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Abstract

Quantifying uncertainty in automatically gener-
ated text is important for letting humans check
potential hallucinations and making systems
more reliable. Conformal prediction is an at-
tractive framework to provide predictions im-
bued with statistical guarantees, however, its
application to text generation is challenging
since any i.i.d. assumptions are not realistic. In
this paper, we bridge this gap by leveraging
recent results on non-exchangeable conformal
prediction, which still ensures bounds on cov-
erage. The result, non-exchangeable conformal
nucleus sampling, is a novel extension of the
conformal prediction framework to generation
based on nearest neighbors. Our method can
be used post-hoc for an arbitrary model with-
out extra training and supplies token-level, cali-
brated prediction sets equipped with statistical
guarantees. Experiments in machine transla-
tion and language modeling show encouraging
results in generation quality. By also producing
tighter prediction sets with good coverage, we
thus give a more theoretically principled way to
perform sampling with conformal guarantees.

1 Introduction

Natural language generation (NLG) is a multi-
faceted field spanning applications such as
machine translation (MT), language modeling
(LM), summarization, question answering and
dialogue generation. Owing to the recent success
of large language models (LLMs) such as GPT-4
(OpenAI, 2023), BLOOM (Scao et al., 2022) or
LLaMA (Touvron et al., 2023), natural language
modeling with stochastic decoding (sampling) is
increasingly used as an interface with end users.
While sampling allows for more fluent and varied
text, few methods exist to evaluate the reliability
of generated text and adequacy of the underlying
sampling method. This is particularly relevant for
generation scenarios where pre-trained models
are applied to new data with potentially different

{            }

Figure 1: Schematic representation of our approach.
A decoder hidden representation zt is used during in-
ference to retrieve the nearest neighbors and their non-
conformity scores sk. Their relevance is determined by
using their distance to compute weights wk, resulting in
the quantile q̂ that forms conformal prediction sets.

distribution to the training data, increasing the
risk of generating erroneous, misleading, and
potentially harmful text (Ji et al., 2023; Guerreiro
et al., 2023; Pan et al., 2023; Alkaissi and
McFarlane, 2023; Azamfirei et al., 2023).

Conformal prediction (Vovk et al., 2005; Pa-
padopoulos et al., 2002; Angelopoulos and Bates,
2021) has recently gained popularity by provid-
ing calibrated prediction sets that are imbued with
statistical guarantees about containing the correct
solution. Nevertheless, applying conformal pre-
diction to NLG is not trivial and comes with a
major obstacle: The conditional generation process
breaks the independence and identical distribution
(i.i.d.) assumption underlying conformal prediction
techniques. We tackle this problem by drawing
inspiration from recent advances in nearest neigh-
bor language modeling (Khandelwal et al., 2020b;
He et al., 2021a; Xu et al., 2023) and machine
translation (Khandelwal et al., 2020a; Zheng et al.,
2021; Meng et al., 2022; Martins et al., 2022). This
way, we are able to dynamically generate calibra-
tion sets during inference that are able to maintain
statistical guarantees. We schematically illustrate
non-exchangeable conformal nucleus sampling in
Figure 1: In the first step, we obtain a (sorted)
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probability distribution over tokens and a latent
representation zt for the current generation step
from the model. In a second step, we use the la-
tent representation to query a datastore for similar,
previously stored representations and their corre-
sponding non-conformity scores, sk. These scores
are then used to compute a threshold q̂ based on the
theory of non-excheangeable conformal prediction
(Barber et al., 2023), which defines a smaller set of
tokens that is sampled from.1

Contributions. We present a general-purpose ex-
tension of the conformal framework to NLG by
tackling the problems above. Our contributions are
as follows: 1 To the best of our knowledge, we
are the first to present a novel technique based on
non-exchangeable conformal prediction and to ap-
ply it to language generation to produce calibrated
prediction sets. 2 We validate the effectiveness
of the method in a Language Modeling and Ma-
chine Translation context, evaluating the coverage
of the calibrated prediction sets and showing that
our method is on par with or even outperforms other
sampling-based techniques in terms of generation
quality, all while maintaining tighter prediction sets
and better coverage. 3 We finally demonstrate that
these properties are also maintained under distri-
butional shift induced by corrupting the model’s
latent representations. 4 We publish all the code
for this project in an open-source repository.2

2 Related Work

Conformal Prediction. Conformal prediction is
a line of work that has recently regained interest in
machine learning by producing prediction sets with
certain statistical guarantees about containing the
correct prediction (Vovk et al., 2005; Papadopoulos
et al., 2002; Angelopoulos and Bates, 2021). As
the size of prediction sets is calibrated to fulfill
these guarantees, one can also see the size of the
prediction set itself as a proxy of the uncertainty
of a model—the larger the set, the more possible
predictions have to be included in order to main-
tain the coverage guarantee. Conformal predic-
tion has already found diverse applications in NLP
for classification (Maltoudoglou et al., 2020; Fisch
et al., 2021; Schuster et al., 2021; Fisch et al., 2022;

1For simplicity, the figure depicts the simplest form of
prediction sets used in conformal prediction. In practice, we
use the adaptive prediction sets explained in Section 3.1.

2https://github.com/Kaleidophon/
non-exchangeable-conformal-language-generation.

Choubey et al., 2022; Kumar et al., 2023) and se-
quence labeling problems (Dey et al., 2021), as well
as quality estimation (Giovannotti, 2023; Zerva and
Martins, 2023). Unfortunately, generation prob-
lems are challenging due to their sequential na-
ture and constant breaking of the i.i.d. assump-
tion, so existing works operate on the sequence-
level instead (Quach et al., 2023; Ren et al., 2023;
Deutschmann et al., 2023). Conformal procedures
for time-series (Xu and Xie, 2021; Lin et al., 2022b;
Oliveira et al., 2022; Zaffran et al., 2022) and gen-
eral non-i.i.d. data (Tibshirani et al., 2019; Barber
et al., 2023; Guan, 2023; Farinhas et al., 2024) have
been proposed in the literature. The most related
work to ours is given by Ravfogel et al. (2023), who
apply the standard conformal prediction setup to
NLG, arguing that Markov chains are a type of β-
mixing processes, for which Oliveira et al. (2022)
showed coverage to degrade by an only negligible
amount. However, Ravfogel et al. do not investi-
gate this claim empirically, and furthermore do not
find any benefits when generating sequences. In
another related work, Quach et al. (2023) propose
an approach that is specifically tailored toward lan-
guage modeling. However, their prediction sets
contain entire sequences instead of single tokens.
In contrast, our token-level prediction sets are use-
ful for constraining the options during generation
and their widths can represent model uncertainty.

Uncertainty in NLP. Modeling uncertainty in
NLP has already been studied in classification
(Van Landeghem et al., 2022; Ulmer et al., 2022a;
Holm et al., 2022) and regression settings (Beck
et al., 2016; Glushkova et al., 2021; Zerva et al.,
2022). However, NLG proves more challenging
due to it non-i.i.d. and combinatorial nature. Some
works have proposed Bayesian Deep Learning
methods for NLG: Xiao et al. (2020) use Monte
Carlo Dropout (Gal and Ghahramani, 2016) to pro-
duce multiple generations for the same input and
measure their pair-wise BLEU scores. Malinin and
Gales (2021) define extensions of mutual informa-
tion for structured prediction. Other existing ap-
proaches try to account for the paraphrastic nature
of language by modeling the entropy over mean-
ing classes (Kuhn et al., 2023), investigate the use
of linguistic markers to indicate uncertainty (Zhou
et al., 2023) or ask the model directly for its con-
fidence (Lin et al., 2022a; Kadavath et al., 2022).
Baan et al. (2023) provide an extensive overview
of the theory and current state of the field.
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3 Background

