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Abstract

Despite advancements in conversational Al,
language models encounter challenges to han-
dle diverse conversational tasks, and exist-
ing dialogue dataset collections often lack di-
versity and comprehensiveness. To tackle
these issues, we introduce DialogStudio: the
largest and most diverse collection of di-
alogue datasets, unified under a consistent
format while preserving their original infor-
mation. Our collection encompasses data
from open-domain dialogues, task-oriented di-
alogues, natural language understanding, con-
versational recommendation, dialogue sum-
marization, and knowledge-grounded dia-
logues, making it an incredibly rich and
diverse resource for dialogue research and
model training. To further enhance the utility
of DialogStudio, we identify the licenses for
each dataset, design external knowledge and
domain-aware prompts for selected dialogues
to facilitate instruction-aware fine-tuning. Fur-
thermore, we develop conversational Al mod-
els using the dataset collection, and our exper-
iments in both zero-shot and few-shot learning
scenarios demonstrate the superiority of Di-
alogStudio. To improve transparency and sup-
port dataset and task-based research, as well
as language model pre-training, all datasets, li-
censes, codes, and models associated with Di-
alogStudio are made publicly accessible!.

1 Introduction

Recent years have seen remarkable progress in
Conversational Al, primarily driven by the ad-
vent of approaches and language models (Shus-
ter et al., 2022; Zhang et al., 2023; Longpre et al.,
2023; Touvron et al., 2023). Despite the advance-
ments, these models could fall short when han-
dling various tasks in a conversation due to the
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lack of comprehensive and diverse training data.
Current dialogue datasets (Lin et al., 2021; Asri
et al., 2017) are typically limited in size and task-
specific, which thus results in suboptimal ability
in task-oriented model performance. Additionally,
the lack of dataset standardization impedes model
generalizability.

A few recent works (Gupta et al., 2022; Long-
pre et al., 2023; Ding et al., 2023) have intro-
duced a large collection of datasets, which in-
cludes diverse tasks based on public datasets. For
instance, FlanT5 (Longpre et al., 2023) presents
the flan collections with a wide array of datasets
and tasks. Despite this breadth, the coverage of di-
alogue datasets within the Flan collection remains
notably sparse, featuring only about ten datasets.
Although OPT (Iyer et al., 2022) have incorpo-
rated collections with several dialogue datasets,
these collections remain inaccessible to the public.
In contract, efforts like InstructDial (Gupta et al.,
2022) and ParlAI (Miller et al., 2017) consist of
more dialogue datasets, but they lack diversity and
comprehensiveness. For instance, ParlAl mainly
includes open-domain dialogue datasets, which
are exclusively accessible through their platform.
Other collections (Gupta et al., 2022; Kim et al.,
2022a; Ding et al., 2023; Dubois et al., 2023) of-
ten distill single dataset from ChatGPT or pro-
cess datasets into a sequence-to-sequence format
to support language model training, featuring only
input-output pairs such as dialogue context and
system response. However, previous collections
often overlook other crucial dialogue information,
constraining their utility for research on individual
datasets, tasks, and broader applications.

To overcome the aforementioned challenges,
we introduce DialogStudio, the most compre-
hensive and diverse collection of publicly avail-
able dialogue datasets, unified under a consis-
tent format. By aggregating dialogues from vari-
ous sources, DialogStudio promotes holistic anal-
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Figure 1: (a) is the distribution of all datasets in DialogStudio. The outer and inner circle list names of datasets and
the associated categories, respectively. (b) illustrates covered domains of Task-Oriented Dialogues in DialogStudio.

ysis and the development of models adaptable
to a variety of conversational scenarios. The
collection spans an extensive range of domains,
aspects, and tasks, and it is inclusive of sev-
eral categories: Open-Domain Dialogues, Task-
Oriented Dialogues, Natural Language Under-
standing, Conversational Recommendation, Dia-
logue Summarization, and Knowledge-Grounded
Dialogues. Thus, it can provide support for re-
search in both individual dialogue tasks and large-
scale language pre-training.

