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Abstract
Using large language models (LMs) for query
or document expansion can improve general-
ization in information retrieval. However, it
is unknown whether these techniques are uni-
versally beneficial or only effective in specific
settings, such as for particular retrieval models,
dataset domains, or query types. To answer this,
we conduct the first comprehensive analysis of
LM-based expansion. We find that there exists
a strong negative correlation between retriever
performance and gains from expansion: expan-
sion improves scores for weaker models, but
generally harms stronger models. We show this
trend holds across a set of eleven expansion
techniques, twelve datasets with diverse distri-
bution shifts, and twenty-four retrieval models.
Through qualitative error analysis, we hypoth-
esize that although expansions provide extra
information (potentially improving recall), they
add additional noise that makes it difficult to
discern between the top relevant documents
(thus introducing false positives). Our results
suggest the following recipe: use expansions
for weaker models or when the target dataset
significantly differs from training corpus in for-
mat; otherwise, avoid expansions to keep the
relevance signal clear.1

1 Introduction

Neural information retrieval (IR) systems rou-
tinely achieve state-of-the-art performance on tasks
where labeled data is abundant (Karpukhin et al.,
2020; Yates et al., 2021). When limited or no data is
available, neural models fine-tuned on data-rich do-
mains are used in zero-shot manner (Thakur et al.,
2021; Rosa et al., 2022b). However, shifts in dis-
tribution of queries and documents can negatively
impact their performance (Lupart et al., 2023).

To mitigate this effect, language models (LMs)
can be used to expand queries or documents from

1Code and data are available at https://github.com/
orionw/LM-expansions

∗ Work performed during internship at AI2.
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Figure 1: LM-based query and document expansion
methods typically improve performance when used with
weaker models, but not for stronger models. More accu-
rate models generally lose relevance signal when expan-
sions are provided. Each point is a value in Table 1.

unseen domains (Dai et al., 2022; Gao et al., 2022;
Jagerman et al., 2023; Jeronymo et al., 2023; Wang
et al., 2023a). These techniques input queries
and/or documents into an LM to generate addi-
tional content, which is combined with original
text to facilitate relevance matching. For example,
Doc2Query (Nogueira et al., 2019c) uses an LM
to generate likely queries for documents in the col-
lection. Meanwhile, HyDE (Gao et al., 2022) uses
an LM to generate a fictitious relevant document
for a user query. As LMs are often trained on more
domains than typical rankers, LM-based expansion
leverages this encoded knowledge to bridge out-of-
distribution gaps.

IR researchers have long proposed methods to
expand queries and documents (Rocchio Jr, 1971;
Lavrenko and Croft, 2001; Abdul-Jaleel et al.,
2004). However, we note that LM-based expan-
sions are qualitatively different from traditional
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expansion techniques. While the latter are largely
non-parametric, using thesauri or relevance sig-
nals from the collection,2 LM-based expansions
can leverage knowledge encoded in their model
weights. Finally, while many comparative analyses
of statistical expansion techniques exist (Hust et al.,
2003; Bhogal et al., 2007; Carpineto and Romano,
2012), no equivalent work has been conducted for
LM-based approaches.

Many works have proposed specific LM-based
expansions, but these approaches are generally
tested only a small subset of retrieval methods
(small bi-encoder models or BM25) or only work
on specific domains (Gao et al., 2022; Wang et al.,
2023a; Zhu et al., 2023). We thus seek to answer
the following:

RQ1: How do different models impact query
and document expansion (§3)? Across all types
of IR models and architectures, performance is neg-
atively correlated with gains from expansion: after
a certain score threshold these expansions gener-
ally hurt performance (as they blur the relevance
signal from the original documents).

RQ2: How do different distribution shifts im-
pact these results (§4)? Our main results hold
for all types of shift – better models are harmed
by expansion – except for long query shift, where
expansions generally help most-to-all models.

RQ3: Why do expansions hurt stronger IR
models (§5)? We find that query and document
expansions introduce new terms, potentially weak-
ening the relevance signal of the original text.

Overall, this work aims at answering the follow-
ing question: when should one use LM-based ex-
pansions? Through our investigation, we provide
evidence to help practitioners answer this question.
Our results run counter to the common intuition
that query and document expansion are helpful
techniques in all cases; instead, they show that
LM expansions generally benefit weaker rankers,
but hurt more accurate rankers. Further, analysis
over twelve datasets shows that whether a given
model benefits from expansion varies depending on
task; datasets with pronounced distribution shifts
(e.g., very long queries) are more likely to benefit.

2For example, pseudo relevance feedback (PRF) uses top-
k retrieved documents to expand queries. Thus, PRF relies on
the quality of the initial retrieved set; generally, the better the
retrieval, the better the expansion. We note that this is not nec-
essarily the case for LM-based expansions/PRF: parametric
knowledge encoded in model weights affect terms selected for
expansion (in contrast to classic PRF that typically selects new
terms from the top relevant documents from the collection).

2 Experimental Settings

We provide an overview of document and query
expansion methods used in the reminder of the
manuscript, and describe our experimental setup.

We choose expansion techniques according
to two criteria: (i) their overall performance,
as claimed in papers introducing them, and (ii)
whether they can used with any retrieval model.
While there exists more specific techniques for par-
ticular architectures, such as ColBERT-PRF (Wang
et al., 2023c,b), we use text-based expansions from
LMs to ensure generalizability of our findings.

We generate expansions using gpt-3.5-turbo3

as it is inexpensive and shows strong performance
in previous work (Wang et al., 2023a; Jagerman
et al., 2023). Since using LMs to generate expan-
sions for large collections would be prohibitive,
we restrict our expansions to the reranking setting,
e.g. the top 100 documents per query found from
BM25 following Asai et al. (2022).4 Following
established practices, we use these expansions for
zero-shot out-of-domain retrieval. Although it is
possible that training with expansions may further
increase their effectiveness, this limits their gen-
eralizability since it requires re-training retrieval
models for each expansion technique and LM.

2.1 Query Expansion

We use three types of query expansion, selecting
the best methods from previous work.

HyDE from Gao et al. (2022) provides task-
specific instructions for the LM to generate a doc-
ument that would answer that question. We use
prompts from their work when available.

