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Abstract

Passage retrieval is a crucial component of mod-
ern open-domain question answering (QA) sys-
tems, providing information for downstream
QA components to generate accurate and trans-
parent answers. In this study we focus on pas-
sage re-ranking, proposing a simple yet effec-
tive method, Joint Passage Re-ranking (JPR),
that optimizes the mutual information between
query and passage distributions, integrating
both cross-encoders and generative models in
the re-ranking process. Experimental results
demonstrate that JPR outperforms conventional
re-rankers and language model scorers in both
open-domain QA retrieval settings and diverse
retrieval benchmarks under zero-shot settings.1

1 Introduction

Passage retrieval is a crucial component in open-
domain question answering (QA) (Chen and Yih,
2020), a task that requires answering questions
from a wide range of domains and could be ap-
plied in systems that fulfill user’s information
needs (Voorhees et al., 1999). Retrieval offers
downstream QA systems grounding information,
which not only improves accuracy in a lot of cases
but also provides transparency to how systems gen-
erate answers, similar to how articles provide refer-
ences and citations, such that model hallucinations
can be checked with ease. Furthermore, the set of
documents to be retrieved from, or knowledge base,
can be quickly updated with new documents and
knowledge such that models can adapt to tempo-
ral changes, and do not need to be continuously
re-trained nor require online training paradigms for
continual learning.

Early retrieval methods are typically based on
term-matching, such as BM25 (Robertson et al.,
2009) or TF-IDF (Salton et al., 1975). Such meth-
ods, called sparse retrievers, perform keyword

1Source code is available at https://github.com/
wfangtw/jpr

matching efficiently with an inverted index to find
relevant contexts. Sparse retrievers often achieve
reasonable performance while being computation-
ally efficient and does not require training, but
are shown to have limited abilities beyond lexical
matching.

Recently, dense retrievers that encode text with
continuous embeddings have been heavily stud-
ied and utilized in contemporary QA systems, of-
ten outperforming their sparse counterparts on
high resource evaluation settings (Karpukhin et al.,
2020). There are a few drawbacks however, such
as higher computational demands during both train-
ing and inference, inability to handle large con-
texts (Luan et al., 2021), and difficulty in gener-
alizing to new domains especially those with lim-
ited data (Reddy et al., 2021). Hybrid methods
have been explored to get the best of both worlds,
generally utilizing an efficient sparse method to re-
trieve a larger number of possibly relevant contexts,
and then perform passage re-ranking with a more
computationally-intensive dense model for refined
scoring (Nogueira and Cho, 2019).

In this work, we focus on passage re-ranking
and explore the use of generative models along-
side conventional re-rankers. Previous work have
explored pre-trained language models (LM) as the
re-ranking scorer (Sachan et al., 2022), however we
find that it underperforms conventional re-rankers
for both supervised and zero-shot settings. Starting
from maximizing mutual information (MI) for in-
ference, which measures how much more queries
and passages co-occur compared to appearing inde-
pendently, we show how a small generative model
can be effectively used with conventional cross-
encoding re-rankers for improved performance. Ex-
periments on a supervised setting for open-domain
QA retrieval and a zero-shot setting across a suite
of diverse retrieval benchmarks validate our ap-
proach. Our contributions can be summarized as
follows:
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• We propose Joint Passage Re-ranking (JPR),
a method utilizing both a cross-encoder and
a generative model in the retrieval re-ranking
process, optimizing the mutual information
between query and passage distributions.

• We demonstrate that JPR outperforms con-
ventional re-rankers and generative scorers
in open-domain QA retrieval evaluation and
diverse zero-shot retrieval datasets.

2 Joint Passage Re-ranking (JPR)

Consider the two distributions p(x) and p(z) over
all queries x ∈ X and all passages z ∈ Z .
The conditional distributions p(z|x) and p(x|z)
can be used to infer one domain based on the
other. The joint distribution p(x, z) characterizes
the combined structure of both domains, where
p(x, z) = p(x)p(z|x) = p(z)p(x|z).