Conformal Prediction. Conformal prediction is
an attractive method for uncertainty quantification
due to its statistical coverage guarantees (Vovk
et al., 2005; Papadopoulos et al., 2002; Angelopou-
los and Bates, 2021). Given some predictor, a held-
out calibration set {(xi, yi)}Ni=1, and a pre-defined
miscoverage level α (e.g., 0.1), the calibration set
is used to obtain prediction sets C(x∗) for a new
test point x∗ satisfying

p
(
y∗ ∈ C(x∗)

)
≥ 1− α, (1)

that is, the probability of the prediction set C(x∗)
containing the correct label y∗ is at least 1−α. This
is achieved by the following recipe: Firstly, one has
to define a non-conformity score, that provides an
estimate of the distance of the test point to the rest
of the data, i.e., a proxy for the uncertainty over the
test point predictions. In this context, the score can
be as simple as si = 1−pθ(y|x), i.e. one minus the
softmax probability of the true class, which will be
higher when the model is wrong or less confident.
Next, we define q̂ as the

⌈
(N + 1)(1− α)/N

⌉
-th

quantile of the non-conformity scores. Then, when
we make a new prediction for a test point x∗, we
can create prediction sets defined as

C(x∗) =
{
y
∣∣∣ pθ(y|x∗) ≥ 1− q̂

}
, (2)

which is guaranteed to fulfil the coverage require-
ment in Equation (1) for i.i.d. data (Vovk et al.,
2005; Angelopoulos and Bates, 2021).

Non-exchangeable Conformal Prediction. Bar-
ber et al. (2023) address a major shortcoming in
the method above: When a test point and the cal-
ibration data are not i.i.d.,3 the distributional drift
causes any previously found q̂ to be miscalibrated,
and thus the intended coverage can no longer be
guaranteed. However, we can still perform con-
formal prediction by assigning a weight wi ∈
[0, 1] to every calibration data point, reflecting its
relevance—i.e. assigning lower weights to points
far away from the test distribution. Then, by nor-
malizing the weights with w̃i = wi/(1+

∑N
i=1wi),

we define the quantile as

q̂ = inf
{
q
∣∣∣

N∑

i=1

w̃i1
{
si ≤ q

}
≥ 1− α

}
, (3)

3In fact, the coverage guarantee applies to the case where
the data is exchangeable, a weaker requirement than i.i.d.
Specifically, a series of random variables is exchangeable if
their joint distribution is unaffected by a change of their order.

with 1{·} denoting the indicator function. The
construction of the prediction sets then follows the
same steps as before. Most notably, the coverage
guarantee in Equation (1) now changes to

p
(
y∗ ∈ C(x∗)

)
≥ 1− α−

N∑

i=1

w̃iεi, (4)

with an extra term including the total variation
distance between the distribution of a calibration
and a test point, εi = dTV

(
(xi, yi), (x

∗, y∗)
)
.4 Un-

fortunately, this term is hard to estimate or bound,
nevertheless, the selection of appropriate weights
that can capture the relevance of calibration points
to the test set should moderate both the impact of
the distant data points on the estimation of the pre-
diction set and the impact of dTV on the coverage
bound. In other words, for large dTV values we
expect to have smaller weights, that allow us to
achieve coverage close to the desired values. We
show in our experiments that the loss of coverage
when using nearest neighbor weights is limited and
revisit the practical implications in Section 5.

3.1 Method: Non-exchangeable Conformal
Language Generation through Nearest
Neighbors

We now present a novel method to apply confor-
mal prediction in NLG by synthesizing the non-
exchangeable approach of Barber et al. (2023) with
k-NN search-augmented neural models (Khandel-
wal et al., 2020a,b). The related approach by
Ravfogel et al. (2023) calibrates prediction sets
within bins of similar entropies using the non-
exchangeable procedure described in Section 3.
However, this implies that we would use seman-
tically unrelated (sub-)sequences to calibrate the
model—in fact, we show experimentally that this
approach obtains generally trivial coverage by pro-
ducing extremely wide prediction sets. Instead,
we propose to perform a dynamic calibration step
during model inference, only considering the most
relevant data points from the calibration set. We
do this in the following way: Given a dataset
{(x(i), y(i))} of sequences x(i) = (x

(i)
1 , . . . ,x

(i)
S )

and corresponding references consisting of gold to-
kens y(i) = (y

(i)
1 , . . . , y

(i)
T ), we extract the model’s

decoder activations z
(i)
t ∈ Rd and conformity

4In this expression, (xi, yi) and (x∗, y∗) denote random
variables and the total variation distance is between the two
underlying distributions. See Barber et al. (2023) for details.
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scores s
(i)
t .5 We save those in a datastore allow-

ing for fast and efficient nearest neighbor search
using FAISS (Johnson et al., 2019). In the infer-
ence phase, during every decoding step, we then
use the decoder hidden state z∗t to query the data
store for the K nearest neighbors and their confor-
mity scores and record their distances. We use the
squared l2 distance to compute the weight wk as

wk = exp
(
−
∣∣∣∣ z∗t −zk

∣∣∣∣2
2
/ τ

)
, (5)

where τ corresponds to a temperature hyperparame-
ter.6 This formulation is equivalent to a RBF kernel
with scale parameter τ . Finally, we use the weights
to compute the quantile q̂ as in Equation (3). The
entire algorithm is given in Appendix A.5.

Adaptive Prediction Sets. The efficacy of con-
formal prediction hinges on the choice of non-
conformity score, with the simple non-conformity
score si = 1− pθ(yt|x, y<t) known to undercover
hard and overcover easy subpopulations of the data.
Due to the diverse nature of language, we there-
fore opt for adaptive prediction sets (Angelopoulos
et al., 2021a; Romano et al., 2020). Adaptive pre-
diction sets redefine the non-conformity score as
the cumulative probability over classes (after sort-
ing descendingly) necessary to reach the correct
class. Intuitively, this means that we included all
classes whose cumulative probability does not sur-
pass q̂. Compared to the simple conformity score,
this produces wider predictions sets for hard in-
puts, encompassing more potentially plausible con-
tinuations in a language context. A more formal
definition is given in Appendix A.1.

4 Experiments

In the following sections, we conduct experiments
in both language modeling and machine transla-
tion. For machine translation we opt for the 400
million and 1.2 billion parameter versions of the
M2M100 model (Fan et al., 2021) on the WMT-
2022 shared task datasets for German to English
and Japanese to English (Kocmi et al., 2022). For
Language Modelling, we use the 350 million and

5In this phase, we do not let the model generate freely, but
feed it the gold prefix during the decoding process to make
sure that conformity scores can be computed correctly.

6Using this formulation of the weights wk that depends
on the data deviates from the assumptions of original proof,
as discussed in Barber et al. (2023), §4.5. Nevertheless, our
results in Section 4 and those by Farinhas et al. (2024) show
that the obtained bound in Equation (4) still remains useful.

1.3 billion parameter versions of the OPT model
(Zhang et al., 2022) and replicate the setup by Rav-
fogel et al. (2023): We calibrate our model on
10000 sentences from a 2022 English Wikipedia
dump (Foundation, 2022) and test coverage and
generation on 1000 sentences from OpenWebText
(Gokaslan et al., 2019).7 All models are used in a
zero-shot setup without extra training or finetun-
ing. For the datastore, we use the implementation
by FAISS library (Johnson et al., 2019), comput-
ing 2048 clusters in total and probing 32 clusters
per query. We also summarize the environmental
impact of our experiments in Appendix A.6.

