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Abstract
Transformer-based models excel in various nat-
ural language processing (NLP) tasks, attract-
ing countless efforts to explain their inner work-
ings. Prior methods explain Transformers by
focusing on the raw gradient and attention as
token attribution scores, where non-relevant
information is often considered during expla-
nation computation, resulting in confusing re-
sults. In this work, we propose highlighting
the important information and eliminating ir-
relevant information by a refined information
flow on top of the layer-wise relevance propaga-
tion (LRP) method. Specifically, we consider
identifying syntactic and positional heads as
important attention heads and focus on the rel-
evance obtained from these important heads.
Experimental results demonstrate that irrele-
vant information does distort output attribu-
tion scores and then should be masked during
explanation computation. Compared to eight
baselines on both classification and question-
answering datasets, our method consistently
outperforms with over 3% to 33% improve-
ment on explanation metrics, providing su-
perior explanation performance. Our anony-
mous code repository is available at: https:
//github.com/LinxinS97/Mask-LRP

1 Introduction

Transformer (Vaswani et al., 2017) currently serves
as the fundamental structure for state-of-the-art
models (Kenton and Toutanova, 2019; Radford
et al., 2019; Liu et al., 2020; Touvron et al.,
2023a,b). The power of these models provides
convincing results in multiple Natural Language
Processing (NLP) tasks. However, building a ro-
bust Transformer-based model to assist trustwor-
thy human decision-making processes requires an
understanding of the internal mechanisms of the
Transformers (Kovaleva et al., 2019; Jain and Wal-
lace, 2019; Qiang et al., 2022a).

In NLP tasks, tokens are prevalently utilized to
signify a word or a fragment of a word (also known

as a subword), serving as the input for Transform-
ers. To comprehend the influence of input tokens
on a Transformer, helping us to understand which
part of input the Transformer is most interested
in, a typical approach involves determining the at-
tribution score of input tokens by leveraging the
information captured by the attention matrix ob-
tained from each attention head (Bach et al., 2015;
Barkan et al., 2021; Voita et al., 2019; Chefer et al.,
2021b,a). A high attribution score signifies that the
input token likely plays a pivotal role in the model’s
decision-making process for a specific class, output
word, or answer index.

To derive attribution scores for each input
token, recent approaches utilized information
within a trained Transformer, such as input-
gradients (Shrikumar et al., 2017; Ancona et al.,
2019), raw attention matrices (Abnar and Zuidema,
2020) or the combination of input-gradients and
attention matrix (Barkan et al., 2021; Qiang et al.,
2022b). The underlying premise for those meth-
ods is that input token gradients reflect the token’s
significance during backpropagation, while atten-
tion mechanisms capture the between-token inter-
actions. However, both theoretical and empirical
results (Chefer et al., 2021b; Qiang et al., 2022b;
Ali et al., 2022) indicate that not all types of infor-
mation embedded within the gradient and attention
mechanisms contribute towards the explanations.
They either fail to or can only partially aid in un-
derstanding which token primarily contributes to
the Transformer’s decision-making process.

To solve this issue, we follow the line of work
known as Layer-wise Relevance Propagation (LRP,
Bach et al. (2015)) with refined information flow to
derive compelling attribution scores for each token.
The information flow within LRP parameterized
by each attention head mirrors that of the Trans-
former, concentrating on distinct portions of the
input tokens, and attention heads focusing on ir-
relevant information can disrupt this flow, causing
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explanation confusion. We refine the information
flow within LRP by illuminating the attention head
that focuses on important information and reducing
the attention head that zeroes in on less important
information.

To achieve this, we illuminate the important at-
tention head by adopting a head mask generated
from dataset statistics. We first label the atten-
tion heads concentrating on a specific syntactic
relationship as syntactic attention heads. Syntac-
tic relations (e.g., nominal subject) are extensively
utilized to define the relations between tokens in
NLP (Voita et al., 2019), which establish a direc-
tional relation between two words. Furthermore,
we designate the attention head that predominantly
centers on a fixed relative position as a positional
attention head, which reflects the internal feature
(e.g., spatial position) of token embedding. We
encapsulate syntactic and positional within a head
mask, which we use to refine the information flow
during the LRP process. To further reduce the irrel-
evant information, we obtain the attribution score
by rolling out the relevance of the attention head
from each attention blocks with the corresponding
gradient (Chefer et al., 2021b).

