as studying
flaws in the use of features by the architectures.
The identification of Soft Label as the best architec-
ture is a satisfying result, given that this method is a
simple combination of the two proposed baselines,
for which several implementations are available. In
addition, this result points to an interest for further
research into semi-supervised learning in ARA. In
addition, our results show several factors associated
with the performance of the architectures. Firstly,
the size of the corpus can impair the analysis of
the difference in performance between the architec-
tures. Second, different types of concatenation may
produce better results in specific cases, but overall
they perform similarly (overall, Simple Concatena-
tion proved to be the best type of concatenation).
Thirdly, implicit architectures have shown some
interesting specific results. Given the complexity
of these, we suggest that further studies should be
carried out in order to explore those approaches.
Fourth, traditional ML algorithms, such as RF, are
still relevant on small corpora. Finally, transform-
ers, despite being able to maintain some competi-
tive results, are not a silver bullet. As future work,
we advocate for further semi-supervised learning
studies in ARA and the systematic comparison of
hybrid architectures in fields other than ARA.

Limitations

Despite the results pointing to a straightforward
solution, they should be taken with a pinch of salt.
Firstly, the work focused on a comparison of the ar-
chitectures, so all the results are based solely on the
regression task (differences might be observed in
the classification task) and on the same transformer
model. Secondly, we searched for the optimal fea-
ture set for each corpus from a large set of features.
Although realistic, this creates a positive scenario
for the contribution of features. Scenarios where
the number of features is reduced may lead to dif-
ferent results (e.g. lower performance of hybrid
models). In addition, our results are based on four
corpora, but each corpus has its own specificities.
Although we believe that using more varied corpora
than previous similar research is an asset in arriving
at robust general conclusions, it is not impossible
that, for the discussion on the effect of task and
language in Section 5, other corpora would lead
to divergent findings. Finally, since our study fo-
cuses on ARA, the results may not hold in different
fields.
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A Hyperparameters

In this work, we explored two groups of hyperparameters: (1) random forest hyperparameters and
(2) transformer hyperparameters. The hyperparameters explored for the soft-label architecture are a
combination of the two groups of hyperparameters, while the other hybrid architectures explore the same
hyperparameters as transformers. The following hyperparameters were explored:

• Group 1

– n_estimators: 600, 700, 800 and 900;
– max_depth: 20, 60 ,100 and None;
– max_features: sqrt, log2 and None.

• Group 2

– Learning rate: 1e-2, 1e-3, 1e-4, 1e-5 and 5e-5;
– Early stop: 1, 3, 5 and 7;
– Optimizer: adam, sgd;
– Gradient clipping: no, yes (value of 1)

After exploring the hyperparameters, the following values were chosen for each corpus and architecture:

Corpus Architecture n_estimators max_depth max_features
Clear RF 600 60 None

SO 900 None None
Cambridge RF 700 None None

SO 700 20 None
FLM RF 800 20 None

SO 600 100 sqrt
FLE RF 700 100 sqrt

SO 800 60 sqrt
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Corpus Architecture Learning rate Early stop Optimizer Gradient clipping

Clear TR 0.0001 5 sgd y

C2 1e-05 5 adam y

CM 1e-05 3 adam y

SC 1e-05 1 adam y

IF 5e-05 1 adam y

IV 1e-05 1 adam y

SO 0.0001 5 sgd y

FLE TR 5e-05 3 adam y

C2 1e-05 1 adam y

CM 1e-05 3 adam y

SC 5e-05 3 adam y

IF 1e-05 3 adam y

IV 1e-05 1 adam y

SO 5e-05 3 adam y

FLM TR 0.0001 1 adam y

C2 0.0001 1 adam y

CM 0.0001 5 adam y

SC 0.0001 3 adam y

IF 0.0001 3 adam y

IV 0.0001 1 adam y

SO 0.0001 1 adam y

Cambridge TR 5e-05 1 adam y

C2 1e-05 5 adam y

CM 5e-05 5 adam y

SC 5e-05 5 adam y

IF 1e-05 5 adam y

IV 1e-05 3 adam y

SO 5e-05 1 adam y

Table 4: Hyperparameters used for each corpus and model
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B Details of Feature Selection

Table 5 shows the values of RMSE and R2 for the number of features. Values in bold are those selected
for each corpus. The distribution of the correlations between features and regression target is shown in
Figure 3.

#feats
cambridge clear FLE FLM

RMSE R2 RMSE R2 RMSE R2 RMSE R2

10 0.69 0.78 0.73 0.52 1.02 0.52 1.82 0.48

20 0.56 0.86 0.73 0.52 0.95 0.59 1.73 0.53

30 0.60 0.83 0.71 0.54 0.92 0.61 1.73 0.53

40 0.67 0.79 0.71 0.55 0.87 0.65 1.55 0.62

50 0.73 0.76 0.72 0.53 0.88 0.64 1.54 0.63

100 0.73 0.76 0.70 0.56 0.87 0.66 1.80 0.49

200 0.69 0.78 0.69 0.56 0.82 0.69 1.52 0.64
300 0.65 0.81 0.69 0.57 0.84 0.67 1.75 0.52

400 0.67 0.80 0.69 0.57 0.84 0.68 1.73 0.53

500 0.69 0.78 0.68 0.58 0.83 0.69 1.80 0.49

Table 5: Scores assigned to each set of features for each corpus considering the RSME and R2 measures

Figure 3: Distribution of correlations between selected features and regression task
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Table 6 presents the 8 features from FABRA14 selected by the model on three corpora.

FEATURE CLEAR Cambridge FLM FLE

LEXdvrFSC_avg x x x
LEXfrqCVS_q1 x x x
LEXnghFRQH_median x x x
LEXnrmIMG_80P x x x
LEXnrmIMG_avg x x x
LEXnrmIMG_iqr x x x
LEXnrmIMG_kurtosis x x x
LEXnrmIMG_q3 x x x

Table 6: Most selected features from FABRA (Wilkens et al., 2022a)

C Models performance by genre

The genres present in each corpora and the number of documents by genre are shown in Table 8.

FLE CLEAR
Genre # Genre #

Mail/email 135 Literature 2420

Miscellany 611 Informative 2304

Mixed 863

Dialogue 195

Informative 414

Narrative 171

Table 8: Corpora size separated by gender

14https://cental.uclouvain.be/fabra/docs.html
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