DialogStudio stands out not only for its compre-
hensive coverage but also for its accessibility. It
offers easy access with a unified format and doc-
uments. A straightforward load dataset() com-
mand through HuggingFace allows users to seam-
lessly interact with the collection, and we have in-
cluded documentation for each dataset to enhance
usability. We anticipate that this collection will
enable comprehensive and standardized training
and evaluations of dialogue models, fostering fair
comparisons and propelling further advancements
in Conversational Al

Furthermore, we identify dialogue domains, de-
sign external knowledge for available dialogues
and create tailored prompts for selected datasets
accordingly. Leveraging these datasets from Di-
alogStudio, we have constructed instruction-aware
models, with capacities ranging from 770M to
3B parameters. These models have the ability to

handle various external knowledge and are adept
at both response generation and general tasks,
demonstrating the benefits of DialogStudio. The
main contributions of this paper are as follows:

* We introduce DialogStudio, a meticulously cu-
rated collection of more than 80 dialogue
datasets. These datasets are unified under a con-
sistent format while retaining their original in-
formation. We integrate external knowledge,
incorporate domain-aware prompts and identify
dataset licenses, making DialogStudio an excep-
tionally rich and diverse resource for dialogue
research and model training.

* We have made our datasets publicly available to
enhance transparency and support research ef-
forts. Additionally, we are committed to im-
proving DialogStudio’s usability and will persist
in our efforts to refine it, ensuring an optimal
user experience.

* We train conversational Al models based on Di-
alogStudio, and these models have demonstrated
superior performance over strong baselines in
both zero-shot and few-shot learning scenarios.

2 Data analysis

2.1 Data Visualization

The dialogue datasets are compartmentalized
into several categories: Open-Domain Dialogues,
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Figure 2: The score distribution for the dialogue quality.

Task-Oriented Dialogues (TOD), Natural Lan-
guage Understanding Dialogues (NLU), Conver-
sational Recommendation (Conv-Rec), Dialogue
Summarization (Dial-Sum), and Knowledge-
Grounded Dialogues (KG-Dial). Figure 1la
presents an overview of DialogStudio’s dataset
categories. Note that the category boundaries are
fuzzy as some datasets span multiple categories.
For instance, SalesBot (Chiu et al., 2022) contains
both casual and task-oriented conversations.
Analogously, MultiWOZ (Budzianowski et al.,
2018; Zang et al., 2020), a task-oriented dia-
logue corpus, incorporates knowledge bases and
dialogue acts to enhance knowledge-grounded
generation. Additionally, DialogStudio demon-
strates its diversity by covering a wide range of
domains, part of which is shown in Figure 1b.

2.2 Data Quality Investigation

Due to the existence of noise in dialogue, we
develop a simple yet effective way to verify the
quality of the datasets. Specifically, we employ
ChatGPT (GPT-3.5-turbo) to evaluate the quality
of system responses based on severall perspec-
tives (Mehri et al., 2022; Kim et al., 2022a), i.e.,
Understanding, Relevance, Correctness, Coher-
ence, Completeness and Overall quality. Under-
standing assesses whether the model’s responses
accurately reflect the meaning and intent of the
user’s inputs. Relevance demonstrates whether the

generated response should be directly related and
appropriate to the preceding user input and the
context of the conversation. Coherence measures
the logical consistency of the model’s responses
within the context of the conversation. Complete-
ness refers to whether the system’s responses fully
address the user’s queries or tasks. Overall quality
comprehensively rates the quality of dialogue. All
scores are in the range of 1-5, and higher scores
should only be given to truly exceptional exam-
ples. We delicately design the prompt and ask the
ChatGPT model to strictly rate the score.

Since there are a lot of datasets in DialogStu-
dio, we randomly select 33 multi-turn dialogue
datasets and evaluate all the training dialogues of
each dataset. To harmonize ChatGPT and human
ratings, we take a random sample of 50 training di-
alogues from each dataset. These were then rated
by three expert researchers using the five specified
criteria. Post-alignment of ChatGPT and human
evaluations, we view dialogues with a score above
3 as being of high quality. Figure 2 illustrates dis-
tributions of those scores. We also reveal the aver-
age score as the p in each sub-caption. In general,
the dialogues show high qualities regarding to the
individual criteria and the overall quality.

3 Datasets Unification and Access

We collect and process a wide range of datasets,
involving different domains, types, and tasks.
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Since these datasets originally contain various in-
formation and format, we propose a unification
strategy to process all the datasets such that they
can be loaded in the same data loader.