4.1 Evaluating Coverage
First of all, we demonstrate that the retrieved
information from the data store enables us to
successfully apply the proposed method. Coverage
is an important notion in conformal prediction,
referring to the correct label being covered by a
prediction set or intervals. Since we can always
achieve trivial coverage by choosing the largest
possible prediction set, an ideal method would
strike a balance between high coverage and small
prediction sets. While it is not possible to measure
coverage in a free generation setting (see next
section), we can assess whether the correct class
is contained in the prediction set if we feed the
actual reference tokens into the decoder and check
whether we include the true continuation.8 For our
MT task, this is reminiscent of an interactive trans-
lation prediction setup (Knowles and Koehn, 2016;
Peris et al., 2017; Knowles et al., 2019), where we
would like to suggest possible continuations to a
translator, suggesting the next word from a set of
words that (a) contains plausible options and (b)
is limited in size, in order to restrict the complexity
for the end user. Before we run our experiments,
we need to determine τ , which we tune on the
calibration set using a stochastic hill-climbing
procedure described in Appendix A.2. We compare
our non-exchangeable conformal nucleus sampling
(Non-Ex. CS) with nucleus sampling (Holtzman
et al., 2020) and conformal nucleus sampling
(Conf. Sampl.; Ravfogel et al., 2023). The latter
bin predictions on a calibration set by the entropy
of the output distribution, and compute one q̂ per

7Data obtained through the Hugging Face datasets
package (Lhoest et al., 2021): https://huggingface.
co/datasets/wikipedia and https://huggingface.co/
datasets/stas/openwebtext-10k.

8We emphasize that access to gold tokens is not required by
our method and only done here to measure the actual coverage.
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de→ en ja→ en

Method Dist. τ % COVERAGE ∅ WIDTH ↓ SCC ↑ ECG ↓ τ % COVERAGE ∅ WIDTH ↓ SCC ↑ ECG ↓

M
2M

10
0 (

40
0M

) Nucleus Sampling - - 0.9207 0.48 0.25 0.00 - 0.9261 0.54 0.41 0.02

Conf. Sampling - - 0.9951 0.94 0.33 0.03 - 0.9950 0.96 0.14 0.00

Non-Ex. CS IP 3.93 0.8251 0.16 0.63 0.26 11.90 0.8815 0.24 0.67 0.03

l2 512.14 0.8334 0.17 0.60 0.06 419.91 0.8468 0.18 0.61 0.05

cos 2.54 0.8371 0.17 0.63 0.06 3.53 0.8540 0.17 0.62 0.04

M
2M

10
0 (

1.
2B

)

Nucleus Sampling - - 0.8339 0.38 0.00 0.08 - 0.7962 0.42 0.03 0.10

Conf. Sampling - - 0.9993 0.99 0.34 0.00 - 0.9998 0.99 0.60 0.00

Non-Ex. CS IP 15.79 0.8861 0.25 0.71 0.03 10.45 0.9129 0.38 0.72 0.00

l2 1123.45 0.8874 0.25 0.72 0.03 605.97 0.8896 0.30 0.76 0.01

cos 3.21 0.8858 0.25 0.72 0.03 1.48 0.8897 0.30 0.75 0.01

Table 1: Coverage results for the de→ en and ja→ en MT tasks. We report the best found temperature τ while
keeping the confidence level α and number of neighbors k = 100 fixed. We also show the coverage percentage
along with the avg. prediction set size as a proportion of the entire vocabulary (∅ WIDTH) as well as ECG and SSC.
Tested distance metrics are inner product (IP), (squared) l2 distance, and cosine similarity (cos).

OPENWEBTEXT

Method Dist. τ % COV. ∅ WIDTH ↓ SCC ↑ ECG ↓

O
PT

(3
50

M
)

Nucl. Sampl. - - 0.8913 0.05 0.71 0.01

Conf. Sampl. - - 0.9913 0.90 0.91 0.00

Non-Ex. CS IP 4.99 0.9352 0.19 0.80 0.0

l2 0.31× 104 0.9425 0.17 0.80 0.0

cos 4.98 0.9370 0.15 0.83 0.0

O
PT

(1
.3

B
)

Nucl. Sampl. - - 0.8952 0.05 0.00 0.01

Conf. Sampl. - - 0.9905 0.88 0.95 0.0

Non-Ex. CS IP 0.48 0.9689 0.59 0.84 0.0

l2 1.55× 104 0.9539 0.20 0.83 0.0

cos 0.11 0.9512 0.20 0.875 0.0

Table 2: Coverage results for the LM task. We report
the best found temperature τ while keeping the confi-
dence level α and number of neighbors k = 100 fixed.
We also show the coverage percentage along with the
avg. prediction set size as a proportion of the entire
vocabulary (∅ WIDTH) as well as the ECG and SSC
metrics. Tested distance metrics are inner product (IP),
(squared) l2 distance and cos. similarity (cos).

such entropy bin using the standard conformal
procedure given in the beginning of Section 3.

Evaluation. We measure the total coverage us-
ing different distance metrics, namely, squared l2
distance, normalized inner product, and cosine sim-
ilarity (see Tables 1 and 2),9 as well as binning
predictions by set size and then measuring the per-
bin coverage in Figure 2 (more results given in
Appendix A.3). We also summarize the plots in

9For inner product and cosine similarity, we follow the
same form as Equation (5), omitting the minus. We normalize
the inner product by the square root of the latent dimension.

Figure 2 via the Expected Coverage Gap (ECG)10

that we define as

ECG =

B∑

b=1

|Bb|
N

max
(
1−α−Coverage

(
Bb

)
, 0
)
,

(6)
where Bb denotes a single bin and N the total num-
ber of considered predictions in the dataset.11 The
ECG thus captures the average weighted amount of
undercoverage across bins. In our experiments, we
use 75 bins in total. The same bins are used to also
evaluate the Size-Stratified Coverage metric (SSC)
proposed by Angelopoulos et al. (2021b), with a
well-calibrated method resulting in a SCC close to
the desired coverage 1− α:

SCC = min
b∈{1,...,B}

Coverage
(
Bb

)
. (7)

We can therefore understand the SCC as the worst-
case coverage across all considered bins. We
present some additional experiments where we
assess the impact of key hyperparameters in Ap-
pendix A.4.

Results. We found our method to miss the de-
sired coverage of 90% for MT by 8% or less. Be-
yond the reported values, we were not able to fur-
ther increase coverage by varying the temperature
parameter without avoiding trivial coverage (i.e.,
defaulting to very large set sizes), which is likely

10This is inspired by the expected calibration error (Guo
et al., 2017), comparing coverage to 1−α, where overcoverage
is not penalized due to Equation (1)’s lower bound.

11Since conformal prediction produces a lower bound on
the coverage, we do not include overcoverage in Equation (6).
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(a) Nucleus Sampling on de → en.
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(b) Conformal Nucleus Sampling on de → en.
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(c) Non-Ex. Conformal Sampling on de → en.
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(d) Non-Ex. CS on de → en with M2M100(1.2B).

Figure 2: Conditional coverage for the M2M100 on de→ en with the small 418M model (Figures 2a to 2c) and
using the bigger 1.2B model (Figure 2d). We aggregate predictions by set size using 75 equally-spaced bins in total.
The blue curve shows the conditional coverage per bin, whereas red bars show the number of binned predictions.

due to the impossible-to-estimate coverage in Equa-
tion (4). Most notably, our method was able to
achieve better SCC scores while maintaining con-
siderably smaller prediction sets than the baselines
on average. The reason for this is illustrated in
Figure 2: while standard nucleus sampling pro-
duces some prediction sets that are small, the total
coverage seems to mostly be achieved by creating
prediction sets between 60k–80k tokens. The be-
havior of conformal nucleus sampling by Ravfogel
et al. (2023) is even more extreme in this regard,
while our method focuses on producing smaller
prediction sets, with the frequency of larger set
sizes decreasing gracefully. In Figure 2d, we can
see that the larger M2M100 models also tend to
produce larger prediction sets, but still noticeably
smaller than the baselines. Importantly, for both
M2M100 models, even very small prediction sets
(size ≤ 1000) achieve non-trivial coverage, unlike
the baseline methods. For LM, we always found
the model to slightly overcover. This does not con-
tradict the desired lower bound on the coverage in
Equation (4) and suggests a more negligible distri-
butional drift. While nucleus sampling produces
the smallest average prediction sets, we can see
that based on the SCC values some strata remain
undercovered. Instead, our method is able to strike
a balance between stratified coverage and predic-
tion set size. With respect to distance measures,
we find that the difference between them is min-

imal, indicating that the quality largely depends
on the retrieved local neighborhood of the decoder
encoding and that finding the right temperature can
help to tune the models to approximate the desired
coverage. We would now like to find out whether
this neighborhood retrieval mechanism can prove
to be robust under distributional shift as well. Since
we did not observe notable differences between the
distance metrics, we continue with the l2 distance.