To evaluate the performance of our method, we
compared it with eight strong baselines across five
classification datasets and two question-answering
datasets. The results reveal that our method outper-
forms others in explanation performance, demon-
strating a distinguished capacity to assign influen-
tial tokens from both interaction and internal per-
spectives. Furthermore, an ablation study uncovers
that irrelevant information can obfuscate the LRP
process, subsequently leading to a biased explana-
tion of input tokens. The key contributions of our
work can be summarized as follows:

1. We refine the information flow within the LRP
process by illuminating two types of important
information.

2. Through experiments, we demonstrated that
irrelevant information hampers the LRP pro-
cess.

3. Compared to previous state-of-the-art meth-
ods, our approach significantly improves ex-
planation performance, achieving over 3.56%
improvement in AOPC and LOdds for classi-
fication tasks and 33.02% for Precision@20
in question answering tasks.

2 Related Works

To explain a Transformer in NLP tasks, one com-
mon approach involves providing a post-hoc inter-
pretable description of the Transformer’s behav-
ior. This approach assists users in understand-
ing which input tokens most significantly influ-
ence the model’s decision-making process. Ab-
nar and Zuidema (2020) achieve this by leverag-
ing the attention heads for defining more elabo-
rate explanation mechanisms, while Wallace et al.
(2019) and Atanasova et al. (2020) accomplish
this by involving the Integrated Gradients or In-
put Gradients. Numerous models and domains
have employed gradient methods such as Saliency
Maps (Zhou et al., 2016; Barkan et al., 2021),
Gradient×Input (Shrikumar et al., 2017; Srinivas
and Fleuret, 2019; Hesse et al., 2021; Qiang et al.,
2022b), or Guided Backpropagation (Zeiler and
Fergus, 2014), and these methods have also been
effectively transposed and applied to Transformers.

Concurrently, there have been several attempts
to implement Layer-Wise Relevance Propagation
(LRP, Bach et al. (2015)) in Transformers (Voita
et al., 2019; Ali et al., 2022) and other attention-
based models (Ding et al., 2017). LRP has
been used to explain predictions of diverse mod-
els on NLP tasks, including BERT (Kenton and
Toutanova, 2019). Other methodologies for LRP
/ gradient propagation in Transformer blocks can
be found in (Chefer et al., 2021b,a), where the
relevance scores are determined by combining at-
tention scores with LRP or attention gradients.

Additionally, a few instances exist where
perturbation-based methods have employed input
reductions (Feng et al., 2018; Prabhakaran et al.,
2019), aiming to identify the most relevant parts
of the input by observing changes in model con-
fidence or leveraging Shapley values (Lundberg
and Lee, 2017; Atanasova et al., 2020). Further-
more, a line of work using tensor decomposition to
decompose the attention matrix for a faithful Trans-
former explanation (Kobayashi et al., 2020, 2021;
Modarressi et al., 2022; Ferrando et al., 2022).

3 Preliminary

3.1 Problem Formulation

This work focuses on post-hoc explanations of
Transformer-based models, like BERT (Kenton and
Toutanova, 2019; Liu et al., 2020) and GPT (Rad-
ford et al., 2019), across various NLP tasks. Given
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a dataset D with each input xi consisting of T
tokens, we use a fine-tuned Transformer-based lan-
guage model, f(·;θ), composed of B self-attention
blocks with M attention heads each. We extract
each model layer’s output for analysis, with layer
input denoted as x(n) and n ranging from 1 to N .
Here, x(N) and x(1) signify the model input and
output, respectively, as information propagation
starts from the output to the input.

We aim to understand the attribution of input
x(N) ∈ D to the output x(1) ∈ {c1...cK} (K de-
noting classification task classes or question an-
swering task tokens). We seek an attribution func-
tion R(N) = R(x(N)) evaluating each token’s con-
tribution to output x(N). An ideal R(N) assigns
high attribution scores to influential tokens, caus-
ing output confidence to flatten or predictions to
flip when these tokens are removed or masked.

3.2 Layer-wise Relevance Propagation
The Layer-wise Relevance Propagation (LRP, Bach
et al. (2015)) is used to compute the attribution
score R(N) of each input token, propagating rele-
vance from the predicted class or index backward
to the input tokens.

The LRP applies the chain rule to propagate gra-
dients with respect to the output x(1) at index c,
denoted as x(1)

c :

∇x
(n)
j =

∂x
(1)
c

∂x
(n)
j

=
∑

i

∂x
(1)
c

∂x
(n−1)
i

∂x
(n−1)
i

∂x
(n)
j

, (1)

where j and i are element indices in x(n) and
x(n−1) respectively. The layer operation on two
tensors X and Y is denoted as L(n), typically indi-
cating the input feature map and weights for layer
n. The relevance propagation follows the Deep
Taylor Decomposition (Montavon et al., 2017):

R
(n)
j = G(X,Y ,R(n−1)) (2)

=
∑

i

Xj
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i (X,Y )
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,

with j and i denoting elements in R(n) and R(n−1)

respectively. This equation obeys the conservation
rule: ∑

j

R
(n)
j =

∑

i

R
(n−1)
i . (3)

We begin relevance propagation with R(0) as a one-
hot vector indicating the target class or index c ∈
x(1).