Here pϕ(z|x) defines a passage retrieval model,
which we parametrize by ϕ, generally trained
with maximum likelihood estimation (MLE):
Lretrieval(ϕ) ≜ −Ex,z∼p(x,z) [log pϕ(z|x)]. During
inference, finding the most probable relevant pas-
sage can be written as:

ẑ = argmax
z

log pϕ(z|x). (1)

Since we focus on passage re-ranking, we treat
pϕ(z|x) in Eq. 1 as re-ranking scores.

2.1 Inference by Maximizing Mutual
Information

In passage retrieval, documents are commonly
chunked into multiple passages of fixed length,
some of which containing summaries or general
information that are often estimated to have high
probabilities by retrieval rankers but do not con-
tain specifics regarding the given query. One of
such example is shown in Figure 1. In this work,
we approach inference by finding the passage that
maximizes the pointwise mutual information (PMI)
between both domains instead of likelihood:

ẑ = argmax
z

(
log p(z|x)− log p(z)

)
. (2)

We see that maximizing PMI adds a penalizing
term compared to MLE in Eq. 1, which discounts
such passages that unconditionally have a higher
probability, and biases the model towards those that
are specific to the given query. A hyperparameter
λ is added to control the regularization term. Using

Figure 1: Example showing a passage that is estimated
to have high retrieval probabilities for multiple queries
by a conventional re-ranker. Each query asks about
different specifics of a movie, however the passage con-
tains mostly general information, and could not be used
to answer several top-ranked questions. This motivates
our use of a penalization term to discount these high
probability passages that are not specific to the input
query.

Bayes’ theorem, we can rewrite Eq. 2 as:

ẑ = argmax
z

(
log p(z|x)− λ log p(z)

)
(3)

= argmax
z

(
(1− λ) log p(z|x) + λ log p(x|z)

)
.

The PMI objective is equivalent to the convex
combination of the terms log p(z|x) and log p(x|z).
Notice that the latter term can be viewed as a con-
ditional generation model that gives the probability
of generating a query given a passage. We denote
the generative model by pθ(x|z) with parameters
θ. This term was previously explored as the sole in-
ference objective in Sachan et al. (2022), in which
an LM was used as a question generator for re-
scoring. Instead of using either the retrieval model
or the generative model only, as explored in prior
work, Eq. 3 provides a simple way to use both mod-
els jointly for inference, which we refer to as Joint
Passage Re-ranking (JPR).

2.2 Joint Fine-tuning

A straighforward way to obtain the two models that
can be used for the aforementioned MI-based infer-
ence is to train both models using MLE seperately.
The retrieval model can be trained with Lretrieval(ϕ),
while the generative model can be a trained with a
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Re-ranking
Method

Cross-Encoder?
log pϕ(z|x)

Generative?
log pθ(x|z)

Natural Questions TriviaQA

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

BM25 ✗ ✗ 22.1 43.8 54.5 46.3 66.3 71.7

BERT-FT ✓ ✗ 49.4 66.4 71.4 66.7 77.6 80.2
T5-FT ✗ ✓ 34.3 59.6 66.7 56.8 74.1 78.0
UPR (T0-3B) ✗ ✓ 36.8 61.6 68.2 57.7 75.4 78.5

JPR ✓ ✓ 51.0 68.0 72.3 68.3 78.3 80.5
JPR-FT ✓ ✓ 51.4 67.5 71.9 69.2 78.5 80.5

UPR (LLaMA-33B) ✗ ✓ 35.0 61.5 69.0 57.2 76.7 79.5
JPR (LLaMA-33B) ✓ ✓ 48.2 66.9 71.5 70.1 79.3 80.8

Table 1: Top-K retrieval accuracy (%) on the Natural Questions and TriviaQA test sets. All non-BM25 methods
re-rank the top-100 passages retrieved by BM25. Best overall are in bold while best non-LLM are underlined.