4.2 Coverage Under Shift

To demonstrate how the retrieval of nearest neigh-
bors can help to maintain coverage under distribu-
tional shift, we add Gaussian noise of increasing
variance—and therefore intensity—to the last de-
coder hidden embeddings (for MT) and the input
embeddings (LM).12 This way, we are able to simu-
late distributional drift while still keeping the origi-
nal sequence of input tokens intact, allowing us to
measure the actual coverage. We show the achieved
coverage along with the average set size (as a per-
centage of the total vocabulary) and the average
quantile q̂ in Figure 3. We can see that the confor-
mal sampling method deteriorates into returning
the full vocabulary as a prediction set. Thus it be-
haves similarly to simple sampling as indicated by

12A similar approach can be found for instance in the work
of Hahn and Choi (2019); Zhang et al. (2023) or by Ovadia
et al. (2019); Hendrycks and Dietterich (2019) in a computer
vision context.
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Figure 3: Coverage, average set size and q̂ based on the noise level on the de→ en MT task (top) and open text
generation task (bottom). Error bars show one standard deviation.

NOISE LEVEL

NONE 0.025 0.05 0.075 0.1

∅ Entropy 8.46 8.71 9.20 9.71 10.08

Nucl. Sampl. (ρ) 0.87 0.86 0.84 0.82 0.81

Conf. Sampl. (ρ) 0.60 0.60 0.60 0.57 0.55

Non-Ex. CS (ρ) −0.14 −0.18 −0.27 −0.37 −0.45

Table 3: Average entropy of 400M M2M100 model on
de → en per noise level as well as the Spearman’s ρ
correlation coefficients between the predictive entropy
and the prediction set size of the different methods. All
results are significant with p < 0.0001.

the q̂ values being close to 1. Nucleus sampling
provides smaller prediction sets compared to con-
formal sampling, but they seem invariant to noise.
As such, the method is not robust to noise injection
in the open text generation task, and the obtained
coverage deteriorates with noise variance ≥ 0.025.
Instead, the use of nearest neighbors allows for
the estimation of prediction sets that are small but
amenable to increase, such that the obtained cov-
erage remains close to the desired one. We can
specifically observe that the prediction set size in-
creases considerably to mitigate the injected noise
in the open-text generation case.

Neighbor Retrieval. We further analyze how the
retrieval enables this flexibility by relating it to
the entropy of the output distribution of the 400M
parameters M2M100 on German to English. Intu-
itively, the baseline methods, faced by high-entropy
output distributions, need to produce wide predic-
tion sets in order to maintain coverage. In fact, we

report such results by correlating entropy levels and
prediction set sizes using Spearman’s ρ in Table 3,
showing strong positive correlations. Our method
in contrast shows consistently an anticorrelation
between these two quantities, enabled by decou-
pling the creation of prediction sets from statistics
of the output distribution to instead considering
the non-conformity scores of similar subsequences.
The fact that the prediction set size is not just de-
pendent on the entropy of the predictions while
maintaining coverage demonstrates the value of
the nearest neighbors: In this way, model uncer-
tainty becomes more flexible and is corroborated
by evidence gained from similar inputs.

4.3 Generation Quality

Crucially, our method should not degrade and po-
tentially even improve generation quality. Thus, we
evaluate generation quality for the same tasks with-
out supplying the gold prefix. For language model-
ing, we follow Ravfogel et al. (2023) and use the
first 35 tokens from the original sentence as input.
We compare against a set of generation strategies in-
cluding top-k sampling (Fan et al., 2018; Holtzman
et al., 2018; Radford et al., 2019), nucleus sam-
pling and conformal nucleus sampling. We also
test a variant of our method using constant weights
wk = 1 for retrieved neighbors (Const. Weight
CS) to assess the impact of the weighted neighbor
retrieval procedure. We further compare with beam
search (Medress et al., 1977; Graves, 2012) with
a softmax temperature of 0.1, and greedy decod-
ing. Evaluation is performed using BLEU (Pap-
ineni et al., 2002), COMET-22 (Rei et al., 2020,
2022) and chrF (Popović, 2017) for MT as well
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de→ en ja→ en

Method BLEU ↑ COMET ↑ CHRF ↑ BLEU ↑ COMET ↑ CHRF ↑

M
2M

10
0 (

40
0m

)

Beam search 28.53 0.88 55.58 11.37 0.63 37.74

Greedy 27.81 0.9 54.9 10.73 0.58 36.5

Nucleus Sampling 27.63 ±0.03 0.89 ±0.01 54.80 ±0.07 10.61 ±0.15 0.59 ±0.01 36.52 ±0.19

Top-k Sampling 27.63 ±0.03 0.89 ±0.01 54.79 ±0.07 10.61 ±0.15 0.59 ±0.01 36.52 ±0.19

Conf. Sampling 27.63 ±0.03 0.89 ±0.01 54.80 ±0.07 10.61 ±0.15 0.59 ±0.01 36.52 ±0.19

Const. Weight CS∗ 27.63 ±0.03 0.89 ±0.01 54.80 ±0.07 10.61 ±0.15 0.59 ±0.01 36.52 ±0.19

Non-Ex. CS∗ 27.65 ±0.10 0.90 ±0.01 54.82 ±0.14 10.74 ±0.11 0.59 ±0.01 36.61 ±0.08

M
2M

10
0 (

1.
2B

)

Beam search 30.89 0.9 56.8 13.76 0.63 40.43

Greedy 29.52 0.9 55.67 12.94 0.6 39.91

Nucleus Sampling 29.37 ±0.12 0.90 ±0.00 55.55 ±0.11 10.61 ±0.15 0.59 ±0.01 36.52 ±0.19

Top-k Sampling 29.53 ±0.00 0.90 ±0.00 55.67 ±0.00 12.91 ±0.08 0.60 ±0.01 39.95 ±0.00

Conf. Sampling 29.37 ±0.12 0.90 ±0.00 55.55 ±0.11 12.91 ±0.08 0.60 ±0.00 39.95 ±0.08

Const. Weight CS∗ 29.37 ±0.12 0.90 ±0.00 55.55 ±0.11 12.91 ±0.08 0.60 ±0.01 39.95 ±0.08

Non-Ex. CS∗ 29.37 ±0.12 0.90 ±0.00 55.55 ±0.11 12.91 ±0.08 0.60 ±0.01 39.95 ±0.08

(a) Generation results for the de → en and ja → en translation tasks.

OPENWEBTEXT

Method MAUVE ↑ BERTSCORE F1 ↑

O
PT

(3
50

M
)

Beam search 0.12 0.79

Greedy 0.02 0.79

Nucleus Sampling 0.91 ±0.02 0.80 ±0.00

Top-k Sampling 0.90 ±0.03 0.80 ±0.00

Conf. Sampling 0.91 ±0.02 0.80 ±0.00

Const. Weight CS∗ 0.91 ±0.02 0.80 ±0.00

Non-Ex. CS∗ 0.92 ±0.01 0.80 ±0.00

O
PT

(1
.3

B
)

Beam search 0.17 0.80

Greedy 0.05 0.79

Nucleus Sampling 0.91 ±0.02 0.80 ±0.00

Top-k Sampling 0.93 ±0.01 0.81 ±0.00

Conf. Sampling 0.93 ±0.01 0.80 ±0.00

Const. Weight CS∗ 0.91 ±0.02 0.80 ±0.00

Non-Ex. CS∗ 0.92 ±0.01 0.81 ±0.00

(b) Results for the open text generation.