Chain of Thought from Jagerman et al. (2023)
was inspired by Wei et al. (2022); it prompts the
model to reason before giving the answer. The
step-by-step reasoning is then used to expand the

3We use version gpt-3.5-turbo-0613. To show that
our results generalize beyond this specific language model,
we include results using other open/API LMs (gpt-4-0613,
Claude V2, Llama2 70b Chat) in Appendix A that show the
same conclusion. Prompts and example input/output can be
found in Appendix D and E. We also explore the placement of
these augmentations (should we prepend/append/replace the
original query and documents?) in Appendix B and show that
this also makes little difference.

4As of September 2023, even just a single document ex-
pansion method using gpt-3.5-turbo on the DL Track 2019
collection would cost thousands of dollars. Thus we rerank
the top 100 docs for each dataset. We show in Appendix C and
Table 10 that our observations hold up to 10,000 documents.
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Figure 2: Effect of expansion over twelve datasets. For each dataset, markers show base performance for models,
while the boxplot indicates the range of changes in scores for document and/or query expansion. Across all datasets
and models, we note a consistent trend: models with lower base performance benefit from expansion; higher
performing rankers generally suffer when expansion techniques are used.

DL Track 2019 FiQA Arguana
Type Model No Exp QE DE Both No Exp QE DE Both No Exp QE DE Both

Fi
rs

t
St

ag
e

DPR 38.4 +6.6 +3.1 +10.8 14.4 +4.7 +1.7 +5.7 34.9 -7.1 +1.6 -4.4
Contriever 49.0 +3.5 +4.0 +8.1 21.3 +3.6 +1.6 +5.1 45.8 -0.1 +2.9 -3.2
BM25 51.2 -4.0 - - 23.6 +4.5 - - 30.0 -5.4 - -
Contriever FT 62.3 +1.6 -0.2 +0.6 29.6 +3.2 +0.6 +3.8 48.8 -3.6 +2.0 -2.5
E5 Base v2 67.3 -3.4 -0.9 -3.7 37.8 -0.6 -3.8 -2.5 51.1 -8.4 +2.6 -5.7
MPNet Base v2 68.3 -6.0 -2.9 -6.8 44.5 -4.1 -3.5 -5.7 47.6 -5.1 +5.3 -0.7
E5 Small v2 69.1 -4.8 -1.9 -6.8 36.4 +0.4 -2.9 -0.6 46.1 -8.7 +2.7 -9.8
GTE Large 70.0 -4.5 -1.3 -4.5 41.2 -2.0 -4.1 -3.2 56.8 -8.8 -0.9 -9.0
E5 Large v2 70.1 -5.7 -1.7 -7.6 38.6 -0.9 -2.7 -3.2 48.9 -5.9 +3.2 -3.4

R
er

an
ke

rs

MonoT5-Small 66.6 -2.0 -2.8 -2.8 34.3 +0.1 -0.6 -0.3 21.1 +22.7 -3.0 +22.2
MiniLM-2-v2 68.0 -3.2 -4.1 -5.1 27.5 -2.0 +0.6 -15.8 15.2 +11.4 +10.8 +11.2
SPLADEv2 70.1 -4.3 -3.7 -5.6 33.4 +1.3 -0.2 +1.2 45.0 -4.5 -1.3 -4.0
MonoBERT 70.4 -4.6 -2.0 -4.8 36.2 +0.2 -0.7 +0.0 50.1 -5.7 +2.5 -9.3
MiniLM-4-v2 70.6 -3.0 -2.5 -4.9 33.8 +1.5 -0.3 +1.2 43.4 +0.4 +1.0 -0.8
MonoT5-Base 71.5 -3.2 -1.4 -5.2 39.2 -1.2 -1.2 -0.9 27.0 +20.0 +0.7 +18.7
MonoT5-3B 71.7 -2.8 -2.0 -5.0 45.9 -3.8 -3.2 -5.6 42.4 +6.8 -1.9 +5.2
ColBERTv2 71.8 -4.2 -2.8 -6.4 33.8 -0.4 -0.3 -0.7 47.4 -5.2 -0.6 -4.8
MiniLM-12-v2 72.0 -4.3 -4.5 -5.6 35.5 -0.4 -0.5 +0.0 33.2 +12.0 +1.1 +9.8
MonoT5-Large 72.2 -4.0 -1.8 -5.6 42.8 -2.3 -2.3 -3.1 31.2 +14.8 -2.0 +14.8
LLAMA 72.6 -2.9 -4.9 -7.7 40.0 -3.7 -4.9 -5.8 52.6 -3.9 -6.9 -9.4
LLAMAv2 72.8 -4.2 -4.9 -9.3 41.1 -3.6 -7.4 -7.9 52.3 -1.5 -8.2 -7.0
LLAMAv2-13B 73.6 -4.5 -5.4 -7.3 41.2 -4.5 -4.9 -7.0 49.4 -2.1 -6.0 -4.9

Table 1: Best expansion strategies across different models. QE stands for query expansion (Q-LM PRF), DE for
document expansion (Doc2Query), and Both for the combination (Q-LM PRF + Doc2Query). Colors indicate a
positive or negative delta over scores for no expansion. Models with higher base scores are generally harmed by
expansions while weaker models benefit from them. Llama models follow MonoT5 in fine-tuning on MSMarco.

original query. Many works have shown the effec-
tiveness of this approach (Jagerman et al., 2023;
He et al., 2022; Trivedi et al., 2022).

LM-based Pseudo Relevance Feedback (Q-LM
PRF). PRF is a classical IR method to expand a
query using terms from top retrieved documents.
We use an LM to generate a list of terms from the
top 3 documents ranked by a bi-encoder model
(Contriever). Through a second invocation, the
LM updates the query to include the new terms.
LM-aided PRF has been shown to be broadly effec-
tive (Mackie et al., 2023; Jagerman et al., 2023).

2.2 Document Expansion

Doc2Query. There are fewer widespread LM
document expansion techniques, with the main one
being Doc2Query (Nogueira et al., 2019c). Work
has found that improving the question generation
model results in higher scores, hence we use Chat-
GPT instead of T5 for our experiments (Nogueira
et al., 2019a). See Appendix A for results using
alternative LMs for document expansion.