simple LM loss Lgeneration(θ).
However, the terms in Eq. 3 are derived when

the distributions are matched, that is, when
p(x)pϕ(z|x) = p(z)pθ(x|z). When the two mod-
els are optimized independently, we cannot en-
sure that this holds. We therefore attempt to en-
force this constraint with joint fine-tuning. Sim-
ilar to previous work on dual supervised learn-
ing, we approach this by adding a regularization
term, defined as the symmetric KL divergence
between the two distributions: Lmatch(ϕ,θ) ≜
Dsym-KL

(
pϕ(x, z)||pθ(x, z)

)
, by enforcing align-

ment of the marginals multiplied by the condi-
tional probabilities. The joint fine-tuning objec-
tive is obtained by combining all three losses:
L(ϕ,θ) ≜ Lretrieval+Lgeneration+αLmatch, where α
is a regularization hyperparameter. The additional
fine-tuning aligns the two conditional distributions
such that the conditions for our derivations hold,
thereby enhancing the overall performance.

3 Experiments

3.1 Open-Domain QA Retrieval

3.1.1 Data
First, we evaluate on two standard open-domain
QA retrieval benchmark datasets: Natural Ques-
tions (NQ; Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017). Wikipedia passages used
in DPR (Karpukhin et al., 2020) were used in these
experiments, which consists of 21M 100-word pas-
sages from the English Wikipedia dump of Dec.
20, 2018 (Lee et al., 2019). Additional dataset
information can be found in Appx. A.

3.1.2 Setup and Baselines
We adopt the setting from prior work using standard
dataset splits, retrieving the top 100 passages for

re-ranking. We use Pyserini (Lin et al., 2021) for
BM25 as the initial retriever, with default Lucene
parameters of k = 0.9 and b = 0.4. We report
top-K retrieval accuracy, the standard metric.

We compare JPR against several baselines: 1)
cross-encoding re-ranker (BERT-FT), a fine-tuned
BERT-based (Devlin et al., 2019) re-ranker, run-
ning inference with Eq. 1; 2) generative re-ranker
(T5-FT), a fine-tuned T5 conditional generation
model (Raffel et al., 2020) with the second term of
Eq. 3 as inference objective; and 3) UPR (Sachan
et al., 2022), a generative re-ranker using the larger
pre-trained T0-3B model (Sanh et al., 2022).

For our approach, we report one setting with
joint inference (JPR), and another with joint fine-
tuning followed by the MI-based inference (JPR-
FT). Joint inference uses the separately fine-tuned
retrieval re-ranker and generative re-ranker de-
scribed above directly. For joint fine-tuning, we
bootstrap with the two models, and further fine-
tune with our proposed objective to match the dis-
criminative and generative distributions. λ and α
are chosen by performance on the development set.
Additional details can be found in Appx. B.

Furthermore, we aim to explore the effects of
scaling generative re-rankers up. We experiment
with a large language model (LLM), the 33B-
parameter LLaMA (Touvron et al., 2023), as our
generative re-ranker for both UPR and JPR.

3.1.3 Results and Discussion

Open-domain QA retrieval results are shown in
Table 1. Using the conventional cross-encoder
BERT-FT on initial BM25 results yields decent im-
provements. UPR, not fine-tuned but being much
larger, significantly underperforms BERT-FT. The
fine-tuned generative model T5-FT, 15× smaller
than the T0-3B model in UPR, nearly matches the
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Dataset BM25

Re-ranking Method

BERT-
FT

T5-FT UPR JPR
UPR
(LLM)

JPR
(LLM)