3.1 Unification

Before unifying the format of those datasets, we
fixed several issues as follows: 1) we remove those
dialogues labeled as multi-turn dialogues, but ac-
tually with only one turn and miss either user utter-
ance or system utterance. 2) We manually check
the individual dialogues. If one dialogue con-
tains one or more empty user or system utterances,
we fill utterances based on corresponding dialogue
contexts, dialogue acts, and dialogue information.
In total, less than 0.5% of dialogues had these is-
sues. To support research interest on individual
datasets, we have flagged and rectified these prob-
lematic dialogues.

Additionally, we recognize the success of in-
struction tuning for dialogue models and thus we
manually pre-define five different prompt tem-
plates for multi-turn dialogue datasets, such as
This is a bot helping users to {Task_Domain}.
Given the dialogue context and external database,
please generate a relevant system response for the
user. The {Task_Domain} is associated with the
dialogue domain and we manually create a cor-
responding description. For example, if a dia-
logue is of domain travel, we set { Task_Domain}
as book a trip. A concrete example of the prompt
is demonstrated in Figure 3. Moreover, many
datasets lack a direct mapping between dialogues
and their domain information. To address this, we
determine the domain of each dialogue using its
intent, schema, APIs, and associated databases.

Next, we construct a uniform JSON dictionary
format to store all relevant information of each
dialogue as illustrated in Figure 3. Compared
with existing works, DialogStudio covers more di-
alogue information and is easier to retrieve the
information for arbitrary dialogue-related tasks.
Concretely, we include all dialogue-related infor-
mation, such as the dialogue ID, data split label,
domain, task, and content. Additionally, we iden-
tify the external knowledge, dialogue state track-
ing (DST) knowledge, and intent knowledge in the
dialogue, which are the most beneficial knowledge
for a dialogue.

Regarding external knowledge, we construct it
based on information such as databases and dia-

logue acts. Since each dialogue dataset focuses
on specific tasks or domains and has a different
database and annotation schema, we unify such in-
formation into external knowledge. For example,
if the user is looking for a hotel and asking for its
address, the system response should be based on
both the search results from the database and the
dialogue context. To simulate the realistic situa-
tion and avoid directly providing the model with
the ground truth resulting hotel, we also randomly
sample four other candidate results and mix them
with the ground truth result. All information is
flattened and converted into a string as external
knowledge.

To complete tasks and generate coherent re-
sponses, a dialogue system needs to track users’
requirements for the task. Those requirements are
usually represented as dialogue states. For exam-
ple, regarding the hotel booking task, a dialogue
system needs to extract information such as price
range and locations to enable searching hotels in
the database. The type of dialogue states varies
across different tasks and datasets. As such, it
is hard for dialogue systems to predict the val-
ues of those dialogue states if unknowing the spe-
cific dialogue states the task covers. Therefore, we
propose to insert the schema, consisting of pre-
defined dialogue state types and values for each
task, into the input sequence. For datasets like
SGD (Rastogi et al., 2020), which already pro-
vides annotation schema, we directly convert the
dictionary-structured schema into a string. For the
rest datasets that have no such schema file, we it-
erate over all dialogues and collect potential state
annotations to construct a schema. We provide do-
mains, slot types, and slot values in the schema
string. For those categorized dialogue slots like
“hotel star-ratings”, which have a fixed number of
candidate values, we provide all possible values.
For others that have unlimited possible values, e.g.
’stay night”, we randomly sample ten values, such
that a model can learn what slot values are relevant
to these slot types. We put the turn-level ground-
truth DST information in “dst”, and the general
DST information under “dst knowledge”, as pre-
sented in Figure 3.

Analogously, intent prediction also requires
models to know all possible intent types for each
task. Therefore, we extract the schema directly
from the schema file if it exists. As to datasets
without schema, we also iterate over all dialogue
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"dialogue_id": "train_1",
"num_utterances": 14,
"utterances": [
{
"speaker": "USR",
"text": "I'd like to book a trip to Atlantis from Caprica on
Saturday, August 13, 2016 for 8 adults.",
"ap_label": "",
"da_label": "inform"

b
{
"speaker": "USR",
"text": "I have a tight budget of 1700.",
"ap_label": "",
"da_label": "inform"
b
{
"speaker: "SYS",
"text": "Hi...I checked a few options for you, and we do
not currently have any trips that meet this criteria.",
"ap_label": "",
"da_label": "sorry",
"slots": {
"dst_city": "Atlantis",
"or_city": "Caprica",
"str_date": "Saturday, August 13, 2016",
"n_adults": "8",
"budget": "1700"
}
}
I3
"scenario": {