LM-based Document PRF (D-LM PRF). Simi-
lar to the Q-LM PRF technique above, we propose
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Axis Dataset # Queries # Docs Avg. Judged/Q Q Len D Len

In-Domain
TREC DL Track 2019 (Craswell et al., 2020) 43 8,841,823 212.5 5.4 56.6
TREC DL Track 2020 (Craswell et al., 2021) 54 8,841,823 207.9 6.0 56.6

Domain Shift
FiQA-2018 (Maia et al., 2018) 648 57,600 2.6 10.9 137.4
Gooaq Technical (Khashabi et al., 2021) 1,000 4,086 1.0 8.3 44.5
NFCorpus (Boteva et al., 2016) 323 3,633 38.2 3.3 233.5

Relevance Shift
Touché-2020 (Bondarenko et al., 2020) 49 382,545 19.0 6.6 293.7
SciFact Refute (Wadden et al., 2020) 64 5,183 1.2 12.1 214.8

Long Query Shift
Tip of My Tongue (Lin et al., 2023) 2,272 1,877 1.0 144.3 100.5
TREC Clinical Trials ’21 (Roberts et al., 2021) 75 375,580 348.8 133.3 919.5
ArguAna (Wachsmuth et al., 2018) 1,406 8,674 1.0 197.1 170.3

Short Doc Shift
WikiQA (Yang et al., 2015) 369 26,196 1.2 6.3 25.1
Quora (Iyer et al., 2017) 10,000 522,931 1.6 9.5 12.5

Table 2: Statistics of datasets in this work. Avg. Judged/Q is the number of relevant documents per query. Length is
measured in words. The TREC DL Track uses the MS MARCO dataset (Nguyen et al., 2016).

DL 2019 Track DL 2020 Track
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

− No Expansion 38.4 62.3 71.7 39.2 57.5 68.3

Q
ue

ry HyDE +18.8 +9.3 -4.0 +13.2 +7.4 -5.8
CoT +12.6 +2.7 -6.7 +5.5 +4.2 -9.3
Q-LM PRF +6.6 +1.6 -2.2 +6.3 +2.7 -3.0

D
oc D2Q +3.1 -0.2 -1.2 +3.1 +1.3 -1.9

D-LM PRF -1.1 -15.5 -23.6 -2.6 -9.1 -19.3

B
ot

h

HyDE + D2Q +21.9 +9.0 -4.5 +15.0 +6.2 -5.4
CoT + D2Q +15.1 +0.8 -7.3 +7.2 +4.2 -8.1
Q-LM PRF + D2Q +10.8 +0.6 -4.2 +8.1 +3.7 -3.3
HyDE + D-LM PRF +16.7 -3.1 -22.8 +11.4 +1.2 -17.9
CoT + D-LM PRF +10.9 -10.9 -25.0 +4.1 -4.4 -21.8
Q+D LM PRF +6.8 -5.6 -14.4 +4.5 -2.4 -11.8

Table 3: In-Domain performance on the TREC Deep Learning Tracks, according to various types of expansions,
showing that expansion typically helps weaker models (like DPR) but hurts stronger models (especially large
reranker models like MonoT5-3B). Colors indicate a positive or negative delta over scores for no expansion.

a document expansion that draws pseudo-relevance
from related queries instead of related documents.
In this setting, where there exists a set of unjudged
user queries, we show the LM the top 5 most-
similar queries and ask it to expand the original
document to better answer the relevant queries.

3 RQ1: How Do Different Models Impact
Query and Document Expansion?

Experimental Setting To understand the ef-
ficacy of LM-based expansions, we employ
a wide variety of neural retrieval models:
DPR (Karpukhin et al., 2020); ColBERT v2 (San-
thanam et al., 2022); SPLADE v2 (Formal
et al., 2021a); MonoBERT (Nogueira et al.,
2019b); several MonoT5 (Nogueira et al., 2020),
E5 (Wang et al., 2022b), and MiniLM mod-
els (Wang et al., 2020); GTE (Li et al., 2023);
all-mpnet-v2-base (Reimers and Gurevych,

2019); Llama 1 & 2 models (Touvron et al.,
2023a,b), which we fine-tune on MS MARCO.

Due to the exponential combination of models
and datasets, we evaluate all models on three repre-
sentative datasets in Table 1 (we provide a compre-
hensive description of all datasets in §5); then, we
use five representative models (DPR, Contriever,
ColBERTv2, MonoT5-small, and MonoT5-3B) on
a larger suite of datasets (see Figure 2).

We present results for expansion technique as
absolute increase/decrease in nDCG@105 points
over a baseline with no expansion, which we high-
light in grey in all tables. Values above zero (e.g.
greater than the base version) are highlighted blue
while values below the base are highlighted red.
Color intensity is scaled linearly according to the

5Traditional expansion techniques increase recall of re-
trieval systems. However, LM-based expansions have been
shown to also improve precision (Jagerman et al., 2023). Thus,
we use the official, precision-oriented metric for BEIR, nDCG.
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FiQA-2018 GooAQ Technical NFCorpus
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

No Expansion 14.4 29.6 45.9 42.5 71.0 80.2 24.1 34.6 39.2

Q
ue

ry HyDE +3.6 -0.3 -14.7 +3.1 +3.8 -10.0 +0.3 +0.0 -5.9
CoT +3.6 +0.4 -13.2 +2.0 +2.1 -9.7 -0.7 -0.6 -4.5
Q-LM PRF +4.7 +3.2 -3.8 +6.4 +1.9 -3.4 +0.2 -0.4 -2.7

D
oc D2Q +1.7 +0.6 -3.2 +6.4 +3.0 -1.1 +1.3 +0.6 -0.5

D-LM PRF +3.3 +1.6 -12.5 +3.8 +0.6 -11.4 +0.3 -0.3 -0.7

B
ot

h

HyDE + D2Q +4.5 +0.4 -14.8 +8.2 +5.2 -7.4 +1.6 +0.1 -7.2
CoT + D2Q +4.4 +0.2 -13.4 +7.2 +3.8 -6.9 +0.8 +0.0 -5.6
Q-LM PRF + D2Q +5.7 +3.8 -5.6 +10.9 +4.2 -4.1 +1.4 -0.1 -3.0
HyDE + D-LM PRF +5.8 +1.2 -14.8 +5.3 +2.7 -14.2 +0.8 +0.1 -6.3
CoT + D-LM PRF +6.2 +1.7 -14.9 +3.6 +1.9 -13.6 -0.1 -0.2 -4.2
Q+D LM PRF +7.3 +4.6 -8.4 +7.9 +3.5 -6.4 +0.2 +0.0 -2.8

Table 4: How different expansions affect results on datasets that measure Domain Shift. Colors indicate a positive
or negative delta over scores for no expansion. Notice that models with higher base scores are generally harmed by
expansions while weaker models benefit from them.