LRP presumes non-negative activation func-
tions and is incompatible with functions out-
putting both positive and negative values, like
GELU (Hendrycks and Gimpel, 2016). As Chefer
et al. (2021b) done, we overcome this by filtering
out negative values and selecting the positive sub-
set of indices q = {(i, j)|xiwij ≥ 0} for relevance
propagation:

R
(n)
j = G(x,w, q,R(n−1))

=
∑

{i|(i,j)∈q}

xjwji∑
{j′|(j′,i)∈q}

xj′wj′i
R

(n−1)
i . (4)

4 Layer-wise Relevance Propagation
Through Important Attention Head

In this work, we empirically show that irrelevant
information can detrimentally impact the LRP pro-
cess. Therefore, our focus should be directed to-
ward the important information while concurrently
eliminating irrelevant information within the LRP
process. In this section, we initially classify two
kinds of important information (Sec.4.1), followed
by introducing the method to extract this informa-
tion in each layer (Sec.4.2). Subsequently, we il-
lustrate the technique of concentrating on the im-
portant information extracted during Layer-wise
Relevance Propagation (LRP, Sec. 4.3).

4.1 Important Information Flows in
Transformer

Understanding Transformer-based models in NLP
tasks entails grasping the important information
each attention head prioritizes. This information
in an input sentence comprises internal and inter-
action information (Voita et al., 2019; Qiang et al.,
2022b). Interaction information explores if Trans-
former’s encoder heads focus on tokens tied to core
syntactic relationships, while internal information
refers to an input where an attention head focuses
on a fixed position for token embedding (Voita
et al., 2019). In this work, to capture the above
types of information, we identify two functions
that attention heads might be playing: (1) syntac-
tic: the head points to tokens in a specific syntactic
relation, and (2) positional: the head points to a
specific relative position. Not all syntactic relations
are suitable for defining the core component of a
sentence. De Marneffe et al. (2014) classifies the
syntactic relations into nominal, clauses, modifier
words, and function words. While nominal (subject,
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Figure 1: Distributions of the relative positions depen-
dent for different syntactic relations in SST2.

object) and modifier words (adverb, adjectival mod-
ifier) are frequent, others like vocatives (common
in conversations), expletives (e.g., "it" and "their"
in English), and dislocated elements (frequent in
Japanese) don’t define a sentence’s core and ex-
plain on them can confuse human understanding.
Therefore, we identify four core syntactic relations:
nominal subject (nsubj), direct object (dobj), ad-
jectival modifier (amod), and adverbial modifier
(advmod), which contains the core information of
a whole sentence. The selected syntactic relations
establish directional links between two words or
linguistic units. For example, in "The car is red",
car is the nsubj target for red. Hence, in LRP,
important information the relevance contains of a
layer input x(nb) in the self-attention block b at
layer nb can be decomposed as:

R
(nb)
imp = R

(nb)
synt +R

(nb)
pos , (5)

where R
(nb)
imp denotes the important information,

R
(nb)
synt and R

(nb)
pos the information from syntactic

relations and relative positions, respectively. The
next section will detail preserving important in-
formation in the LRP process by identifying the
important attention heads.

4.2 Identifying Important Heads
To illuminate the influence of the attention heads
that are oriented towards important information,
we create a head mask denoted as M ∈ RB×M by
combining two separate masks: Msynt and Mpos.
The mask M is constructed as follows:

M = Msynt +Mpos. (6)

Msynt represents the syntactic mask generated
based on the statistical analysis of syntactic rela-
tions within each text, while the positional mask
Mpos is derived from the positional analysis of the

specific Transformer-based model chosen for the
study.

Syntactic mask. We first obtain the distribution
of the k-th syntactic relation at each token position,
denoted as λk. Here, λi

k represents the probability
of the k-th syntactic relation appearing at position
i (as depicted in Fig. 1). The attention head mask
for syntactic relations, denoted as M(b,m)

synt , can be
derived as follows:

M(b,m)
synt =

∑

k∈K
1{

α
(b,m)
k >max(λk)+ξsynt

}, (7)

where K = {nsubj, dobj, amod, advmod} repre-
sents the set of core syntactic relations, α(b,m)

k ∈
[0, 1] denotes the frequency of the m-th attention
head at block b assigning its highest attention
weight to the k-th syntactic relation. The threshold
ξsynt determines the level of probability at which
an attention head is considered syntactic relation-
specific. In this work, we set ξsynt = 0.1 to ensure
that the selected attention head is not solely focused
on a specific token position but exhibits a substan-
tial probability of capturing syntactic relations.