Table 4: Generation results for the two tasks. We report performance using 5 beams for beam-search, top-k sampling
with k = 10, and nucleus sampling with p = 0.9. Conformal methods all use α = 0.1, with non-exchangeable
variants retrieving 100 neighbors. MT results for sampling use a softmax temperature of 0.1. Our methods are
marked with ∗. Results using 5 different seeds that are stat. significant according to the ASO test (Del Barrio et al.,
2018; Dror et al., 2019; Ulmer et al., 2022b) with a confidence level of 0.95 and threshold εmin ≤ 0.3 are underlined.

as MAUVE (Pillutla et al., 2021) and BERTscore
(Zhang et al., 2020) for text generation.13

Results. We show the results for the different
methods in Table 4. We see that beam search
outperforms all sampling methods for MT. This
corroborates previous work by Shaham and Levy
(2022) who argue that (nucleus) sampling meth-
ods, by pruning only the bottom percentile of the
token distribution, introduce some degree of ran-
domness that is beneficial for open text genera-
tion but may be less optimal for conditional lan-
guage generation, where the desired output is con-
strained and exact matching generations are pre-
ferred (which is the case for MT). Among sampling
methods, we find nucleus sampling and confor-
mal sampling to perform similarly (being in agree-
ment with the findings of Ravfogel et al., 2023)
but are sometimes on par or even outperformed by
our non-exchangeable conformal sampling for MT.
For text generation, our method performs best for
the smaller OPT model but is slightly beaten by
conformal nucleus sampling in terms of MAUVE.
When using constant weights, performance dete-
riorates to the conformal sampling setup, empha-
sizing the importance of not considering all con-
formity scores equally when computing q̂, even

13All metrics except for COMET were used through Hug-
ging Face evaluate. MAUVE uses gpt2 as a featurizer.

though the effect seems to be less pronounced for
larger models. This illustrates the benefit of cre-
ating flexible prediction sets that are adapted on
token-basis, suggesting that both the latent space
neighborhoods as well as the conformity scores are
informative. We discuss examples of generated text
in Appendix A.7.

5 Discussion

Our experiments have shown that despite the ab-
sence of i.i.d. data in NLG and the loss in coverage
induced by using dynamic calibration sets, the re-
sulting coverage is still close to the pre-specified de-
sired level for both LM and MT. Additionally, even
though the coverage gap predicted by the method
of Barber et al. (2023) is infeasible to compute
for us, we did not observe any critical degrada-
tion in practice. Further, we demonstrated how
sampling from these calibrated prediction sets per-
forms similarly or better than other sampling meth-
ods. Even though our method is still outperformed
by beam search in the MT setting, previous work
such as minimum Bayes risk (MBR) decoding has
shown how multiple samples can be re-ranked to
produce better outputs (Kumar and Byrne, 2004;
Eikema and Aziz, 2020; Freitag et al., 2023; Fer-
nandes et al., 2022). Additionally, recent dialogue
systems based on LLMs use sampling instead of
beam search for generation. Since our prediction
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sets are more flexible and generally tighter, our
results serve as a starting point for future work.
For instance, our technique could be used with
non-conformity scores that do not consider token
probabilities alone (e.g. Meister et al., 2023) or us-
ing prediction set widths as a proxy for uncertainty
(Angelopoulos et al., 2021a).

6 Conclusion

We successfully demonstrated the application of a
non-exchangeable variant of conformal prediction
to machine translation and language modeling with
the help of k-NN retrieval. We showed our method
to be able to maintain the desired coverage best
across different dataset strata while keeping pre-
diction sets smaller than other sampling methods,
all while providing theoretical coverage guarantees
about coverage that other comparable methods lack.
We validated our method to produce encouraging
results for generation tasks. Lastly, we analyzed
the behavior under distributional drift, showing
how the k-NN retrieval maintains desirable prop-
erties for the estimated prediction sets. We see our
method as a step to provide a more principled way
to perform sampling with conformal guarantees
under more realistic assumptions.

Limitations

We highlight two main limitations of our work
here: Potential issues arising from different kinds
of dataset shift as well as efficiency concerns.

Distributional Drifts. Even though any loss of
coverage due to the term quantifying distributional
drift in Equation (4) was limited in our experi-
ments (see Sections 4.1 and 4.2), this might not
hold across all possible setups. As long as we
cannot feasibly approximate the shift penalty, it is
impossible to determine a priori whether the loss of
coverage might prove to be detrimental, and would
have to be checked in a similar way as in our ex-
periments. Furthermore, we only consider shifts
between the models’ training distributions and test
data distributions here, while many other, uncon-
sidered kinds of shifts exist (Moreno-Torres et al.,
2012; Hupkes et al., 2022).

Computational Efficiency. Even using opti-
mized tools such as FAISS (Johnson et al., 2019),
moving the conformal prediction calibration step
to inference incurs additional computational cost
during generation. Nevertheless, works such as

He et al. (2021b); Martins et al. (2022) show that
there are several ways to improve the efficiency of
k-NN approaches, and we leave such explorations
to future work.

Ethical Considerations

The main promise of conformal prediction lies in
its correctness—i.e. producing prediction sets that
contain the correct prediction and are thus reliable.
In an application, this could potentially create a
false sense of security. On the one hand, the con-
formal guarantee holds in expectation, and not nec-
essarily on a per-sample basis. On the other hand,
our experiments have demonstrated that coverage
might also not hold when distributional shifts are
at work or when looking at specific subpopulations.
Therefore, any application should certify that cov-
erage is maintained for potentially sensitive inputs.
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A Appendix

Aside from Appendix A.1 giving more detail on
the construction of adaptive prediction sets, we
use this appendix to bundle more details about
experiments and their results. Appendix A.2
details the procedure to determine the temperature
in Equation (5). We present more results from the
experiments in Section 4.1 in Appendix A.3.

We illustrate the overall algorithm in Ap-
pendix A.5 and estimate environmental impact of
our work in Appendix A.6.

A.1 Adaptive Prediction Sets
Here we provide a more formal definition of the
adaptive prediction sets. Let π be a permuta-
tion function mapping all possible output tokens
{1, . . . , C} to the indices of a permuted version of
the set, for which tokens are sorted by their prob-
ability under the model, descendingly. We define
the non-conformity score as

si =

π(yt)∑

j=1

pθ
(
π−1(j)

∣∣x, y<t

)
. (8)

Since we only include the cumulative mass up until
the gold label, the summation stops at π(y). The
prediction sets are then defined as

C(x∗, y∗<t) =
{
π−1(1), . . . , π−1(ĉ)

}
, (9)

with ĉ = sup{c′ | ∑c′
j=1 pθ(π

−1(j) | x∗, y∗<t) <
q̂}+1, where we add one extra class to avoid empty
sets.

A.2 Temperature Search
In order to determine the temperature used in Equa-
tion (5) for the different distance metrics in Table 1,
we adopt a variation of a simple hill-climbing pro-
cedure. Given user-defined bounds for the temper-
ature search τmin and τmax, we sample an initial
candidate τ0 ∼ U [τmin, τmax], and then evaluate the
coverage of the method given the candidate on the
first 100 batches of the calibration dataset. The
next candidate then is obtained via

τt+1 = τt + η · ε · sgn
(
1− α− Coverage(τt)

)
;

ε ∼ N (0, τmax − τmin), (10)

where η is a predefined step size (in our case 0.1)
and Coverage(τt) the achieved coverage given a
candidate τt. The final temperature is picked after
a fixed number of steps (t = 20 in our work) based
on the smallest difference between achieved and
desired coverage.