"db_id": "U22HTHYNP",
"db_type": "booking",
"task": "book"

}

(a) Original Data

"FRAMES--train--1": {

"original dialog id": "train_1",

"dialog index": 1,

"original dialog info": {
"scenario": {

i
]

"db_id": "U22HTHYNP",
"db_type": "booking",
"task": "book"} }

"log": [
{

"turn id": 1,

“user utterance™: “I‘d like to book a trip to Atlantis from Caprica on Saturday,
August 13, 2016 for 8 adults. I have a tight budget of 1700.",

“system response”: “Hi...I checked a few options for you, and we do not currently
have any trips that meet this criteria.",

"dialog history": "",

"original user side information": {
"da_label": "inform"
1
"original system side information": {
"da_label": "sorry",
"slots": {
"dst_city": "Atlantis",
"or_city": "Caprica",
"str_date": "Saturday, August 13, 2016",
"n_adults": "8",
"budget": "1700"

1
s

}s

"intent": "inform",

"dst": "book dst_city Atlantis, book or_city Caprica, book str_date Saturday, August
13,2016, book n_adults 8, book budget 1700"

“external knowledge™: “( travel : (( trip : ( returning : ( duration : ( hours : 0 | min : 51...",
“dst knowledge”: ** (' book : (dst_city : ( Indianapolis | St. Loius | Le Paz | ...) | or_city : (

PUebla | sf| toluca | San Francisco...",

"intent knowledge": "( book : ( null | negate | request | goodbye | affirm))...",
"prompt": [

“This is a bot helping users to book a trip. Given the dialog context and external
database, please generate a relevant system response for the user."

(b) DialogStudio Data

Figure 3: A dialogue format example. Left: original example, right: converted example. Here we only show the

first turn and partial information.

in the dataset to collect all potential intents. Then,
we put the turn-level ground-truth intent informa-
tion into “intent”, and the general intents under
“intent knowledge”, as presented in Figure 3. Note
that not all datasets provide detailed annotation for
dialogue states, intents, or even databases. For dia-
logue state tracking and intent classification tasks,
we only process dialogues with corresponding an-
notations. Since all data is used for response gen-
eration, we leave the external knowledge value for
the database blank if there is no related database
in the original dataset.

3.2 Access and Maintenance

As aforementioned in the format, our DialogStu-
dio data is easy to access via the JSON files. To
make DialogStudio more maintainable and acces-
sible, we will publish datasets on both GitHub
and HuggingFace. GitHub mainly stores selected
dialogue examples and relevant documents. We
sample five original dialogues and five converted
dialogues for each dataset to facilitate users in

comprehending our format and examining the
contents of each dataset. The complete DialogStu-
dio dataset is maintained in our HugginFace
repository, where all the datasets can be directly
downloaded or loaded with the HuggingFace
load dataset(dialogstudio,dataset name)
API. Given the substantial volume of datasets,
optimizing user experience poses a challenge
and limitation. We will continuously maintain
and update both GitHub and HuggingFace. Di-
alogStudio is built upon public research datasets
without individual or private information. We
believe it is important to clearly present the
license associated with each of these datasets.
Consequently, we have included the original
licenses for all datasets. All these datasets are
supportive of academic research, and some of
them also endorse commercial usage. The code
that we employ falls under the widely accepted
Apache 2.0 license. While we strictly require
adherence to the respective dataset licenses for all
intended usages on DialogStudio, there remains

2303



a possibility that some works might not fully
comply with the licenses.

Regarding the other concerns such as ethical
concern, we admit that DialogStudio is collected
and maintained by the authors of this work and we
did not hire external annotators. Since it contains
unified datasets across several categories, it sup-
ports various research purposes from individual
tasks and datasets to language model pre-training.

4 [Experiments

In this section, we present the pre-training details,
methodologies, and metrics used to assess the per-
formance of our DialogStudio model. The evalua-
tion process aims to measure the model’s ability to
both solve task-oriented dialogues and understand
general prompt-based instruction.

4.1 Model Pre-training

In this section, we introduce more details about
how we conduct our pre-training. In regards of
training models, we mix several datasets from Di-
alogStudio.