Positional mask. We also examine attention
heads that exhibit a high degree of focus on specific
relative positions (e.g., ...,−1,+1,+2, ...). We re-
fer to these attention heads as "positional" if, most
of the time, their maximum attention weight is as-
signed to a specific relative position. To identify
these attention heads, we utilize a positional mask
denoted as M(b,m)

pos , which collects the indices of
attention heads that satisfy the positional criteria.
The positional mask is defined as follows:

M(b,m)
pos =

∑

i∈I
1{

α
(b,m)
i >ξpos

}, (8)

where α
(b,m)
i ∈ [0, 1] denotes the frequency of the

m-th attention head at block b assigning its high-
est attention weight to the i-th relative position,
I = {...,−1,+1, ...} denotes the set of relative
positions and ξpos is set to 0.8, as previously men-
tioned, to ensure that we capture attention heads
primarily focusing on the positional information.

4.3 Layer-wise Relevance Propagation
Through Important Heads

To gain deeper insights into the important informa-
tion within the Transformer model, we specifically
focus on the Layer-wise Relevance Propagation
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Figure 2: Illustration of our method. Gradients and relevance are propagated through the Transformer block from
the final layer to the first layer. We extract two types of important information during the LRP process in all blocks
by identifying the important heads.

(LRP) process between important attention heads
across different layers and obtain the final attribu-
tion score. The process of our proposed method is
illustrated in Fig. 2.

According to the type of information a relevance
contains, the relevance of each attention head in
the self-attention block at layer nb can be defined
as a combination of two types of relevance w.r.t.
attention heads: important relevance and irrelevant
relevance. Recalling the Eq. (2) and (5), we have:

R(nb) = G
(
X,Y ,R

(nb−1)
imp +R

(nb−1)
others

)

= G
(
X,Y ,R

(nb−1)
synt +R(nb−1)

pos +R
(nb−1)
others

)
,

(9)

in each Transformer block. Here, R(nb−1)
others corre-

sponds to the relevance output from attention heads
that are not specific to important information. To
highlight the important relevance R

(nb−1)
imp in the

LRP process, we employ the b-th block’s mask
M(b) obtaining from Eq. (6):

R(nb) := R
(nb)
synt +R(nb)

pos = G(X,Y ,M(b)R(nb−1)).

To keep the conservation after adopting the mask,
we apply normalization to R

(nb)
synt and R

(nb)
pos as fol-

lows:

R
(nb)
synt := R

(nb)
synt

∣∣∣
∑

R
(nb)
synt

∣∣∣
∣∣∑R(nb)

∣∣ ·
∑

R(nb−1)

∑
R

(nb)
synt

,

R
(nb)
pos := R

(nb)
pos

∣∣∣
∑

R
(nb)
pos

∣∣∣
∣∣∑R(nb)

∣∣ ·
∑

R(nb−1)

∑
R

(nb)
pos

.

The normalization step ensures the conservation
rule is maintained, i.e.,

∑
R

(nb)
synt +

∑
R

(nb)
pos =∑

R(nb−1). Note that we have omitted the sub-
script of the index (e.g., i, j) to enhance readability.

We output the final attribution R(N) by lever-
aging the rollout of weighted attention rele-
vance (Chefer et al., 2021b) of each block b:

Ā(b) = Eh

(
∇A(b) ⊙

(
R

(nb)
synt +R(nb)

pos

))+

+ I (10)

R(x(N)) = Ā(1) · Ā(2) · ... · Ā(B), (11)

where ⊙ denotes the Hadamard product, A(b) =
softmax(Q(b) · K(b)⊤/

√
dh) is the attention ma-

trix obtain from query Q and key K in block
b, and ∇A(b) denotes the corresponding gradient.
We use the superscript a+ to denote the operation
max(0, a).

5 Experiment

5.1 Experiment Setup

Implementation details. For the classification
task, we use pretrained BERTbase (Kenton and
Toutanova, 2019) with a 512 token input limit and
attribute the [CLS] token as the classifier input. For
question answering, we compare our method with
three baselines using pretrained BERTbase, GPT-
2 (Radford et al., 2019), and RoBERTa (Liu et al.,
2020), assessing the effect of model scale and tok-
enizer on information flow. We evaluate the attri-
bution of the start and end answer indices.

Our model-agnostic method can apply to various
Transformer-based models with minimal modifica-
tions. We obtain all results from the validation set
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across all methods, focusing on the post-hoc expla-
nation with fixed model parameters. Variance is
limited to the baseline using a randomly generated
mask.

Datasets. We choose the validation set on seven
datasets across the sentiment classification: SST-
2 (Socher et al., 2013), IMDB (Maas et al., 2011),
Yelp Polarity (Zhang et al., 2015), duplicated ques-
tion classification: QQP (Chen et al., 2018), natural
language inference: MNLI (Williams et al., 2018)
and question answering: SQuADv1 (Rajpurkar
et al., 2016) and SQuADv2 (Rajpurkar et al., 2018)
to evaluate all methods. SST-2, IMDB, and Yelp
Polarity take a single sentence as input, while QQP
and MNLI use a pair of sentences for their tar-
get. Specifically, we extract the data marked as
duplicate (with ground truth label 1) in QQP for
evaluation. Details of the model and datasets are in
Appendix C.