Touche-2020 Scifact-Refute
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

No Expansion 23.0 24.8 32.6 33.9 76.4 82.1

Q
ue

ry HyDE -0.3 +4.8 -5.9 -9.1 -0.9 -12.3
CoT +0.3 +5.1 -7.4 -7.6 +0.3 -8.8
Q-LM PRF +0.6 +3.9 -1.3 +6.5 +1.1 -1.7

D
oc D2Q -0.2 +0.0 -0.9 +2.0 -1.8 +0.9

D-LM PRF -0.2 -1.2 -8.3 +2.5 -4.6 -16.5

B
ot

h

HyDE + D2Q -0.1 +5.0 -3.0 -6.1 -1.0 -16.6
CoT + D2Q +0.3 +2.6 -5.4 -6.5 -1.1 -16.9
Q-LM PRF + D2Q -0.1 +1.0 -2.0 +9.1 +1.3 -1.1
HyDE + D-LM PRF +0.5 +1.4 -10.1 -5.2 -2.9 -17.6
CoT + D-LM PRF -0.2 +0.8 -8.4 -7.2 -1.5 -19.3
Q+D LM PRF +0.3 +2.5 -2.7 +7.6 -2.5 -4.0

Table 5: How different expansions affect results on datasets that measure Relevance Shift.

difference between the base value and the min/max
(i.e., more saturation for the highest/lowest values).

We use default hyperparameters for all models,
except for the length of the queries, which we set at
512 for BERT-based models and 1024 for T5 and
Llama models.

Effect of Different Models Our results with all
models (Figure 1) show a consistent pattern: as
base performance on a task increases, the gains
from expansion decrease. We also see this trend
from Table 1 (note that ArguAna and FIQA re-
sults are sorted by nDCG score on MS MARCO;
negative trend is clearly observable in Figure 1).
Interestingly, these results do not depend on the
model architecture: this is true for bi-encoders,
late-interaction models, neural sparse models, and
cross-encoders (of all sizes).

However, do these results hold for other
datasets? In Figure 2, we show that this pattern
is consistent over a wide range of datasets. Models

whose base score is higher (such as MonoT5-3B)
are negatively impacted by expansions.

4 RQ2: How Do Different Distribution
Shifts Impact Results?

Experimental Setting We evaluate how query
and document expansion are impacted by differ-
ent distribution shifts: in-domain/no shift (MS
MARCO), domain shift (e.g. medical, code, legal),
relevance shift (finding the opposite or a counterar-
gument), and format shift (extremely long queries
or very short documents). Datasets and their de-
scriptive statistics are in Table 2. We use three
representative models for these experiments.

In-Domain We use two datasets that test perfor-
mance on the MS MARCO collection: TREC Deep
Learning6 2019 and 2020 tracks (Craswell et al.,

6Despite the different names, TREC DL 2019 and 2020
use the same document collection as MS MARCO, albeit with
new queries and relevance judgements.
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Tip of My Tongue TREC CT 2021 Arguana
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

No Expansion 13.4 38.3 39.5 16.4 26.7 25.8 34.9 48.8 42.4

Q
ue

ry HyDE +3.0 -9.4 -26.8 +0.3 +2.1 +4.2 -4.5 -5.4 +15.8
CoT +2.1 -9.5 -23.3 +2.3 +3.0 +3.0 -5.8 -5.3 +11.3
Q-LM PRF -2.9 -1.9 +6.4 +2.2 +0.6 -0.1 -7.1 -3.6 +8.3

D
oc D2Q +1.6 -3.2 -8.5 +0.3 -1.3 -1.8 +1.6 +2.0 -2.1

D-LM PRF +5.5 +2.9 +0.9 -0.7 -0.9 +0.6 +2.3 +3.5 -2.5

B
ot

h

HyDE + D2Q +3.6 -10.7 -29.7 +0.4 +2.1 +2.7 -2.8 -2.5 +12.9
CoT + D2Q +2.2 -10.6 -25.3 +2.3 +1.5 -0.1 -4.3 -3.0 +10.6
Q-LM PRF + D2Q -1.8 -4.7 +2.1 +0.7 -0.9 -0.2 -4.4 -2.5 +6.9
HyDE + D-LM PRF +6.0 -7.2 -32.6 +0.0 +1.0 +3.2 -3.0 +1.0 +10.3
CoT + D-LM PRF +5.3 -7.4 -25.8 +1.9 +2.7 +1.0 -4.0 +0.9 +8.8
Q+D LM PRF +0.7 +1.6 +6.4 +0.6 -1.0 +0.4 -4.0 -0.2 +3.3

Table 6: How different expansions affect results on datasets that measure Long Query Format Shift. Colors
indicate a positive or negative delta over scores for no expansion. Unlike previous results, all models benefit from
expansions on all three datasets. We conclude that, in the case of significant query shift, expansion is useful.

WikiQA Quora
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

No Expansion 47.2 68.6 75.9 68.4 86.7 83.9

Q
ue

ry HyDE +16.4 +3.6 -1.6 -15.4 -13.8 -8.2
CoT +9.8 -0.9 -6.1 -32.3 -31.5 -35.4
Q-LM PRF +11.9 -2.2 -4.2 -13.8 -11.4 -7.0

D
oc D2Q +5.4 -1.8 -1.7 -6.2 -3.7 +0.0

D-LM PRF -2.8 -10.8 -21.4 -10.0 -15.6 -17.0

B
ot

h

HyDE + D2Q +17.7 +2.1 -2.7 -11.4 -10.1 -7.1
CoT + D2Q +11.3 -1.5 -6.9 -25.7 -26.3 -32.5
Q-LM PRF + D2Q +13.0 -1.1 -6.2 -9.4 -8.7 -6.9
HyDE + D-LM PRF +12.6 -6.2 -18.0 -21.1 -22.1 -20.2
CoT + D-LM PRF +7.0 -10.3 -19.0 -35.6 -36.8 -41.4
Q+D LM PRF +9.5 -6.1 -10.8 -19.4 -19.6 -17.8

Table 7: How different expansions affect results on datasets that measure Short Document Format Shift. Models
with higher base scores are generally harmed by expansions while weaker models benefit from them.

2020, 2021). All retrieval models considered train
on MS MARCO, hence these are in-domain.

Domain Shift In this setting models must gener-
alize from training domain (web documents from
MS MARCO) to new domains, such as legal or
medical text. This type of shift is made difficult by
specialized vocabulary in these domains. We use
NFCorpus (medical) (Boteva et al., 2016), GooAQ
Technical (code) (Khashabi et al., 2021), and FiQA-
2018 (finance) (Maia et al., 2018).