Overall, we found useful search ranges to dif-
fer greatly between datasets, models, and distance
metrics, as illustrated by the reported values in
Table 1 and Table 2. In general, the stochastic hill-
climbing could also be replaced by a grid search,
even though we sometimes found the best tempera-
ture to be “hidden” in a very specific value range.
It also has to be noted that temperature for the l2
distance is the highest by far since FAISS returns
squared l2 distances by default.
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A.3 Additional Coverage Results
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(a) Conditional coverage of M2M100(1.2B) for de → en.
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(b) Conditional coverage of M2M100(1.2B) for ja → en.
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(c) Conditional coverage for OPT(350M) on Language Mod-
elling.
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(d) Conditional coverage for OPT(1.3B) on Language Mod-
elling.

Figure 4: Additional conditional coverage plots for the
MT and LM dataset using our non-exchangeable con-
formal prediction method, aggregating predictions by
prediction set size. The blue curve shows the conditional
coverage per bin, whereas red bars show the number of
predictions per bin. For Figures 4c and 4d, we zoom in
on the prediction set sizes from 1 and 100.

We show additional plots illustrating the cov-
erage per set size-bins in Figure 4. We can see
the counterparts for Figure 2 using the larger

M2M100(1.2B) model in Figures 4a and 4b: Instead
of leveling off like for the smaller model, most pre-
diction set sizes are either in a very small range
or in a size of a few ten thousand. In Figures 4c
and 4d, we show similar plots for the two different
OPT model sizes. Since in both cases, most predic-
tion set sizes are rather small, we zoom in on the the
sizes from 1 to 100. Here, we can observe a similar
behavior to the smaller M2M100(400m), gradually
leveling off. We do not show similar plots for other
distance metrics as they show similar trends.

A.4 Impact of Coverage Threshold and
Neighborhood Size Choice

In this section, we present experiments surround-
ing the two most pivotal parameters of our method:
The desired confidence level α, as well as the num-
ber of neighbors.

Coverage Threshold. In Table 5, we investigate
the impact of different values on α on our evalua-
tion metrics. We show that the increase in α does
indeed produce the expected decrease in coverage,
however with a certain degree of overcoverage for
the de → en MT and the LM task. The loss in
coverage always goes hand in hand with a decrease
in the average prediction set width as well, as the
model can allow itself to produce tighter prediction
sets at the cost of higher miscoverage. As this also
produces bin in which all contained instances are
uncovered, this produces zero values for the SCC,
while we cannot discern clearn trends for the ECG.

Neighborhood Size. In Table 6, we vary the ef-
fect of the chosen neighborhood size (with 100
being the value we use in our main experiments).
We make the following, interesting observations:
Coverage on the MT task seems to decrease with an
increase in the neighborhood size as prediction set
widths get smaller on average, with a neighborhood
size around 100 striking a balance between cover-
age, width, computational cost and SCC / ECG. For
LM, coverage seems to be mostly constant, with
prediction set width hitting an inflection point for
100 neighbors. We speculate that initially there
might be a benefit to considering more neighbors
to calibrate q̂, but that considering too large neigh-
borhoods might introduce extra noise. While we
found 100 to be a solid choice for the purpose of
our experiments, we leave more principled ways to
determine the neighborhood size to future work.
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Algorithm 1 Non-exchangeable Conformal Lan-
guage Generation with Nearest Neighbors

Require: Sequence x(i), model fθ, datastore
DS(·) with model activations collected from
held-out set, temperature τ

while generating do
▷ 1. Extract latent encoding for current input
z
(i)
t ← fθ(xt)

▷ 2. Retrieve K neighbors & non-conformity
scores
{(z1, s1), . . . (zK , sK)} ← DS(zt)

▷ 3. Compute weights wk and normalize
wk ← exp(−|| z∗t −zk||22 / τ)
w̃k ← wk/(1 +

∑K
k=1wk)

▷ 4. Find quantile q̂
q̂ ← inf{q |∑N

i=1 w̃i1{si ≤ q} ≥ 1− α}

▷ 5. Create prediction set
ĉ ← sup{c′|∑c′

j=1 pθ(y = π(j)|x∗) <
q̂}+ 1
C(x∗)← {π(1), . . . , π(ĉ)}

▷ 6. Generate next token
yt ← generate(C(x∗))

end while

α % COV. ∅ WIDTH ↓ SCC ↑ ECG ↓

M
2M

10
0 (

40
0M

)
/d

e
→

en

0.1 0.9442 0.31 0.8702 0.0011

0.2 0.8767 0.18 0.7906 8.63× 10−5

0.3 0.7963 0.12 0 0.0016

0.4 0.7058 0.09 0.1393 0.0082

0.5 0.6081 0.07 0.2836 0.0055

0.6 0.5017 0.06 0.1393 0.0082

0.7 0.3896 0.05 0 0.0091

0.8 0.2800 0.05 0 0.0090

0.9 0.1762 0.04 0 0.0071

M
2M

10
0 (

40
0M

)
/j

a
→

en

0.1 0.7453 0.15 0.3080 0.1511

0.2 0.5579 0.07 0.2728 0.2446

0.3 0.4277 0.04 0.2770 0.2779

0.4 0.3438 0.03 0.1212 0.2438

0.5 0.2749 0.03 0.0455 0.1883

0.6 0.2175 0.02 0 0.1207

0.7 0.1685 0.02 0 0.0560

0.8 0.1309 0.01 0 0.0117

0.9 0.0989 0.02 0 0.0099

O
PT

(3
50

M
)

/O
P

E
N

W
E

B
T

E
X

T

0.1 0.9460 0.26 0.8 1.85× 10−5

0.2 0.8937 0.16 0.8 0

0.3 0.8392 0.10 0.5 8.74× 10−6

0.4 0.7782 0.08 0.6667 0

0.5 0.7171 0.06 0 1.19× 10−5

0.6 0.6559 0.06 0.6033 0

0.7 0.5945 0.05 0 8.21× 10−6

0.8 0.5349 0.05 0.4462 0

0.9 0.4757 0.05 0.3580 0

Table 5: Results for different values of α using different
models and datasets.

A.5 Algorithm

We show the algorithm that was schematically de-
picted in Figure 1 in pseudo-code in Algorithm 1. It
mostly requires that we have pre-generated a data-
store of latent representations of the model on a
held-out set along with their non-conformity scores
(in our case, using the score defined in 8 and the
FAISS (Johnson et al., 2019) as the datastore archi-
tecture). Furthermore, we need to have determined
an appropriate value for the temperature τ in ad-
vance (see Appendix A.2). Then, the algorithm
involves the following steps:

1. Extract the latent encoding for the current time
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K % COV. ∅ WIDTH ↓ SCC ↑ ECG ↓
M

2M
10

0 (
40

0M
)

/d
e
→

en

10 0.9923 0.39 0.9728 0

25 0.9563 0.37 0.8877 0.0011

50 0.9504 0.32 0.8870 0.0006

75 0.9444 0.32 0.8641 0.0014

100 0.9442 0.31 0.8702 0.0011

200 0.9422 0.31 0.8125 0.0016

300 0.9404 0.31 0.8483 0.0019

500 0.9389 0.31 0.8214 0.0023

M
2M

10
0 (

40
0M

)
/j

a
→

en

10 0.8013 0.17 0.2995 0.1606

25 0.7353 0.17 0.2994 0.1438

50 0.7540 0.17 0.3023 0.1603

75 0.7368 0.16 0.3019 0.1603

100 0.7453 0.15 0.3072 0.1529

200 0.7295 0.14 0.2938 0.1787

300 0.7192 0.13 0.2948 0.1788

500 0.7110 0.13 0.2756 0.1867

O
PT

(3
50

M
)

/O
P

E
N

W
E

B
T

E
X

T 10 0.9438 0.35 0.8824 0.0019

25 0.9522 0.33 0.8333 2.06× 10−5

50 0.9442 0.27 0 1.86× 10−5

75 0.9477 0.27 0.8 1.03× 10−5

100 0.9460 0.26 0.8 1.86× 10−5

200 0.9487 0.28 0.8571 6.20× 10−5

300 0.9500 0.28 0.8181 1.86× 10−5

500 0.9508 0.29 0.8181 1.86× 10−5

Table 6: Results for different neighborhood sizes K
using different models and datasets.

step zt from the model. Even though different
options are imaginable, we utilize the activa-
tions of the uppermost layer.