Evaluation metrics. We use AOPC and LOdds
for classification evaluation, and precision@20 for
question-answering evaluation. To evaluate post-
hoc explanation interpretability in a classification
task, we measure model confidence for a specific
class before and after masking influential tokens,
using both linear (AOPC) and non-linear (LOdds)
metrics (Qiang et al., 2022b). AOPC and LOdds
aim to detect the change of confidence before and
after the influential tokens are removed, which are
formularized as:

AOPC(k) =
1

T

T∑

t=1

fŷ (xi;θ)− fŷ

(
x̃ik;θ

)
,

(12)

LOdds(k) =
1

T

T∑

t=1

log
f
(
x̃k
i ;θ

)

f (xi;θ)
, (13)

where x̃k
i denotes the top-k% masked input tokens

ranked by the attribution score R(x
(N)
i ). fŷ(·;θ)

denotes the model’s max confidence w.r.t label
ŷ. Furthermore, we use precision@20 to evalu-
ate the question answering task (SQuADv1 and
SQuADv2). In QA tasks, precision@20 will not in-
troduce bias because it will not remove the ground
truth answer from the input, and the model that has
a low precision@20 means that the model cannot
capture a correct mapping between the answer part
and the ground truth index.

Hyperparameters In this work, we use two hy-
perparameters: ξsynt and ξpos for the corresponding

masks. As we mentioned in the main context, we
choose 0.1 for ξsynt and 0.8 for ξpos. One reason
why we choose these values is that we empirically
found that the highest frequency for the syntactic
relations is almost lower than 0.7 for a specific rela-
tive position. Therefore, ξsynt = 0.1 ensure the syn-
tactic mask effectively filters out the attention head,
which is focusing on irrelevant information, or just
focusing on a specific position, and ξpos = 0.8 help
us to capture the rest attention heads that are focus-
ing mainly on a specific relative position, which is
filtered by the syntactic mask. Although the two
masks are complementary, many attention heads
still focus on various relative positions so that we
cannot identify their function and mark them as
irrelevant attention heads.

5.2 Baselines

We categorize eight baselines into three groups
based on their characteristics with one additional
random baseline:

Attention maps : RawAtt (Abnar and Zuidema,
2020) uses the mean attention weights from the
final Transformer block as attribution scores, while
Rollout (Abnar and Zuidema, 2020) rolls out aver-
age attention weights from all Transformer blocks.

Relevance-based : LRP (Bach et al., 2015) uses
output-to-input layer relevance as attribution scores.
PartialLRP (Voita et al., 2019) calculates rele-
vance at the model’s final layer. GAE (Chefer
et al., 2021a) propagates attention gradients to the
final layer to obtain attribution scores.

Gradient-based : CAM (Zhou et al., 2016) and
GradCAM (Barkan et al., 2021) use the final
layer gradient and its weighted version by final
layer attention respectively as attribution scores.
AttCAT (Qiang et al., 2022b) combines the sum-
mation of attention weight from each Transformer
block with input gradient.

In addition, we include Random, a baseline us-
ing a randomly generated mask (maintaining the
same mask rate, i.e., ∥Mrandom∥ = ∥Mours∥, as
our method) to show that our method effectively
identifies the crucial head in the Transformer model.

5.3 Results

We assessed the explanation performance of each
method within classification tasks by computing
mean AOPC and LOdds across five benchmark
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Methods SST-2 IMDB Yelp MNLI QQP

AOPC ↑ LOdds ↓ AOPC ↑ LOdds ↓ AOPC ↑ LOdds ↓ AOPC ↑ LOdds ↓ AOPC ↑ LOdds ↓
RawAtt 0.374 -0.992 0.354 -1.593 0.376 -1.513 0.135 -0.399 0.447 -5.828
Rollout 0.337 -0.911 0.334 -1.456 0.244 -0.770 0.137 -0.396 0.437 -5.489

LRP 0.336 -0.888 0.288 -1.271 0.163 -0.464 0.131 -0.395 0.438 -5.745
PartialLRP 0.396 -1.052 0.370 -1.726 0.401 -1.688 0.136 -0.401 0.445 -5.718
GAE 0.423 -1.171 0.384 -1.853 0.404 -1.682 0.144 -0.421 0.447 -5.923

CAM 0.399 -1.086 0.365 -1.883 0.298 -1.473 0.132 -0.386 0.450 -5.988
GradCAM 0.341 -0.855 0.236 -0.974 0.104 -0.229 0.126 -0.369 0.449 -5.953
AttCAT 0.405 -1.110 0.340 -1.697 0.397 -2.034 0.138 -0.419 0.447 -5.897