For task-oriented and conversational recom-
mendation datasets, we selected dialogues from a
range of sources including KVRET (Eric et al.,
2017), AirDialogue (Wei et al., 2018), DSTC2-
Clean (Mrksi¢ et al., 2017), CaSiNo (Chawla
et al., 2021), FRAMES (El Asri et al),
WO0Z2.0 (Mrksi¢ et al., 2017), CraigslistBar-
gains (He et al., 2018), Taskmasterl-2 (Byrne
et al., 2019), ABCD (Chen et al., 2021a), Mul-
DoGO (Peskov et al., 2019), BiTOD (Lin et al.,
2021), SimJoint (Shah et al., 2018), STAR (Mosig
et al., 2020), SGD (Rastogi et al., 2020), OpenDi-
alKG (Moon et al., 2019) and DuRecDial-2.0 (Liu
etal., 2021).

Meanwhile, for knowledge-grounded dia-
logues, we drew upon dataset from SQA (Iyyer
et al.,, 2017), SParC (Yu et al., 2019b), Fe-
TaQA (Nan et al., 2022), MultiModalQA (Talmor
et al., 2021), CompWebQ (Talmor and Berant,
2018), CoSQL (Yu et al., 2019a).

For open-domain dialogues, we sample dia-
logues from SODA (Kim et al., 2022a), Prosocial-
Dialog (Kim et al., 2022b), Chitchat (Myers et al.,
2020).

For each dialogue dataset, we sample at most
11k dialogues. Additionaly, we extracted around
11k dialogue turns from question-answering dia-
logues featured in RACE (Lai et al., 2017), Nar-

rativeQA (Kocisky et al., 2018), SQUAD (Ra-
jpurkar et al., 2018), MCtest (Richardson et al.,
2013), OpenBookQA (Mihaylov et al., 2018),
MultiRC (Khashabi et al., 2018). Here, a dialogue
turn refers to a pair consisting of a dialogue con-
text and its corresponding system response. The
rest datasets in DialogStudio are preserved for fu-
ture evaluations and downstream fine-tuning.

For each dialogue during the training, we
shape the available external knowledge into a
string, which is included in dialogue context,
and instruct the model to generate a dialogue re-
sponse based on external knowledge. We use
the format Instruction \n <USER> user ut-
terance <SYSTEM> system response <USER>

<USER> user utterance \n <EXTERNAL
KNOWLEDGE> supported knowledge to train the
model, where <USER>, <SYSTEM> and <EX-
TERNAL KNOWLEDGE>> are special tokens.

We follow the public HuggingFace transformer
code (Wolf et al., 2020; Wang et al., 2022) to train
the model. For initializing our models, we adopt
TS5 (Raffel et al., 2020) and Flan-T5 (Longpre
et al., 2023) as starting points to respectively es-
tablish DialogStudio-T5 and DialogStudio-Flan-
T5. For the training of DialogStudio-Flan-T5, we
exclude all translation-oriented tasks, limiting the
sample size for each Flan task to a maximum of
150 examples. This leads to a cumulative total
of 140,000 samples. We train the model up to 3
epochs with bfloat16 precision, a total batch size
of 64. We set a constant learning rate 5e-5 and 3e-
5 for the large model and the 3B model, respec-
tively. Experiments are conducted using 16 A100
GPUs, each with 40GB of GPU memory.

4.2 Evaluation for Response Generation

Settings.  We evaluate the performance on
CoQA (Reddy et al., 2019) and MultiwOZ
2.2 (Zang et al., 2020). CoQA is a multi-turn
conversational question answering dataset with 8k
conversations about text passages from seven di-
verse domains. MultiWOZ 2.2 is one of the largest
and most widely used multi-domain task-oriented
dialogue corpora with more than 10000 dialogues.
Each dialogue involves with one or more domains
such as Train, Restaurant, Hotel, Taxi, and Attrac-
tion. The dataset is challenging and complex due
to the multi-domain setting and diverse linguistic
styles. Note that we exclude both datasets during
the pre-training stage to prevent data leakage.
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CoQA MultiwOZ
ROUGE-L F1 | ROUGE-L Fl
Flan-T5-3B (Longpre et al., 2023) 37.1 37.2 7.0 7.4
Flan-T5-Large (Longpre et al., 2023) 22.5 22.3 15.9 17.6
GODEL-Large (Peng et al., 2022) 43.2 43.3 18.5 19.3
' DialogStudio-T5-Large | 612 615 324 345
DialogStudio-Flan-T5-Large 63.3 63.5 33.7 35.9

Table 1: Zero-shot results on CoQA and MultiwOZ 2.2.