Relevance Shift This setting is characterized by
a difference in how relevance is defined. Rather
than topical relevance over web pages, queries in
these datasets ask for counterarguments or docu-
ments refuting its claim. We use two datasets that
search for refutations or counterarguments: Touché-
2020 (Bondarenko et al., 2020) and a subset of Sci-
Fact (Wadden et al., 2020) whose gold documents
refute the queries claims.

Format Shift Another type of shift is the length
of inputs: generally, queries are short and docu-
ments span over one to multiple paragraphs. How-
ever, there are situations where queries could be
document-sized or the documents could be short.
This shift tests whether models can generalize
to new length formats. We consider two sets of
datasets: for shift to long query we use the “Tip
of My Tongue” dataset introduced by Lin et al.
(2023), TREC Clinical Trials Track 2021 (Roberts
et al., 2021), and ArguAna (Wachsmuth et al.,
2018). For shift to short document, we use Quora
(Iyer et al., 2017) and WikiQA (Yang et al., 2015).

4.1 Results by Type of Shift

Table 3 shows results for in-domain data on the
2019 and 2020 Deep Learning TREC Tracks. We
see that weaker models improve with different ex-
pansion types, with DPR improving for almost ev-
ery expansion and the stronger Contriever showing
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...The most likely tool to use in this case would be
a Home Equity Line of Credit (HELOC). This is a
line of credit for which the full amount is backed
by home equity ... Most likely your financial
institution will apply a factor ...

Original Expanded

Query: Is it possible to take a mortgage
using Bitcoin as collateral?

... suggest that they borrow the money to invest
with you. They can use their bitcoins as collateral
for the loan. That way, they get the same benefit
and your company doesn't go out of business if the
price of bitcoin drops ...

Doc B

Doc A

1. Doc A
2. Doc B

Query: What are the risks and maximum amount
involved in obtaining a Home Equity Line of Credit
(HELOC) using Bitcoin as collateral?

Ranked List
1. Doc B
2. Doc A
3.    ...3.    ...

Ranked List

Figure 3: An example of expansions obscuring the relevance signal. The non-relevant document in red (×) was
ranked higher than the relevant blue (✓) document due to the phrase “Home Equity Line of Credit” being added to
the query. The left side shows the original query and documents while the right side shows the ranking.

minor improvements for some combinations. How-
ever, when we move to the stronger models (e.g.,
MonoT5-3B), we find that all of these gains disap-
pear and expansions hurt the model.

We find that this trend holds in most other cat-
egories of shift: Table 4 for domain shift, Table 5
for relevance shift, and Table 7 for short document
shift. Note that Figure 2 also shows this visually.

The exceptions to this pattern occur in format
shift: on Quora (Table 5), all models are harmed
by expansion; for long query shift (Table 6), ex-
pansions generally help most models. When we
examine why expansions help for the latter, we find
that the transformations typically shorten queries to
more closely resemble models’ training data (e.g.,
for ArguAna the query changes from a long docu-
ment to a shorter sentence that summarizes it).

As IR models are not typically trained on long
queries, it is an open-question of whether additional
training would make this category of shift easier
for models and thus make expansions less helpful.

5 RQ3: Why Do Expansions Hurt?

Sections 3 and 4 show that strong IR models do
not benefit from expansions. But what causes this
effect? Here, we explore whether model size (§5.1)
is linked to our findings, and perform a qualitative
error analysis (§5.2).

5.1 Drop in Performance Independent of Size
One possible argument is that larger models are
able to estimate relevance better when using unal-
tered queries and documents, as they have learned
a more refined relevance model during their train-
ing. To verify this hypothesis, we test two different
families of models: MonoT5 and E5. If model size
is the cause, we would expect to see larger models
gain less from expansions for both families.

However, Figure 5 shows that model scale is
inversely correlated with gains from expansion for
the MonoT5-family, but not the E5-family. The

crucial difference between them7 can be attributed
to the E5 models having similar performance scores
across sizes whereas T5 has a much wider range:
T5 differs by 21 nDCG@10 points on ArguAna
from 3B to small while E5 differs by only 3 points
from large to small. Thus, we see that model size
impacts gains from expansions only in tandem with
the correlation between model size and base score.

5.2 Error Analysis

If model size is not the reason for our finding, what
could be causing it? To gain an intuition on the
failures of LM expansion, we annotate 30 examples
from three datasets where performance declines
when expanding queries and documents.

We find that out of the 30 examples, two are
false negatives, i.e., relevant documents that are
unjudged and not labeled as relevant (both from
FiQA). Of the remaining 28, all errors are due to
the expansions adding irrelevant terms that dilute
relevance signal, or including erroneous keywords
that make irrelevant documents appear relevant.
Figure 3 shows an example of how query expan-
sion added the term “Home Equity Line of Credit”
and distracted from the main focus of the ques-
tion (using bitcoins as collateral). Thus, it is likely
that, without the noise LM-based expansions intro-
duce, well tuned rankers can accurately estimate
relevance of subtly different documents. We can
visualize this in Figure 4, where we note a general
downward shift of the rankings of relevant docu-
ments in the top-10 positions for TREC DL 2019.
We find that most expansions shifts the ranking by
a few positions, while some expansions shift the
relevant document ranks to be out of the top 10 (i.e.
the cluster at -10 in Figure 4).

7Another obvious difference is that E5 is a bi-encoder
while MonoT5 is not. However, previous work (Muennighoff,
2022) has shown that bi-encoders also improve with scale.
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Figure 4: The change in rank for relevant documents
in the top 10 when using expansions. Negative values
indicate lower ranks (e.g. -5 indicates that the rank of the
relevant document went down 5 when using expansions).
We see that expansions cause relevant documents to be
ranked lower. Figure 6 in the Appendix shows other
datasets with similar results.
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Figure 5: Model scale does not explain negative effect
of LM-based expansions. While larger MonoT5 models
perform worse, all E5 model sizes are equally impacted

6 Discussion

Our results indicate three phenomena regarding
expansion using LMs: (i) expansion generally ben-
efits weaker models, such as DPR, while better
performing rankers, such as T5, are penalized; (ii)
exceptions are observed in case of severe distribu-
tion shift, e.g. very long queries; (iii) when model
scores decrease, the cause is generally expansion
weakening the original relevance signal.

This implies that despite their broad capabili-
ties, LMs should not be used to augment strong
performing IR models without careful testing. The
strong performance of rerankers for generalization
confirms previous work by Rosa et al. (2022a). Fur-
ther, Table 3 indicates this characterization of LM
expansion also holds on in-domain data (no shift).