Random 0.432±.005 -1.205±.004 0.387±.004 -1.898±.003 0.426±.005 -1.886±.007 0.142±.002 -0.415±.021 0.448±.001 -5.998±.012

Ours 0.438 -1.208 0.392 -1.906 0.434 -1.898 0.148 -0.445 0.451 -6.001

Table 1: AOPC and LOdds results of all methods in explaining BERTbase model on each dataset. The best results
are marked in bold. Note that a method with high AOPC and low LOdds is desirable, indicating a strong ability to
mark influential tokens. The results of the Random mask are average and standard deviation between five runs. We
also provide the comparison with SOTA tensor decomposition method in Appendix B.

Method SQuADv1 SQuADv2

BERTbase GPT-2 RoBERTa BERTbase GPT-2 RoBERTa

Rollout 4.62 5.86 8.04 6.15 5.54 5.87
RawAtt 36.33 28.97 45.61 4.69 27.85 18.09
AttCAT 31.44 17.53 47.32 18.81 16.99 23.39

Ours 52.97 51.62 67.31 27.03 49.63 56.41

Table 2: Precision@20 results of the selected explana-
tion methods on SQuAD datasets. Higher Precision@20
is better, indicating the marked influential tokens highly
overlap with the answer text.

datasets, detailed in Tab.1. Remarkably, the per-
formance across all post-hoc explanation methods
remained stable, independent of random initializa-
tion, except for a randomly initialized mask method.
Our approach generally surpassed others, achieving
the highest AOPC and lowest LOdds, indicating
superior accuracy in identifying influential tokens.
Fig.3 displays performance curves against prun-
ing rate k, endorsing our method’s performance at
every rate. It consistently outperformed gradient-
based methods, particularly in handling lengthy
token lists. Attention information from larger ma-
trices often includes irrelevant details that assign
high attribution to non-influential tokens, reducing
the quality of explanations (see Sec.5.4 for more).
For the question-answering task, we evaluated Pre-
cision@20 on two SQuAD datasets. As per Tab.2,
our method consistently outperformed the base-
lines, demonstrating accurate attribution to influen-
tial answer tokens.

5.4 Assessing the Impact of Important and
Irrelevant Information

In this section, we seek to address two key ques-
tions: (1) does our method effectively identify the

Figure 3: AOPC and LOdds scores of different methods
in explaining BERTbase against the corruption rate k on
SST-2. Note that higher AOPC and lower LOdds scores
are better.

Figure 4: Comparison before and after corrupting the
generated mask on SST-2. The blue line combines the
solid line (average values) and shadow areas (standard
deviation). The method’s ability to explain becomes
dropped after adding corruption.

attention head that focuses on important informa-
tion? and (2) does the residual, irrelevant infor-
mation that other heads concentrate on adversely
affect the explanation?

To answer the first question, we carry out an
ablation study where we replace our mask with a
randomly generated mask, maintaining the same
mask rate as discussed in Sec.5.2, to examine if this
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Figure 5: Different types of important heads in BERTbase model cross different dataset. The x-axis denotes the
position of the attention head, while the y-axis is the position of the Transformer block. It is obvious that attention
heads in previous blocks tend to focus on simple internal information (e.g., position), while attention heads in later
blocks tend to focus on the complex interactions between tokens (e.g., syntactic relations).

Figure 6: The comparison of attribution scores between
our method (shown in the first line) and baselines on
a positive classified sentence. Tokens highlighted in
green represent those receiving more attention from our
method than the baseline, while those in red signify the
opposite. Our method emphasizes more on both internal
and interaction information. We put results of other
datasets in Appendix.D

alteration impacts the explanatory capacity. The re-
sults, as reported on line 12 in Tab.1, clearly demon-
strate that our method consistently outperforms the
variant with a randomly generated mask. This un-
derscores that our method is capable of identifying
a set of attention heads that can robustly explain
the information flow within a Transformer.

For the second question, we derive our answer
by collating findings from Tab.1 and Fig.4. We
discover from Tab. 1 that even with a random mask,
our method exhibits superior explanation perfor-
mance than other relevance-based methods such
as GAE because of the less focus on irrelevant
information. This suggests that irrelevant infor-
mation flow in the Transformer greatly affects the
LRP, thereby confusing the explanation of input
tokens. In addition, we conducted another ablation
study where we randomly switched a portion of
the remaining zeros in Mours. These zeros in the

mask correspond to the irrelevant information the
Transformer focuses on, and their alteration can be
interpreted as a corruption of the generated mask.
If our method employs a 100% corrupted mask (a
mask filled with ones), it degenerates to GAE. We
observed the variance in explanation performance
at different corruption rates (ranging from 10% to
100%) on SST-2, the results of which are displayed
in Fig. 4. Notably, it is clear that the rate of perfor-
mance decline is closely related to the corruption
rate and ultimately converges to the performance
of GAE. This evidence substantiates the notion
that irrelevant information can interfere with the
LRP process at each layer, thereby resulting in a
perplexing explanation.