CR DAR TE avg.

(14 tasks) (7 tasks) (27 tasks) | (48 tasks)
OPT-30B (Zhang et al., 2022b) 21.3/1.1 35.2/4.1 40.3/0.9 32.3/2.0
OPT-IML-30B (Iyer et al., 2022) 37.4/41.6 51.4/51.8 54.7/47.8 | 47.9/47.1
OPT-175B (Zhang et al., 2022b) 21.0/42 37.1/16.8 41.6/2.2 33.3/7.7
OPT-IML-175B (Iyer et al., 2022) 39.0/49.8 61.2/60.2 54.3/51.0 | 51.5/53.6
Tk-INSTRUCT-11B (Wang et al., 2022) | 32.3/62.3 51.1/69.6 55.0/64.1 | 46.1/65.3

" Tk-INSTRUCT-3B (Wang et al., 2022) | 38.4/51.3 45.7/58.5 48.4/52.8 | 44.2/54.2

DialogStudio-NIV2-T5-3B 41.3/59.8 57.5/63.7 52.3/55.1 | 50.4/59.5

Table 2: 0-shot/2-shot/5-shot ROUGE-L testing results on unseen datasets and unseen tasks. Results of baselines
are reported by original papers. CR, DAR, and TE, avg. are abbreviations for Coreference Resolution, Dialogue
Act Recognition, Textual Entailment, and average results, respectively.

For CoQA, we follow the original paper set-
ting to answer question based on external pas-
sage. For MultiWwOZ 2.2, we consider the lex-
icalized dialogue-act-to-response generation task
where the model needs to consider both the dia-
logue context and the dialogue acts during gener-
ation. We follow the prompt from (Bang et al.,
2023) to instruct models, i.e., Continue the dia-
logue as a task-oriented dialogue system called
SYSTEM. The answer of SYSTEM should follow
the ACTION provided next while answering the
USER’s last utterance.

We focus on zero-shot evaluation and report
the ROUGE-L and F1 score (Miller et al., 2017),
where ROUGE-L measures the longest common
subsequence and F1 measures the Unigram F1
overlap between the prediction and ground-truth
response.

Baselines. We consider GODEL (Peng et al.,
2022) and Flan-T5 (Longpre et al., 2023) as our
baselines. GODEL is a T5-based large pre-trained
model for goal-oriented dialogues. It is pre-trained
with 551M multi-turn Reddit dialogues and 5M
knowledge-grounded and question-answering di-
alogues. Flan-T5 is an instruction-aware model.
It is also initialized from TS5 and pre-trained on

the Flan collection, which consists of more than
1800 tasks and 400 datasets, including dialogue
datasets.

Results. Table 1 depicts the results from both
zero-shot and few-shot testing. Evidently, our
models considerably surpass the baseline models
in terms of zero-shot learning, exhibiting a robust
generalized ability for response generation in a
zero-shot scenario.

Flan-T5-3B, on the other hand, underperforms
in the task of generating responses from dialog-
acts. This model tends to produce incorrect dialog
acts, unnatural utterances, or terminates with an
empty end token. One explanation for this is that
Flan-T5 models did not receive sufficient dialogue
training during the instruction-training phase on
the Flan collections. Comparisons between the
performances of existing models before and after
training on the unified dataset validate DialogStu-
dio’s usefulness.

4.3 Evaluation on Super-Naturallnstructions

Settings. NIV2 (Wang et al., 2022) introduces
an instruction-tuning benchmark with more than
1600 tasks. We select 3 categories with 44 tasks
from the held-out test set, which consists of 154
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MMLU BBH
0-SHOT 5-SHOT | 3-SHOT

TK-INSTRUCT 11B (Wang et al., 2022) - 41.1 329

LLAMA 13B (Touvron et al., 2023)
Vicuna 13B (Chiang et al., 2023)
Flan-T5-Large (Longpre et al., 2023)
Flan-T5-XL (Peng et al., 2022)
OPT-IML-Max 30B (Iyer et al., 2022)
" DialogStudio-Flan-T5-Large
DialogStudio-Flan-T5-3B