Interestingly, our experiments find that the only
distribution shift that consistently needs expansion
is long query format shift; we found no equivalent
result for domain, document, or relevance shift. Fu-
ture work may examine whether improved training
techniques on longer queries can overcome this or
whether longer queries are innately more difficult.

7 Related Work

Large Scale Analyses in Neural IR Compre-
hensive analyses in retrieval have provided great
insight into practical uses of retrieval. These in-
clude many aspects of information retrieval, in-
cluding interpretability (MacAvaney et al., 2022),
domain changes (Lupart et al., 2023), syntax phe-
nomena (Chari et al., 2023; Weller et al., 2023),
and relationship between neural and classical IR ap-
proaches (Formal et al., 2021b; Chen et al., 2022).

Generalization in Neural IR As retrieval mod-
els have become more effective, attention has
turned to improving and evaluating the way that IR
models generalize to out-of-distribution datasets
(e.g. not MS MARCO-like corpora). One promi-
nent example of this is the BEIR dataset suite
(Thakur et al., 2021), which is commonly used for
retrieval evaluation. Much other work has proposed
new datasets for types of shift (e.g. MTEB (Muen-
nighoff et al., 2023) among others (Han et al., 2023;
Ravfogel et al., 2023; Weller et al., 2023)), as well
as many new modeling strategies for better zero-
shot retrieval (Dai et al., 2022; Wang et al., 2022a).
We follow these works by showing different types
of shift and whether these types of shift change the
results for LM-based expansion techniques.

Effect of Scale on Neural IR Models IR mod-
els typically improve with scale (Nogueira et al.,
2020) but are also heavily constrained, due to the re-
quirement of processing documents for live search.
Thus, most first-stage IR models typically use a
BERT backbone (Santhanam et al., 2022; Izacard
et al., 2021) while reranker models have scaled to
billions of parameters (Nogueira et al., 2020). How-
ever, work on scaling bi-encoder architectures has
also shown performance gains from scale (Muen-
nighoff, 2022). Due to the effectiveness of larger
models, recent work has shown that a better first-
stage model does not lead to improvements over
a BM25 + reranker pipeline (Rosa et al., 2022a).
Thus, for our experiments we use BM25 as first
stage retrieval and show results reranking those.

Query and Document Expansion in IR Query
and document expansion have a long history in
IR, with early techniques such as expanding query
terms using dictionaries or other hand-built knowl-
edge sources (Smeaton et al., 1995; Liu et al., 2004)
as well as techniques that use corpus-specific infor-
mation such as pseudo-relevance feedback (Roc-
chio Jr, 1971). These expansions are limited as they
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are either hand-crafted (and thus limited in scope)
or involved automatic techniques that may intro-
duce spurious connections between words. LM-
based query and document expansions on the other
hand can rely on their extensive linguistic knowl-
edge which goes well beyond hand-crafted rules.
Despite this however, they still suffer from spuri-
ous and superfluous additions, as shown in Figure 3.
However, LM-based expansions have been shown
to be successful in a variety of applications (Zheng
et al., 2020; Weller et al., 2022; Wang et al., 2023a;
Jagerman et al., 2023), which provided inspiration
for this work.

8 Conclusion

We conduct the first large scale analysis on large
language model (LM) based query and document
expansion, studying how model performance, archi-
tecture, and size affects these results. We find that
these expansions improve weaker IR models while
generally harming performance for the strongest
models (including large rerankers and heavily opti-
mized first-stage models). We further show that this
negative correlation between model performance
and gains from expansion are true for a wide variety
of out of distribution datasets, except for long query
shift, where this correlation is weaker. Overall, our
results indicate that LM expansion should not be
used for stronger IR models and should instead be
confined to weaker retrieval models.

Limitations

We evaluate rankers in a zero-shot setup. This
work does not train rankers to deal with augmenta-
tions. While additional training might help mitigate
negative effect of document and query expansion,
it would significantly increase computational re-
quirements. In fact, as our analysis reveals that
no single expansion technique is superior in all set-
tings, users would need to train rankers for multiple
expansion techniques, further increasing the cost of
this fine-tuning step. Finally, some tasks might re-
quire fine-tuning on supervised data, which might
not be available or easily obtainable.

Our protocol for choosing whether a ranker
need expansion requires labeled test data in the
target domains. While our work requires no la-
beled data to train models, we note that deciding
whether to use augmentation requires having access
to evaluation data for the target domain: in some
cases, such data might not be available. While

recently proposed LM-aided IR evaluation tech-
niques (Faggioli et al., 2023; MacAvaney and Sol-
daini, 2023; Thomas et al., 2023) might ameliorate
the need of supervised data, we do not explore such
approaches in this work.

While open LMs were evaluated, majority of ex-
periments rely on commercial LM APIs. The
majority of experiments in this work were carried
out with commercial language models available via
paid APIs. While we experimented with a vari-
ety of other paid API and open LMs (gpt-4-0613,
Claude V2, Llama2 70b Chat), we found that they
all generally show similar trends, with commercial
APIs currently outperforming open models (see
Appendix A and Table 8 for more details). As
our work is mainly focused on studying the ef-
fect of expansion different rankers, we feel picking
one representative model is justified. Nevertheless,
use of commercial APIs limits reproducibility and
presents a significant barrier to those who cannot
get access to the model. To minimize this, we will
release all LM generations gathered from commer-
cial APIs and from open-source models.

Compute requirements to fully replicate this
work. A replication of this work would require
access to significant computational resources, in-
cluding GPUs. A rough estimate shows that gener-
ating results for this paper required north of 10,000
NVIDIA A6000 GPU hours, with a further 5,000
hours to develop a stable experimental platform.

Only English information retrieval models are
evaluated. This work only studies datasets in En-
glish. While LM augmentations could play an
important role in improving non-English, cross-
lingual, and multilingual information retrieval, they
require careful analysis (c.f. Mayfield et al. (2023)
as one example).

Ethical Considerations

LMs may generate factually incorrect text,
which could affect ranking. This work shows
that LM augmentations make mistakes; while our
experimental setup is such that LM-generated con-
tent never replaces actual documents, inaccuracies
might result in non-relevant documents being pre-
sented to users.
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A Different LMs for Expansion

Here we show results for GPT-4 expansions instead
of ChatGPT in Table 8. We can see that although
absolute numbers differ slightly, there is no change
to the trends discussed in the main paper: i.e. that
stronger models are harmed by expansions while
weaker models benefit. We swap FiQA for NFCor-
pus due to the larger collection size and increased
costs of annotating with GPT-4.