5.5 Visualizing and Analyzing Extracted
Attention Heads

We visualize both Msynt and Mpos that our method
extracted from BERTbase according to each dataset.
The resulting visualizations are presented in Fig. 5.
We discovered that positional attention heads are
predominantly concentrated in the earlier blocks,
whereas syntactic attention heads tend to gather in
the later blocks. This observed phenomenon sug-
gests that Transformers initially learn the simplistic
internal information and subsequently propagate
this internal information to the subsequent layers.
This aids the attention heads in these later layers
in capturing the interaction information between
tokens. Additionally, we found that during model
training on more datasets with long input tokens,
such as IMDB and Yelp, there are only a few heads
with unipolar function, that is, a head focusing
solely on a single pattern, and those heads are fil-
tered by our mask. Yet, as the experiment results in
Sec. 5.3 illustrate, the attribution scores assigned
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Method SST-2 QQP

AOPC LOdds AOPC LOdds

Ours 0.438 -1.208 0.451 -6.001
Ours w/o Mpos 0.438 -1.208 0.450 -6.001
Ours w/o Msynt 0.437 -1.205 0.449 -5.998

Table 3: Explanation performance comparison of dif-
ferent masks. Only use Mpos or Msynt still have strong
explanation performance.

solely by these heads are representative enough to
provide a persuasive explanation. This implies that
for binary classification tasks, the important infor-
mation flow can be remarkably simple, even in the
context of complex inputs. We also examine the
explanation performance differences when using
M compared to solely utilizing Mpos or Msynt in
Tab. 3. Interestingly, we discover that eliminating
one type of mask doesn’t substantially impact the
explanation performance. This can be attributed
to the fact that a single mask type does not alter
the ranking of output attribution but rather enriches
its detail. Additional insights are provided in the
subsequent paragraph.

To delve deeper into the attributions assigned by
these important heads, we visualized the difference
in attribution scores allocated by our method and
other baseline methods in Fig. 6. The sentence, ran-
domly selected from the SST-2 dataset and depicted
in Fig.6, is annotated with a positive sentiment.
Compared to attention-based methods (Rollout,
RawAtt, AttCAT), our approach de-emphasizes
less crucial tokens like affecting, emphasizing im-
portant ones like charming. Also, unlike relevance-
based methods (LRP, GAE) that overlook journey,
our method pays attention to it due to its link with
charming via and. Thus, our method successfully
extracts interaction information, attributing scores
based on both single tokens’ internal information
and their interplay.

6 Conclusion

In this study, we propose that irrelevant informa-
tion in the gradient and attention hampers the ex-
planation process. To address this, we improve
the information flow in the LRP process by mask-
ing irrelevant attention heads. By illuminating the
important information, we show that explanations
become more convincing. Our method outperforms
nine baseline methods in classification and ques-
tion answering tasks, consistently delivering better
explanation performance.

Limitations

Though our method is model-agnostic, limitations
in computational resources prevent us from fully
exploring its implications for Large Language Mod-
els (LLMs) like LLAMA and LLAMA-2 (Tou-
vron et al., 2023a,b), but we provided the imple-
mentation in our repository. We conjecture that
LLMs may learn advanced interaction information
surpassing the syntactic relationships we defined.
This high-level interaction information could poten-
tially allow LLMs to grasp the interplay between
sentences or even broader structures like topics,
complementing existing research on Transformers’
topic learning capability via self-attention mecha-
nisms (Li et al., 2023). Additionally, while we’ve
empirically shown that irrelevant information hin-
ders the LRP process, the origins and contents of
this irrelevant information remain obscure. We will
delve deeper into the nature of such information in
future work.
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A Why do we choose nsubj, dobj, amod,
and advmod?

Many syntactic relations exist, but not all are suit-
able for defining the core component of a sentence.
De Marneffe et al. (2014) classifies the syntactic
relations into nominals, clauses, modifier words,
and function words. While nominals (subject, ob-
ject) and modifier words (adverb, adjectival mod-
ifier) are frequent, others like vocatives (common
in conversations), expletives (e.g., "it" and "their"
in English), and dislocated elements (frequent in
Japanese) don’t define a sentence’s core and ex-
plain on them can confuse human understanding.

B Extra experiment comparing with
tensor decomposition method

We provide the comparison results between ours
and the SOTA tensor decomposition method
ALTC (Ferrando et al., 2022) in Table 4.