2. Retrieve K neighbors and their corresponding
non-conformity scores from the datastore.

3. Compute the weights wk based on the squared
l2 distance between zt and its neighbors in the
datastore and normalize the weights to obtain
w̃k.

4. Use Equation (3) to find the quantile q̂.

5. Use q̂ to create prediction sets, for instance
the adaptive prediction sets defined in Equa-
tion (9).

6. Finally, generate the new token yt by sampling
from the prediction set.

The main computational bottleneck of this algo-
rithm is the retrieval process that fetches the closest
neighbors from the datastore during every gener-
ation step. However, while not explored further
in this work, there are some potential avenues to
reduce this load: On the one hand, works such
as He et al. (2021b); Martins et al. (2022) have
demonstrated ways to reduce the computational
load of k-NN based approaches. On other hand,
we treat the number of neighbors K fixed during
every generation step. However, it seems intuitive
that the number of neighbors necessary to create
good prediction sets would not be the same for all
tokens. Future research could explore setting K
dynamically during every time step, thus reducing
the overall slowdown.

A.6 Environmental Impact
We track the carbon emissions produced by this
work using the codecarbon tracking tool (Schmidt
et al., 2021; Lacoste et al., 2019; Lottick et al.,
2019). The carbon efficiency was estimated to be
0.12 kgCO2eq / kWh. 159.5 hours of computation
were performed on a NVIDIA RTX A6000. Total
emissions are estimated to be 6.99 kgCo2eq. All of
these values are upper bound including debugging
as well as failed or redundant runs, and thus any
replication of results will likely be shorter and incur
fewer carbon emissions.

A.7 Qualitative Analysis
In Tables 7 to 10, we show a few samples from
the different methods on our used datasets. We
could observe some general patterns from the given
and further samples: For the translation task, our
method and other sampling techniques seem to
sometimes prefer literal but unfitting translations.
As expected for text generation, greedy sampling
produces the worst translations, often getting stuck
in loops, while beam search produces incoherent
outputs. Interestingly, non-exchangeable confor-
mal sampling and conformal sampling seem to of-
ten produce similar sampling before diverging.
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Input Außerdem funktioniert der Brandschutz am Übergang zum Bahnhof unter dem Terminal noch
nicht zufriedenstellend. Die Probleme hatten das Projekt schon vor drei Jahren in eine weitere
Krise geführt. Dieses Mal geht es um Rauchschürzen, die bei einem Brand wie eine Leinwand
herunterfahren, damit der Rauch sich nicht ausbreitet. Sie fahren zu weit herunter. 36 Motoren
müssen deshalb ausgetauscht werden. Dann soll es Anfang des Jahres neue Versuche mit
Heißgasrauch geben.

Reference Also, the fire protection at the passage to the station under the Terminal is not satisfactory yet.
There had already been problems leading the project into further crisis three years ago. This time
it’s about smoke barriers, which descend like a canvas during a fire, so that smoke does not spread.
They go too far down. Therefore, 36 engines have to be exchanged. There will be new testing
with hot gas smoke at the beginning of the year.

Beam
Search

In addition, the fire protection at the transition to the station under the terminal is not yet satisfying.
The problems had led the project to another crisis three years ago. This time it is about smoke
cuts that fall down in a fire like a wall so that the smoke does not spread. They run too far down.
36 engines therefore need to be exchanged. Then there will be new attempts with hot gas smoke
at the beginning of the year.

Greedy In addition, the fire protection at the transition to the station under the terminal is still not
satisfying. The problems had led the project to another crisis three years ago. This time it is about
smoke shakes that fall down in a fire like a wall so that the smoke does not spread. They run too
far down. 36 engines therefore need to be exchanged. Then it is expected to be new attempts with
hot gas smoke at the beginning of the year.

Nucleus
Sampling

In addition, the fire protection at the transition to the station under the terminal is not yet satisfying.
The problems had led the project to another crisis three years ago. This time it is about smoke
shakes that fall down in a fire like a wall so that the smoke does not spread. They run too far
down. 36 engines therefore need to be exchanged. Then it is expected to be new attempts with
hot gas smoke at the beginning of the year.
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In addition, the fire protection at the transition to the station under the terminal is not yet satisfying.
The problems had led the project to another crisis three years ago. This time it is about smoke
shakes that fall down in a fire like a wall so that the smoke does not spread. They run too far
down. 36 engines therefore need to be exchanged. Then it is expected to be new attempts with
hot gas smoke at the beginning of the year.
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In addition, the fire protection at the transition to the station under the terminal is not yet satisfying.
The problems had led the project to another crisis three years ago. This time it is about smoke
shakes that fall down in a fire like a wall so that the smoke does not spread. They run too far
down. 36 engines therefore need to be exchanged. Then it is expected to be new attempts with
hot gas smoke at the beginning of the year.
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In addition, fire protection at the transition to the station under the terminal is still not satisfying.
The problems had led the project to another crisis three years ago. This time it is about smoke
cuts that fall down in a fire like a wall so that the smoke does not spread. They run too far down.
36 engines therefore need to be exchanged. Then there will be new attempts with hot gas smoke
at the beginning of the year.

Table 7: Samples from M2M100(400M) on the de→ en translation task.
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Input Angesichts der aufgeladenen Stimmung riefen am Freitag sogar die Bischöfe der anglikanischen
Kirche zur Zurückhaltung auf. "Wir sollten miteinander mit Respekt sprechen"", hieß es in einer
Erklärung. "Und wir sollten auch zuhören".

Reference In view of the charged mood, even bishops of the Anglican Church called for restraint on Friday.
"We should speak to others with respect. And we should also listen."

Beam
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In view of the loaded mood, even the Bishops of the Anglican Church called for refusal on Friday.
”We should speak with respect to each other,” it said in a statement. ”And we should also listen.”

Greedy In light of the loaded mood, even the Bishops of the Anglican Church called for refusal on Friday.
”We should speak with respect to each other,” the statement said. ”And we should listen.”

Nucleus
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In light of the loaded mood, even the Bishops of the Anglican Church called for refusal on Friday.
”We should speak with respect to each other,” the statement said. ”And we should listen.”

Top-k
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In light of the loaded mood, even the Bishops of the Anglican Church called for refusal on Friday.
”We should speak with respect to each other,” the statement said. ”And we should listen.”
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In light of the loaded mood, even the Bishops of the Anglican Church called for refusal on Friday.
”We should speak with respect to each other,” the statement said. ”And we should listen.”

Non-Ex.
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In light of the burden of mood, even the Bishops of the Anglican Church called for a rejection on
Friday. ”We should speak with respect to each other,” the statement said. ”And we should listen.”

Table 8: Samples from M2M100(400M) on the de→ en translation task.
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Prompt TORONTO — Social media posts encouraging people to visit southern Ontario’s wineries by bicycle has prompted a
regional public transit service to apologize for the "misunderstanding."
In May 10 Facebook and Twitter postings, GO Transit said

Reference "Niagara’s wineries are best enjoyed responsibly and on two wheels."
The posting encouraged people to take their bicycle on the GO for "a cycling weekend adventure in Ontario’s wine
country" in a promotion for its seasonal service to Niagara Region.
That prompted numerous replies on social media that suggested Go Transit was endorsing mixing cycling and drinking.

Beam
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, encouraged people to visit wineries in southern Ontario by bicycle. "We apologize for the misunderstanding," GO
Transit said in a statement. "We are aware of the posts and are working with our partners to address the issue." GO
Transit said the posts were not intended to encourage people to visit wineries in southern Ontario. "We are aware of
the posts and are working with our partners to address the issue," GO Transit said in a statement.