B Placement of Expansions

In Table 9 we show different placements of ex-
pansions (i.e. do we prepend/append/replace the
original query when doing query expansion?). We
find that the placement does not make a signifi-
cant difference to our overall results, as the core
conclusion of the paper remains the same.

C Number of Documents Reranked

All experiments reranked the top 100 documents,
as described in the main paper. However, here we
show an ablation where we increase the number
of reranked documents to include the top 1000 or
10,000 documents. We see that there is little change
in how expansions affect the models.

D Example Input/Output for expansions

Here we show example input and output for expan-
sion for query and document expansions.

D.1 Document Expansion

We show example expansion from this document
from MS MARCO:

Whale Shark. The Whale Shark is the
largest and the heaviest living shark because
its weight is more than 21 tons and its length
is more than 12 meter. It is found in open
oceans and warm waters. It feeds on plank-
ton but some times it also uses other small
fishes as food.

D.1.1 Doc2Query

What is the largest and heaviest living shark
in the world?
What are the characteristics of the Whale
Shark?
Where can the Whale Shark be found?
What does the Whale Shark feed on?
What is the size and weight of the Whale
Shark?

D.1.2 D-LM PRF

The Whale Shark is the largest and heav-
iest living shark, weighing over 21 tons
and measuring over 12 meters in length. It
is found in open oceans and warm waters.
While it primarily feeds on plankton, it oc-
casionally consumes other small fishes as
well.

D.2 Query Expansion

For the MS MARCO query “why did the us volun-
terilay enter ww1" the following output was gener-
ated. For prompt formatting, see Appendix E.
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TREC DL 2019 NFCorpus Arguana
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

No Expansion 38.4 62.3 71.7 24.1 34.6 39.2 34.9 48.8 42.4

C
ha

tG
PT Q-LM PRF +6.6 +1.6 -2.8 +0.2 -0.4 -2.8 -7.1 -3.6 +6.8

D2Q +3.1 -0.2 -2.0 +1.3 +0.6 -0.5 +1.6 +2.0 -1.9
Q-LM PRF + D2Q +10.8 +0.6 -5.0 +1.4 -0.1 -3.0 -4.4 -2.5 +5.2

G
PT

-4 Q-LM PRF +13.3 +5.2 -0.6 -7.8 -17.5 -22.6 -6.2 -4.5 +4.5
D2Q -4.3 -14.0 -2.3 +1.2 +1.0 -0.1 +0.9 +1.2 +0.2
Q-LM PRF + D2Q +8.0 -8.6 -3.2 -7.6 -17.8 -23.3 -4.8 -2.9 +5.2

C
la

ud
e

v2 PRF +14.0 +4.8 -3.7 +0.3 +1.1 -1.5 -6.0 -5.7 +4.0
D2Q +4.2 -1.7 -2.4 +1.6 +0.5 -0.2 +3.4 +3.3 -1.0
PRF + D2Q +15.3 +2.6 -4.4 +1.5 +1.6 -1.6 -3.1 -2.1 +3.7

L
la

m
a

v2
70

B
C

ha
t PRF +0.9 -8.3 -14.5 -1.5 -1.7 -3.9 -4.8 -4.5 -2.6

D2Q +4.7 -1.1 -2.5 +1.0 +0.2 -0.2 -0.1 +0.9 -2.5
PRF + D2Q +3.6 -7.8 -15.8 -0.7 -1.7 -4.2 -4.3 -3.4 -4.0

Table 8: How different LLMs used as the generator affect results. Colors indicate a positive or negative delta over
scores for no expansion. Although there are small differences the overall trends are the same.

MSMarco 2019 FiQA Arguana
Type Model Contriever MonoT5-small MonoT5-3B Contriever MonoT5-small MonoT5-3B Contriever MonoT5-small MonoT5-3B

No Expansion 14.4 29.6 45.9 42.5 71.0 80.2 24.1 34.6 39.2

Q
ue

ry Prepend +8.1 -2.8 -4.2 +5.1 -0.3 -5.6 -3.2 +22.2 +6.9
Append +9.8 -1.6 -3.5 +4.1 +0.8 -4.6 -3.5 +22.6 +8.4
Replace +8.3 -7.3 -7.9 +7.2 -3.2 -8.8 -15.9 +19.3 +3.3

D
oc

Prepend +8.5 -2.2 -1.9 +5.9 -2.0 -3.1 +1.4 -5.4 -12.4
Append +10.3 -0.8 -1.4 +4.0 -1.4 -2.2 +0.4 -6.8 -8.6
Replace +9.3 -8.9 -6.2 +8.3 -6.9 -8.8 -4.1 -11.0 -20.1

B
ot

h

Prepend/Prepend +9.4 -2.2 -2.0 +5.9 -4.0 -4.6 +1.5 -9.7 -19.8
Prepend/Append +11.0 -0.9 -1.9 +4.1 -3.3 -2.8 +0.5 -8.7 -18.3
Prepend/Replace +9.6 -9.0 -6.2 +8.1 -8.5 -9.3 -5.1 -10.0 -26.8
Append/Prenpend +3.5 -2.0 -2.2 +3.6 +0.1 -3.8 -0.1 +22.7 +8.3
Append/Append +2.7 -1.7 -1.1 +4.8 -3.5 -2.0 -0.5 -5.3 -9.0
Append/Replace +3.0 -1.7 -1.3 +4.6 -5.6 -2.2 -0.3 -8.0 -18.8
Replace/Prepend +4.0 -2.8 -1.2 +1.6 -0.6 -3.2 +2.9 -3.0 -2.1
Replace/Append +5.9 +0.2 -0.7 +0.9 +0.6 -1.2 +1.2 -1.5 -0.9
Replace/Replace +5.7 -11.8 -8.7 +4.4 -5.3 -10.4 -1.0 -5.0 -9.1

Table 9: How different placements of the expansions affect results (e.g. prepend/append/replace). Colors indicate a
positive or negative delta over scores for no expansion. Although there are small differences the overall trends are
the same.