Methods
SST-2 IMDB Yelp

AOPC ↑ LOdds ↓ AOPC ↑ LOdds ↓ AOPC ↑ LOdds ↓
ALTC 0.369 -0.866 0.342 -0.748 0.363 -1.428
Ours 0.438 -1.208 0.392 -1.906 0.434 -1.898

Table 4: AOPC and LOdds results of ALTC and ours in
explaining BERTbase model on SST-2, IMDB, and Yelp.
The best results are marked in bold. Note that a method
with high AOPC and low LOdds is desirable, indicating
a strong ability to mark influential tokens.

C Extra Implementation Details

Environment We run all experiments on the de-
vice with the following specs:

• System: Ubuntu 20.04.4 LTS

• CPU: Intel(R) Xeon(R) Platinum 8368 @
2.40GHz (36 Cores / 72 Threads)

• GPU: NVIDIA A100 SXM4 40GB

• Memory: 230GB

With the above specs, we can complete the evalua-
tion of one dataset within one hour by adopting the
multi-process.

Datasets The task, amount of training, validation,
and testing set numbers are shown in Tab. 5. Note
that the dataset of IMDB and Yelp Polarity does
not contain a validation set, so we use the test set
for our experiment. Moreover, in QQP, data points
are annotated with a binary label as duplicated

or not duplicated. If we remove the influential
tokens in those data marked as not duplicated, the
model’s prediction does not change because the two
questions remain different. Therefore, we select
the data marked as duplicated for our experiments
to see the changing of the model’s prediction from
duplicated to not duplicated.

Dataset Task Train Valid Test
SST-2 Classification 6,920 872 1,821
IMDB Classification 25,000 - 25,000
Yelp Polarity Classification 560,000 - 38,000
QQP Question Paring 363,846 40,430 390,965
MNLI Natural Language Inference 392,702 20,000 20,000
SQuADv1 Question Answering 87,599 10,570 9,533
SQuADv2 Question Answering 130,319 11,873 8,862

Table 5: Statistics for the benchmark dataset we used
in this work. Note that IMDB and Yelp Polarity only
contains training and test set.

Models In this work, we use different pretrained
models archived in Hugging Face 1 for each task
and modify them to adjust for LRP in our imple-
mentation. The models we use for different tasks
are shown in Tab. 6. Note that there does not exist
GPT-2 model pretrained on SQuADv2, so we adopt
the model trained on SQuADv1 for SQuADv2 ex-
periments, which also provides convincing perfor-
mance.

Dataset Model Huggingface Repo
SST-2 BERTbase textattack/bert-base-uncased-SST-2
IMDB BERTbase textattack/bert-base-uncased-imdb
Yelp BERTbase abriceyhc/bert-base-uncased-yelp_polarity
QQP BERTbase modeltc/bert-base-uncased-qqp
MNLI BERTbase textattack/bert-base-uncased-MNLI

SQuADv1
BERTbase csarron/bert-base-uncased-squad-v1

GPT-2 anas-awadalla/gpt2-span-head-finetuned-squad
RoBERTa thatdramebaazguy/roberta-base-squad

SQuADv2
BERTbase ericRosello/bert-base-uncased-finetuned-squad-frozen-v2

GPT-2 anas-awadalla/gpt2-span-head-finetuned-squad
RoBERTa 21iridescent/roberta-base-finetuned-squad2-lwt

Table 6: Baseline models of different datasets and their
Hugging Face repositories.

D Additional Visualization Results

In this section, we provide visualization results of
the attribution score difference in MNLI (Fig. 7, 8
and 9), IMDB (Fig. 10 and 11), and Yelp (Fig. 12
and 13), which include the task of classification of
sentence pair and long text and each dataset, we
randomly obtain a data from each class. For all of
the above figures, as we mentioned in Fig. 6, to-
kens highlighted in green represent those receiving
more attention from our method than the baseline,

1https://huggingface.co/
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Figure 7: The comparison of attribution scores between our method (shown in the first line) and baselines on an
entailment classified sentence pair in MNLI.

Figure 8: The comparison of attribution scores between our method (shown in the first line) and baselines on a
neutral classified sentence pair in MNLI.

Figure 9: The comparison of attribution scores between our method (shown in the first line) and baselines on a
contradiction classified sentence pair in MNLI.

while those in red signify the opposite. Our method
emphasizes more on both internal and interaction
information.
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Figure 10: The comparison of attribution scores between our method (shown in the first line) and baselines on a
negative classified comment in IMDB.

Figure 11: The comparison of attribution scores between our method (shown in the first line) and baselines on a
positive classified comment in IMDB.
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Figure 12: The comparison of attribution scores between our method (shown in the first line) and baselines on a
negative classified comment in Yelp Polarity.

Figure 13: The comparison of attribution scores between our method (shown in the first line) and baselines on a
positive classified comment in Yelp Polarity.
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