TREC-DL 2019 50.8 74.9 65.6 - 75.0 - -

TREC-COVID 65.6 75.7 75.7 76.5 78.2 76.5 77.2
NFCorpus 32.6 35.0 33.2 34.8 35.3 33.5 35.7
NQ 32.9 53.3 43.8 44.5 52.1 45.3 54.0
HotpotQA 60.3 70.7 68.5 70.9 72.4 72.3 72.1
FiQA-2018 23.6 34.7 35.7 42.0 38.5 40.3 36.6
ArguAna 41.4 41.8 50.2 50.9 49.3 28.5 43.3
Touché-2020 36.7 27.1 25.0 21.0 26.8 18.5 25.7
CQADupStack 29.9 37.1 37.7 40.2 39.7 42.9 39.0
Quora 78.9 82.5 81.2 83.6 84.8 84.4 84.1
DBPedia 31.3 40.9 34.6 35.5 40.5 35.1 41.6
SCIDOCS 15.8 16.6 16.9 17.6 18.3 18.1 17.1
FEVER 75.3 81.8 75.7 61.3 82.5 62.5 79.7
Climate-FEVER 21.3 25.3 18.4 14.6 25.2 11.2 24.9
SciFact 66.5 68.8 69.3 70.4 72.7 65.7 70.3

Average 43.7 49.4 47.6 47.4 51.2 45.3 50.1

Table 2: Zero-shot results on BEIR, scores denote
nDCG@10. All methods re-rank the top-100 pas-
sages retrieved by BM25, except for TREC-DL 2019
to compare to prior work. Best overall are in bold.
Underlined indicate in-domain performance, and ital-
icized are based on Pyserini reproductions, differing
from those reported in prior work.

performance of UPR. When using JPR, which cor-
responds to scoring with Eq. 3 using the re-ranker
BERT-FT and the generative model T5-FT, sur-
passes all baselines. The generative model, al-
though used by itself underperforms BERT-FT,
boosts performance especially for the top retrieved
passages. Matching distributions (JPR-FT) by fine-
tuning for a small amount of steps further improves
performance, albeit more modestly. For LLM
generative re-ranking, despite being multitudes
larger, LLaMA-33B surprisingly underperforms
against T5-FT and T0-3B on NQ for both UPR

and JPR, however on TriviaQA JPR with LLaMA-
33B achieves best overall results. Appx. C shows
further results for different model pairings.

3.2 Zero-Shot Retrieval

3.2.1 Data

We further evaluate in a transfer learning setting
on BEIR (Thakur et al., 2021), a commonly used
benchmark consisting of a suite of information re-
trieval datasets that span multiple tasks and do-
mains. Datasets in the benchmark contain queries
and passages of a variety of styles and lengths, and
no training data is provided, making it consider-
ably difficult for models to perform well across all
datasets. See Appx. D for more details.

3.2.2 Setup and Baselines
We follow BEIR’s zero-shot evaluation on all tasks,
using MS MARCO (Nguyen et al., 2017) as train-
ing data. Pyserini is used for BM25 to retrieve 100
passages, with default parameters and indexing title
and passage as separate fields23. The Normalized
Cumulative Discount Gain (nDCG@K) (Wang
et al., 2013) is used for evaluation, with K =
10, computed by the official TREC evaluation
tool (Van Gysel and de Rijke, 2018).

We compare against the three baselines used
previously with slight differences: 1) conventional
discriminative re-ranker (BERT-FT), using a BERT-
based re-ranker pre-trained on MS MARCO with
the same configuration (Reimers and Gurevych,
2019); 2) generative re-ranker (T5-FT), using the
same t5-base-lm-adapt but fine-tuned on MS
MARCO; and 3) UPR, but re-ranked over 100 in-
stead of 1000. For our proposed approach, we only
evaluate the joint inference method (JPR), as the
MS MARCO pre-trained re-ranker from SBERT4

is already at a saddle point, and using it to bootstrap
leads to degraded performance. Detailed training
hyperparameters can be found in Appx. E.