TREC DL 2019 NFCorpus Arguana
Type Model DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B DPR Contriever FT MonoT5-3B

10
0

D
oc

s No Expansion 38.4 62.3 71.7 24.1 34.6 39.2 34.9 48.8 42.4
Q-LM PRF +6.6 +1.6 -2.8 +0.2 -0.4 -2.8 -7.1 -3.6 +6.8
D2Q +3.1 -0.2 -2.0 +1.3 +0.6 -0.5 +1.6 +2.0 -1.9
Q-LM PRF + D2Q +10.8 +0.6 -5.0 +1.4 -0.1 -3.0 -4.4 -2.5 +5.2

1k
do

cs

No Expansion 29.2 64.6 72.6 21.5 34.2 40.0 29.5 48.7 38.0
PRF +4.1 -0.6 -4.2 -0.9 +0.1 -3.5 -10.1 -14.5 -1.9
D2Q +5.2 +0.7 -1.7 +1.1 +0.7 -0.3 -5.2 -11.3 -10.4
PRF + D2Q +10.9 -0.1 -6.3 +0.7 +0.6 -3.9 -8.8 -13.5 -2.8

10
k

do
cs

No Expansion 28.5 64.6 73.1 21.5 34.2 40.0 23.5 36.2 29.7
PRF +3.4 +0.6 -4.3 -0.7 +0.6 -3.2 -3.9 -1.9 +6.6
D2Q +4.2 -1.4 -1.5 +0.9 +0.5 -0.2 +1.2 +1.6 -2.2
PRF + D2Q +10.1 +2.8 -4.2 +0.3 +0.6 -3.4 -2.1 -1.0 +5.8

Table 10: How different numbers of documents used for reranking affect the results. Colors indicate a positive
or negative delta over scores for no expansion. Although there are small differences between models the overall
trends are the same. Note that NFCorpus’s collection is roughly 3k examples and so changing from 1k to 10k
reranking makes little difference.
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D.2.1 HyDE

The United States voluntarily entered World
War I primarily due to a combination of fac-
tors. Firstly, the sinking of the British ocean
liner RMS Lusitania by a German U-boat in
1915, resulting in the loss of American lives,
created a strong public outcry for interven-
tion. Additionally, Germany’s resumption
of unrestricted submarine warfare in 1917
further escalated tensions. Furthermore, the
interception of the Zimmermann Telegram,
which revealed Germany’s proposal to Mex-
ico for a military alliance against the United
States, heightened fears of potential threats
to American security. These events, cou-
pled with a desire to protect American inter-
ests and uphold democratic principles, ulti-
mately led the United States to voluntarily
join the war effort.

D.2.2 Q-LM PRF

What were the factors leading to the United
States’ voluntary entry into WW1 and what
were the consequences of their decision to
join the Allies?

D.2.3 Chain of Thought

The United States voluntarily entered World
War I primarily due to a combination of fac-
tors. One of the key reasons was the Ger-
man unrestricted submarine warfare, which
threatened American lives and interests at
sea. Additionally, the interception and de-
coding of the Zimmerman Telegram, in
which Germany proposed an alliance with
Mexico against the US, further fueled pub-
lic sentiment for intervention. Moreover,
there was a desire to protect American eco-
nomic interests, as the US had significant
trade ties with the Allied powers. Lastly,
President Woodrow Wilson’s belief in pro-
moting democracy and his vision for a post-
war world order based on the principles of
self-determination and collective security
also played a role in the US decision to en-
ter the war.

E Prompts for LM expansions

Here we show the prompts used for LM query and
document expansion.

E.1 Query Expansions

E.1.1 HyDE

We use the prompts from their paper, which are
dataset specific, in this manner:

<SPECIFIC PROMPT>

<Type of Input>: QUERY
<TYPE OF OUTPUT> (one short paragraph
max):

for example on Clinical Trials we use:

Please write a clinical trial summary that
would apply to the following patient.

Patient Info: QUERY
Trial Summary (one short paragraph max):

and on FiQA we use:

Please write a financial article passage to
answer the question

Question: QUERY
Passage (one short paragraph max):
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E.1.2 Q-LM PRF

You are a query expansion engine, primed
and ready to take in text and output
additional keywords will provide new
and expanded context behind the original
input. Your extensive world knowledge and
linguistic creativity enables you to provide
questions that maximally optimize the
new questions to find new websites. You
**always** provide creative synonyms and
acronym expansions in your new queries
that will provide additional insight.

Be sure to use new words and spell
out acronyms (or add new acronyms).
Hint: think of ***new synonyms and/or
acronyms*** for “QUESTION" using
these documents for inspiration:

DOCUMENTS

Return the following information, filling it
in:
Input: QUESTION
Comma Separated List of 10 important
New Keywords: “““NEW KEYWORDS
HERE"""
New Question (combining Input and New
Keywords, only **one** new question
that expands upon the Input): “““NEW
QUESTION HERE"""

Your output:

E.1.3 Chain of Thought

We use a the same specific prompt for CoT as we
do for HyDE. The format is as follows:

<SPECIFIC PROMPT>

QUESTION

Give the rationale (one short paragraph
max) before answering.

E.2 Document Expansions

E.2.1 D-LM PRF

Change the following document to answer
these questions, if they are partially
answered by the document. If the queries
are not relevant, ignore them. Your new
documents should be one concise paragraph
following the examples.

Example 1:

Queries:
1. “how much caffeine is in a 12 ounce cup
of coffee?"
2. “what are the effects of alcohol and caf-
feine"
3. “what can pregnant women not do?"
Document: “We don’t know a lot about
the effects of caffeine during pregnancy on
you and your baby. So it’s best to limit
the amount you get each day. If you are
pregnant, limit caffeine to 200 milligrams
each day. This is about the amount in 1½
8-ounce cups of coffee or one 12-ounce cup
of coffee."
New Document (similar to Document):
“There is a lack of research about the effects
of caffeine during pregnancy on you and
your baby. So it’s best to limit the amount
you get each day. If you are pregnant, limit
caffeine to 200 milligrams (mg) each day.
This is about the amount in 1½ 8-ounce
cups of coffee or one 12-ounce cup of
coffee (e.g. 200 milligrams)."

Example 2:

Queries:
QUERIES
Document: “DOCUMENT"
New Document (similar to Document):
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Figure 6: Number of positions relevant documents change when using expansion. Negative values indicate the
document was ranked lower. Results are similar to TREC DL 2019 for FiQA which shows lowered nDCG while for
Arguana nDCG scores increase as seen by the change in positions being positive.

E.2.2 Doc2Query

You are an optimized query expansion
model, ExpansionGPT. You will write 5
queries for the given document that help
retrieval models better find this document
during search.

Document: “QUESTION"

Queries:
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