- 46.2 37.1
- 49.7 37.1
41.5 41.9 37.1
48.7 49.3 40.2
46.3 43.2 313
S| 401 409 | 342

Table 3: Test results on MMLU and BBH. Results come from original papers and InstructEval (Chia et al., 2023).

tasks, i.e., Coreference Resolution, Dialogue Act
Recognition, and Textual Entailment. The se-
lected tasks and datasets are unseen in the train-
ing stage. Specifically, we strictly follow all set-
tings including metrics in (Wang et al., 2022), i.e.,
train models with instructions + 2 positive demon-
strations and no negative demonstrations. We fine-
tune DialogStudio-T5-3B on 756 training tasks.
Baselines. OPT (Zhang et al., 2022b) is a set of
open decoder-only transformer models pre-trained
on 180B tokens. OPT-IML (Iyer et al., 2022) is
an instruction meta-learning model based on the
OPT-IML bench with more than 1500 tasks. Tk-
INSTRUCT (Wang et al., 2022) is initialized from
TS5 and further pre-trained based on NIV2 collec-
tions. Note that we neglect Flan-T5 because it
trains with all the downstream datasets and tasks.
Results. Table 2 shows the 0O-shot and 2-
shot results on unseen datasets and unseen
tasks. Based on the average performance on
48 tasks, DialogStudio-NIV2-T5-3B outperforms
OPT-IML-175B by 5.9% on 2-shot learning with
more than 50 times fewer model parameters, and it
surpasses Tk-INSTRUCT-11B by 4.3% on 0-shot
learning with more than 3 times fewer parameters.
The performance demonstrates the strong general-
ization ability of DialogStudio model. Compared
with Tk-INSTRUCT-3B, DialogStudio-NIV2-T5-
3B achieves 6.2% and 5.3% improvements on 0-
shot and 2-shot learning respectively. Given that
both Tk-INSTRUCT and our DialogStudio-NIV2-
T5-3B are fine-tuned from the TS5 model, this
improvement indicates the effectiveness of pre-
training with our DialogStudio collection.

4.4 Evaluation on MMLU and BBH

Table 3 presents results on MMLU (Hendrycks
et al., 2020) and Big Bench Hard (BBH) (Srivas-

tava et al.,, 2022). When comparing the perfor-
mance of DialogStudio-Flan-T5 with Flan-T5, we
observe a minor decrease. However, this is accom-
panied by a significant improvement in dialogue
relevant capabilities.

4.5 Evaluation on Alternative Benchmarks

DialogStudio encompasses not just public realistic
dialogue datasets, but also those derived from or
shared with ChatGPT, such as SODA (Kim et al.,
2022a) and ShareGPT. Due to GPU constraints,
we employ techniques like LoRA (Hu et al., 2021)
to fine-tune llama (Touvron et al., 2023). When
using equivalent datasets from DialogStudio, we
observed performance comparable to other mod-
els, e.g., Vicuna (Chiang et al., 2023), on bench-
marks like AlpacaEval (Dubois et al., 2023) and
MT-Bench (Zheng et al., 2023). This demonstrates
that DialogStudio caters to research interests in
both specific datasets and generalized instruction
tuning.

S CONCLUSION

In this study, we have introduced DialogStudio,
a comprehensive collection that aggregates more
than 80 diverse dialogue datasets while preserv-
ing their original information. This aggrega-
tion not only represents a significant leap towards
consolidating dialogues from varied sources but
also offers a rich tapestry of conversational pat-
terns, intents, and structures, capturing the nu-
ances and richness of human interaction. Utilizing
DialogStudio, we developed corresponding mod-
els, demonstrating superior performance in both
zero-shot and few-shot learning scenarios. In the
spirit of open research and advancing the field,
we are committed to releasing DialogStudio to the
broader research community.
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Appendix

Table 4 and Table 5 lists datasets included in
DialogStudio. Initially, we present a partial list
of these datasets. More and latest information are
available in GitHub?.