3.2.3 Results and Discussion
Zero-shot results on BEIR are presented in Table 2.
JPR attains roughly 2% absolute gain on average
simply by utilizing both discriminative and genera-
tive models for inference, which is more prominent
when compared against in-domain performances
in Sec. 3.1 and on TREC-DL 2019. JPR surpasses
BERT-FT on 10 out of the 14 tasks and is roughly
equal on the other 4, and eclipses T5-FT on 13 of
14. Notably, for two tasks, FEVER and Climate-
FEVER, generative re-rankers struggle and exhibit
degraded performance, whereas JPR avoids this is-
sue and outperforms BERT-FT. When using the
comparatively huge LLaMA, we see that UPR wors-
ens on average, mostly due to major underperfor-
mance on tasks such as ArguAna, Touché-2020,
FEVER, and Climate-FEVER. On most other tasks
it outperforms UPR, suggesting that larger models’
effects may scale both ways, positively on familiar
tasks, such as CQADupStack which LLaMA had
exposure during LM training, and negatively on
a few out-of-domain ones. JPR (LLM) can miti-
gate the worst cases, however it mostly does not

2Pyserini reproductions for BEIR can be found at https:

//castorini.github.io/pyserini/2cr/beir.html.
3We follow BEIR and retrieve 100, which is more practical.
4
https://www.sbert.net/docs/pretrained_cross-encoders.html
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outperform JPR that uses the considerably smaller
generative model.

4 Related Work

Passage re-ranking seeks to combine the advan-
tages of sparse retrieval methods, such as effi-
ciency, precise matching, and low-resource gener-
alizability (Sciavolino et al., 2021; Reddy et al.,
2021), with the superior performance of dense
methods in the presence of extensive annotated
data (Karpukhin et al., 2020; Guu et al., 2020).
Early work by Nogueira and Cho (2019) exam-
ined BERT-based supervised re-rankers, while
later research proposed reader prediction based re-
ranking (Mao et al., 2021) and attempted to use
LMs as re-rankers (Sachan et al., 2022), although
with limitations. Sequence-to-sequence models
have also been investigated to directly generate
ranking labels (Nogueira et al., 2020), and further
training with explanations can yield improvements
under lower-resource scenarios (Ferraretto et al.,
2023). More recently, Sun et al. (2023) explored
using the proprietary and exceptionally larger Chat-
GPT models for re-ranking5. Departing from ex-
isting ensembling techniques for re-ranking such
as fusing bi-encoder embeddings (Lu et al., 2021),
our method establishes the combination of discrim-
inative and generative re-rankers through PMI max-
imization.

MI-based objectives, originally introduced in
speech recognition to measure input-output depen-
dence (Bahl et al., 1986; Woodland and Povey,
2002), have been applied to different tasks such as
dialogue (Li et al., 2016), machine translation (Li
and Jurafsky, 2016), and QA (Luo et al., 2022).
MI-based joint inference and learning have been ex-
plored in question answering and generation (Tang
et al., 2017), language understanding and genera-
tion (Su et al., 2020), and various vision and lan-
guage tasks (Xia et al., 2017).

5 Conclusion

In this study, we introduce a simple and effec-
tive approach to enhance re-ranking for passage
retrieval. By jointly utilizing a conventional cross-
encoding re-ranker and a conditional query genera-
tor for inference, we optimize the pointwise mutual
information between the query and passage distri-
butions, achieving improvements in open-domain

5Sun et al. (2023) reported results only on a subset of BEIR
and uses BM25 “flat” (cf. “multifield”).

QA retrieval, and more significantly in zero-shot
information retrieval tasks.
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First, improvements under the supervised setting
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K increases, and roughly equals out with using
conventional re-rankers at K = 20; however, there
are still many use cases especially for large models
with limited context that can benefit from the im-
provements of our approach. Additionally, in this
work we tackle passage re-ranking for retrieval, fo-
cusing on the second stage re-ranking scores using
dense cross-encoders and generative models. We
have not explored approaching the retrieval pro-
cess without passage re-ranking, that is, directly
applying the PMI objective to train a dense retrieval
model, which could potentially lead to larger im-
provements but comes with much higher computa-
tional costs. We leave this for future work.
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A Open-Domain QA Retrieval Datasets

We show the number of train/dev/test examples
in NQ and TriviaQA in Table 3. Please refer to
Kwiatkowski et al. (2019) and Joshi et al. (2017)
for more details. Note that NQ is licensed under
Apache License 2.0, which we follow, and Trivi-
aQA does not provide dataset licenses.