Greedy , encouraged people to visit wineries in the region. "We are sorry for the misunderstanding," GO Transit said in a
statement. "We are working with the local community to address this issue and apologize for any inconvenience
caused." The posts were posted by a person who was not identified. The posts were deleted. The posts were posted by
a person who was not identified. (Submitted by GO Transit) The posts were posted by a person who was not identified.
The posts were posted by a person who was not identified. The posts were posted by a person who was not identified.
The posts were posted by a person who was not identified. The posts were posted by a person who was not identified.
The posts were posted by a person who was not identified. The posts were posted by a person who was not identified.
The posts were posted by a person who was not identified. The posts were posted by a person who was
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it might suspend riders from Ontario’s wineries after several people raised concerns about the company’s planned
stop at Harney and Sons Winery. The message went out in English and Spanish and was circulated with other posts
throughout the province. But GO Transit told the Globe and Mail Wednesday it was disappointed that the posts did not
mention the wineries. Trains currently leave each of their stops from Toronto’s east end to south of Toronto’s west
end, and at certain times throughout the day from each of those stops to a number of wineries. Go Transit said it has
apologized and is changing its approach to its route network. The transit agency is also changing its system to include
fewer stopping locations, including stops at wineries. Ontario’s regional public transit services are to be revamped to
include a more regional approach. CTV News Canada CBC News Radio has reached out to GO Transit for comment.

Top-k Sam-
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in a post that "there is a need to encourage people to visit wineries in southern Ontario." "We apologize to the public at
large for this misunderstanding," the post said. "We are committed to educating the public as we work to make GO
Transit safer and efficient," the statement said. The posts, which appeared on the GO Transit website, also encouraged
people to drive through the region. It’s unclear if the posts were meant to be taken seriously or if they were taken as a
joke about driving through southern Ontario. "In the past we have encouraged the public to visit wineries in the region
and have since been very pleased with this response," the transit service wrote on the website. "While we are not able
to guarantee that there will be no traffic problems, we would like to encourage people to visit wineries in the region
and to take advantage of these unique locations." GO Transit said it’s committed to improving its operations"

Conf. Sam-
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in a post that "there is a reason it’s called a cycling route." But in a response to a series of responses to a complaint to
the TransLink Board of Directors from the provincial government, the Vancouver-based service says it is wrong to call
the route a cycling route. In fact, GO says the transit service was referring to a cycling route. "GO says it was looking
into the possible error — one that many people are probably aware of," said the statement. The B.C. government is
also investigating the posts. Earlier this week a Vancouver woman was struck and killed after she was run over in a
drive-by shooting on her way to a restaurant by the Vancouver Coastal Health NHS. RCMP are still investigating the
killing.

Non-Ex. CS in a post that "there is a reason it’s called a cycling route." But in a response to a series of responses to a complaint to
the TransLink Board of Directors from the provincial government, the Vancouver-based service says it is wrong to
call the route a cycling route. In fact, GO says the transit service was referring to a cycling route. ""GO says it was
looking into the possible error — one that many people are probably aware of," said the statement. "We know we were
mistaken. "In addition, in the years since we initially started the bike program, we have had many comments that this
bike route is not actually a cycling route." The statement continues to explain the changes it made after the original
post, including making it clearer that while the route is a cycleway, it is not considered a commuter route
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Prompt PARIS – Pepe is set to become Paris Saint-Germain’s first summer signing once his Real Madrid contract comes to an
end, a source close to the French capital outfit told ESPN FC.
The Portugal international is

Reference still on Confederations Cup duty and will be until the third-placed playoff on Sunday, just two days before PSG coach
Unai Emery and his non-international players report to Camp des Loges for preseason training, but the 34-year-old is
close to signing a contract.
According to the source, Pepe has been in talks with Les Parisiens for some time over a potential move to Parc des
Princes – before and after compatriot Antero Henrique’s arrival as sporting director.
However, it is mainly because of the former Porto man that this deal has been pushed to the brink of completion after
the Portuguese transfer guru and Emery agreed the squad require greater experience and a stronger winning mentality.
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set to sign a two-year deal with the French club, which is expected to be completed by the end of the month, the source
said. Pepe, who joined Real Madrid from Real Sociedad in the summer of 2014, has been linked with a move to Paris
Saint-Germain since the summer of 2015. The 22-year-old has been a key player for Real Madrid since joining from
Sociedad in the summer of 2014. Pepe has scored five goals and provided three assists for Real Madrid this season.

Greedy set to sign a two-year deal with the French club, which is expected to be completed in the coming days, the source said.
The source said that the club is in talks with the player’s agent, who is expected to be in Paris on Monday to finalize
the deal. The source said that the player is expected to sign a contract with the club until the end of the season. The
source said that the player is expected to sign a contract with the club until the end of the season. The source said that
the player is expected to sign a contract with the club until the end of the season. The source said that the player is
expected to sign a contract with the club until the end of the season. The source said that the player is expected to sign
a contract with the club until the end of the season. The source said that the player is expected to sign

Nucleus
Sampling

in the final 12 months of his European Super League contract and has already signed a new contract with the club.
Spurs and Liverpool - along with Real – signed the 20-year-old last summer – their first signings from the group that
includes Everton, Arsenal, West Ham, Manchester United and Chelsea. He is the fifth player to join the club this
summer, with Nuno Espirito Santo joining on the half-yearly expiry, with Real joining along with Liverpool, Chelsea
and Tottenham on the year-long contract. With Pepe, PSG were looking to upgrade at the back with Kalidou Koulibaly
a target for PSG, while PSG also made a small but interesting splash in the form of the arrival of Marco Verratti from
RB Leipzig. Pepe has started all of the club’s matches so far this season and has scored and assisted as many goals as
has been possible due to the lack of physicality of his opponents in the midfield. He has become the club’s third
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a free agent on July 1, meaning PSG will likely look to fill some of the gaping openings in its defensive front three.
""e is the most likely to join, but there’s no official news yet," the source said. "But the deal will happen once it’s
signed." Paris Saint-Germain’s Pepe (centre) talks to Paris Saint-Germain’s head scout, Bruno Salles, during training.
Photo: AFP The 23-year-old was part of PSG’s academy system at the start of the season, and has already started to
make strides in his development after a series of impressive displays. The club has already made two signings this
summer - signing former Manchester United goalkeeper Edinson Cavani on loan and loanee midfielder Nabil Bentaleb
from Ajax. But it has also seen its recruitment strategy change in the wake of Cristiano Ronaldo’s exit to Juventus,
with Neymar returning to Paris as its new manager. PSG has also made some big signings this summer, with the likes
of Neymar, Kylian Mbappe, Raphael Varane,
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a free agent on July 1 – meaning PSG cannot sign him until the club’s financial regulations are in place. The 21-year-old
began his career at PSG’s youth setup between 2006 and 2007 under former coach Julien Laurens. He went on to
start four appearances in France’s U-21 World Cup qualifying campaign in 2012-13, but LaLiga action dried up due
to a lack of reinforcements. "There are no rumours," a Paris Saint-Germain source told ESPN FC. "Pepe is a PSG
player and he has signed for us. There is nothing that we can say about his future." PSG will pay close attention to the
recruitment of new signing Raphael Varane, whose contract is due to expire in the summer of 2016."
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a free agent on July 1, meaning PSG cannot sign him until the club’s summer transfer window opens on August 3. The
story said that PSG has tried to win a signature of the 26-year-old before he will close his door on Real, but it appears
the club is now ready to make another deal. Portugal international Pepe’s departure from Real is very much expected
and PSG must now move for another one of its first-team players, after two disappointing season. The club failed
to earn a top four finish in 2017/18. While PSG’s first-team squad included several transfers ahead of the 2020/21
season, Pepe’s departure would give the French club just enough options to deal with Real’s spending. There was also
the possibility of a deal for Brazilian international winger Angel di Maria. But he never signed with PSG after the
club’s financial difficulties with UEFA’s financial fair play framework. Real’s budget in 2018/19 was over C7M to
fund Cristiano Ronaldo’s exit from
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