Mttps://github.com/salesforce/
DialogStudio
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NLU

NLU++ (Casanueva et al., 2022)

BANKING77-0O0S (Zhang et al., 2022a)

BANKING77 (Casanueva et al., 2020)
RESTAURANTSS8K (Coope et al., 2020)

CLINCI150 (Larson et al., 2019)
CLINC-Single-Domain-OOS-banking (Zhang et al., 2022a)
CLINC-Single-Domain-OOS-credit_cards (Zhang et al., 2022a)
HWU64 (Liu et al., 2019)

SNIPS (Coucke et al., 2018)

SNIPS-NER (Coucke et al., 2018)

DSTC8-SGD (Coope et al., 2020)

TOP (Gupta et al., 2018)

TOP-NER (Gupta et al., 2018)

ATIS-NER (Hemphill et al., 1990)

ATIS (Hemphill et al., 1990)

MIT-MOVIE (Liu et al., 2013)

MIT-RESTAURANT (Liu et al., 2013)

TOD

KVRET (Eric et al., 2017)
AirDialogue (Wei et al., 2018)
DSTC2-Clean (Mrksi¢ et al., 2017)
CaSiNo (Chawla et al., 2021)
FRAMES (EI Asri et al.)

WO0Z2.0 (Mrksié et al., 2017)
CraigslistBargains (He et al., 2018)
Taskmasterl (Byrne et al., 2019)
Taskmaster2 (Byrne et al., 2019)
Taskmaster3 (Byrne et al., 2019)
ABCD (Chen et al., 2021a)
MulDoGO (Peskov et al., 2019)
BiTOD (Lin et al., 2021)
SimJointGEN (Shah et al., 2018)
SimJointMovie (Shah et al., 2018)
SimJointRestaurant (Shah et al., 2018)
STAR (Mosig et al., 2020)

SGD (Rastogi et al., 2020)
MultiwOZ2_1 (Eric et al., 2020)
MultiWOZ2 2 (Zang et al., 2020)
MultiwOZ2_2+ (Qian et al., 2021)
HDSA-Dialog (Chen et al., 2021a)
MS-DC (Li et al., 2018b)

GECOR (Quan et al., 2019)
Disambiguation (Qian et al., 2022)
MetalLWOZ (Lee et al., 2019)
KETOD (Chen et al., 2022b)
MuDoCo (Martin et al., 2020)

Table 4: List of datasets included in DialogStudio (a).
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KG-Dial

SQA (Iyyer et al., 2017)

SParC (Yu et al., 2019b)

FeTaQA (Nan et al., 2022)
MultiModalQA (Talmor et al., 2021)
CompWebQ (Talmor and Berant, 2018)
CoSQL (Yu et al., 2019a)

CoQA (Reddy et al., 2019)

Spider (Yu et al., 2018)

ToTTo (Parikh et al., 2020)

WebQSP (Yih et al., 2016)

WikiSQL (Zhong et al., 2017)

WikiTQ (Pasupat and Liang, 2015)
DART (Nan et al., 2021)

GrailQA (Gu et al., 2021)

HybridQA (Chen et al., 2020)

MTOP (Chen et al., 2020)
UltralChat-Assistance (Ding et al., 2023)
Wizard_of _Wikipedia (Dinan et al., 2018)
Wizard_of _Internet (Komeili et al., 2022)

Dial-Sum

TweetSumm (Feigenblat et al., 2021)
SAMSum (Gliwa et al., 2019)

DialogSum (Chen et al., 2021b)

AMI (Kraaij et al., 2005; Rennard et al., 2023)
ICSI (Janin et al., 2003)

QMSum (Zhong et al., 2021)

MediaSum (Zhu et al., 2021)

ECTSum (Mukherjee et al., 2022)
SummScreen_ForeverDreaming (Chen et al., 2022a)
SummScreen_TVMegaSite (Chen et al., 2022a)
CRD3 (Rameshkumar and Bailey, 2020)
ConvoSumm (Fabbri et al., 2021)

Open-Domain

ChitCHAT (Myers et al., 2020)
SODA (Kim et al., 2022a)
Prosocial (Kim et al., 2022b)
HH-RLHF (Bai et al., 2022)
Empathetic (Rashkin et al., 2019)
ConvAI2 (Dinan et al., 2019)
AntiScam (Li et al., 2020)
ShareGPT (Zheng et al., 2023)
PLACES3.5 (Chen et al., 2023)

Conv-Rec

SalesBot (Chiu et al., 2022)
Redial (Li et al., 2018a)
Inspired (Hayati et al., 2020)
DuRecDial 2.0 (Liu et al., 2021)
OpendialKG (Moon et al., 2019)

Table 5: List of datasets included in DialogStudio (b).
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