Dataset Train Dev Test

Natural Questions 58,880 8,757 3,610
TriviaQA 60,413 8,837 11,313

Table 3: Dataset splits for NQ and TriviaQA.
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B Open-Domain QA Retrieval Training
and Inference Details

B.1 Training

Generally, conventional cross-encoders are trained
to minimize the negative likelihood Lretrieval(ϕ) ≜
−Ex,z∼p(x,z) [log pϕ(z|x)] , where pϕ(z|x) is usu-
ally calculated from the retrieval score of question-
passage pairs, with the partition function approxi-
mated by a noise contrastive approach trained ei-
ther with a classification or a ranking objective (Ma
and Collins, 2018). We choose to fine-tune our
cross-encoder, BERT-FT, using a 6-layer trans-
former model (Vaswani et al., 2017), which takes
the concatenated input of a query and a passage,
with the binary classification objective for noise
contrastive learning (Mikolov et al., 2013). The
6-layer SBERT model MiniLM-L-6-v2 we use was
previously pre-trained on MS MARCO, which we
fine-tune for 2 epochs using the top 32 passages
from BM25 on the NQ/TriviaQA training set. We
train with a batch size of 128, learning rate of 5e-5,
linear warmup and decay with ratio of 0.1.

For training of T5-FT, we fine-tune with
Lgeneration(θ) using the t5-base-lm-adapt model,
a 12-layer encoder-decoder configuration with
220M parameters initialized from T5-base v1.1 and
trained for an additional 100k steps with an LM
objective. It takes a ground truth passage as input
with its corresponding query as the decoder target.
Ground truth query-passage pairs from the training
set was used to fine-tune the model for 2 epochs.
We use a batch size of 64, learning rate of 5e-5,
and linear warmup and decay ratio of 0.1. Hyper-
parameters were chosen by performance on the dev
set.

UPR uses the pre-trained T0-3B directly without
any fine-tuning.

JPR uses BERT-FT and T5-FT, described ear-
lier, directly during inference (see Sec. B.2 below).
JPR-FT requires further fine-tuning, which we train
for another epoch. Training hyperparameters were
searched with the dev set, with one run for each hy-
perparameter setting, shown in Table 4. We report
results for the model with the best-performing run
on the dev set.

All models were trained with HuggingFace’s
Transformers library (Wolf et al., 2020), using the
AdamW optimizer (Loshchilov and Hutter, 2018)
with default parameters. The maximum sequence
lengths for queries and passages were set to 128
and 512, respectively, for generative models. For

Hyper-
parameter

NQ TriviaQA

BERT-FT T5-FT BERT-FT T5-FT

learning rate 1e-5 2e-5 1e-5 1.5e-5
batch size 96 64 64 64
α 0.0005 0.0005 0.005 0.005

Table 4: Training hyperparameters for NQ and TriviaQA
selected by performance on the dev set.

the cross-encoding BERT-FT, we set the maximum
concatenated length to be 512. Training was done
with four Nvidia A6000 GPUs, with around 2.5
GPU hours per epoch, equating to around 250 GPU-
hours in total.

B.2 Inference

For the conventional cross-encoding re-ranker
(BERT-FT), we re-rank with Eq. 1 by directly rank-
ing the retrieval scores. When using BERT-FT in
JPR, we approximate log pϕ(z|x) by taking Soft-
Max over the scores for the 100 retrieved passages.
For generative re-rankers T5-FT and UPR, we fol-
low Sachan et al. (2022) and estimate log pθ(x|z)
with length-normalized conditional likelihood of
the output sequence followed by taking SoftMax
over the passages. For JPR, the preceding two terms
are weight-averaged according to Eq. 3.

C Results on Open-Domain QA Retrieval
with Different Cross-encoding and
Generative Model Pairs

We further show the efficacy of JPR on NQ by con-
ducting additional evaluations on NQ with various
model combinations. We experiment with BERT
models of different sizes for the cross-encoders,
and for generative models we chose T5 models of
multiple models sizes. All cross-encoding mod-
els were previously pre-trained on MS MARCO,
which we fine-tune on NQ, and the T5 models were
fine-tuned on NQ, all following training procedures
reported in Sec. B. For inference, we use λ = 0.5
and follow the inference steps outlined in Sec. B.2.
The results are shown in Table 5.

From the results, notice that when T5-small is
paired with MiniLM-L-6 for JPR, it aligns with the
performance of T5-base paired with MiniLM-L-6.
This observation underscores that the additional
parameters of T5-base may be superfluous in our
application. When comparing JPR (MiniLM-L-6 &
T5-small) with the standalone BERT-base, which
is in the same parameter ballpark, and the larger
BERT-large, it’s evident that the gains from JPR
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Cross-encoder Generative Model #params Top-1 Top-5 Top-10

TinyBERT ✗ 4.4M 37.8 60.3 67.0
MiniLM-L-4 ✗ 19.2M 47.5 65.9 70.9
MiniLM-L-6 (BERT-FT) ✗ 22.7M 49.4 66.4 71.4
BERT-base ✗ 109.5M 49.2 66.0 70.8
BERT-large ✗ 335.1M 49.8 67.5 71.7

✗ T5-tiny 15.6M 25.7 51.4 62.0
✗ T5-small 77.0M 30.7 57.1 65.2
✗ T5-base (T5-FT) 247.6M 34.4 59.7 66.9

MiniLM-L-6 T5-tiny 38.3M 49.6 67.0 71.6
MiniLM-L-6 T5-small 99.7M 50.4 67.3 71.7
MiniLM-L-6 T5-base 270.3M 50.4 67.3 71.8

Table 5: Top-K retrieval accuracy (%) on NQ for different model combinations with the proposed JPR.

are not solely attributable to model size.

D BEIR Benchmark

The BEIR benchmark contains 18 datasets from
a variety of text retrieval tasks and domains,
14 of which are publicly available. In this
work we evaluate baselines and our approach on
the publicly available datasets in BEIR: TREC-
COVID (Voorhees et al., 2021), NFCorpus (Boteva
et al., 2016), NQ (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018), FiQA-2018 (Maia
et al., 2018), ArguAna (Wachsmuth et al., 2018),
Touché-2020 (Bondarenko et al., 2020), CQADup-
Stack (Hoogeveen et al., 2015), Quora6, DB-
Pedia (Hasibi et al., 2017), SCIDOCS (Cohan
et al., 2020), FEVER (Thorne et al., 2018),
Climate-FEVER (Diggelmann et al., 2020), and
SciFact (Wadden et al., 2020). For details on
dataset statistics, links, and licenses please refer
to BEIR (Thakur et al., 2021). Note that datasets
in BEIR that are under copyright were not used in
this study, and 4 out of the 14 publicly available
datasets do not report dataset licenses. We follow
the intended uses for each dataset license.

E Zero-shot Retrieval Training and
Inference Details

For BEIR, since the SBERT model was already
pre-trained on MS MARCO, we directly use it for
BERT-FT. On the other hand, T5-FT stills requires
fine-tuning, which we train for 3 epochs on query-
passage pairs in the training set, with batch size
of 16 and learning rate of 5e-5 with no warmup.
The inference process is the same as open-domain
QA retrieval, described earlier in Sec. B.2, except
for λ which we set to 0.5 for all tasks as the BEIR

6https://quoradata.quora.com/First-Quora-Dataset-Release-Question-
Pairs

tasks are zero-shot and we do not have access to
the validation sets.
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