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Abstract

Context-aware Machine Translation aims to
improve translations of sentences by incorpo-
rating surrounding sentences as context. To-
wards this task, two main architectures have
been applied, namely single-encoder (based
on concatenation) and multi-encoder models.
In this study, we show that a special case of
multi-encoder architecture, where the latent
representation of the source sentence is cached
and reused as the context in the next step,
achieves higher accuracy on the contrastive
datasets (where the models have to rank the cor-
rect translation among the provided sentences)
and comparable BLEU and COMET scores
as the single- and multi-encoder approaches.
Furthermore, we investigate the application of
Sequence Shortening to the cached representa-
tions. We test three pooling-based shortening
techniques and introduce two novel methods -
Latent Grouping and Latent Selecting, where
the network learns to group tokens or selects
the tokens to be cached as context. Our ex-
periments show that the two methods achieve
competitive BLEU and COMET scores and ac-
curacies on the contrastive datasets to the other
tested methods while potentially allowing for
higher interpretability and reducing the growth
of memory requirements with increased context
size.

1 Introduction

Following the introduction of the Transformer
model (Vaswani et al., 2017), Sentence-level Ma-
chine Translation, where the task is to translate
separate sentences, has seen great success in recent
years (Vaswani et al., 2017; Hassan et al., 2018;
Costa-jussà et al., 2022; Tiedemann et al., 2022).
However, real-world applications of the translation
systems are often used to translate a whole doc-
ument or a longer discourse (e.g. a transcribed
speech). In those circumstances, Sentence-level
Machine Translation processes each sentence sepa-
rately and is incapable of leveraging the surround-

ing or previous sentences (referred to as the context
sentences). This is in contrast to the Context-aware
Machine Translation where the context sentences
are available to the system. The information in the
previous sentences can be helpful to maintain the
coherence of the translation and to resolve ambi-
guities (Agrawal et al., 2018; Bawden et al., 2018;
Müller et al., 2018; Voita et al., 2019b). Both the
sentences of the text in the source language and
the previously translated sentences can be used as
context. The former is referred to as source-side
context and the latter as target-side context.

Many Context-aware Machine Translation ap-
proaches have been proposed including novel ar-
chitectures that can be broadly categorized into
single-encoder and multi-encoder types. In single-
encoder architectures, the context sentences are
concatenated with the current sentence and pro-
cessed as a long sequence by a single encoder
(Tiedemann and Scherrer, 2017; Agrawal et al.,
2018; Ma et al., 2020; Zhang et al., 2020; Ma-
jumde et al., 2022). In multi-encoder architec-
tures, the context sentences are processed by a sep-
arate encoder than the current sentence (Tu et al.,
2017; Bawden et al., 2018; Miculicich et al., 2018;
Maruf et al., 2019; Huo et al., 2020; Zheng et al.,
2021). Several multi-encoder approaches (Voita
et al., 2018; Li et al., 2020) involve sharing parame-
ters of encoders. This approach reduces the number
of parameters and could also increase the speed of
translation when translating the whole document
sentence-by-sentence. Inspired by this idea, we
investigate multi-encoder architectures where all
the encoder parameters are shared (Tu et al., 2018;
Voita et al., 2019b; Wu et al., 2022), which allows
caching the hidden representation of the current
sentence and reusing it as the hidden representation
of the context when translating subsequent sen-
tences. In this study, we refer to this architecture
as caching. We experimentally show that this ar-
chitecture can achieve comparable results to single-
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and multi-encoder architectures and is more stable
in the realm of larger context sizes.

In Transformers, the number of tokens does
not change during the processing of the sequence
through the encoder (and decoder) layers. Con-
current to Machine Translation, several techniques
have been proposed to shorten the sequence of to-
kens in the task of language modeling (Subrama-
nian et al., 2020; Dai et al., 2020; Nawrot et al.,
2022). In particular, the tokens are combined in the
shortening modules that are added between a spec-
ified number of encoder layers. Sequence Shorten-
ing can lead to the reduction of the computational
and memory requirements in the subsequent layers
as the requirements of the self-attention module
grow quadratically with the number of tokens (al-
though a substantial amount of research is done
to mitigate that (Kitaev et al., 2020; Wang et al.,
2020)).

In this paper, we investigate the application of
Sequence Shortening to Context-aware Machine
Translation. Specifically, we apply the shortening
of the cached hidden representations of the context
sentences in the caching multi-encoder architec-
tures. The intuition behind this approach is that a
compressed representation of the previously seen
sentences should be enough to use as a context
while possibly decreasing the computational and
memory requirements during inference. Sequence
Shortening can be seen as related to the concept
of chunking from psychology (Miller, 1956; Ter-
race, 2002; Mathy and Feldman, 2012). To limit
the scope, we consider only the source-side con-
text. Additionally, we introduce Latent Grouping
and Latent Selecting - new shortening techniques
where the network can learn how to group or select
tokens to form a shortened sequence. Our exper-
iments indicate that sequence shortening can be
leveraged to improve the stability of training for
larger context sizes (we tested up to 10 previous
sentences as context) while achieving comparable
results for smaller context sizes.

2 Related Work

2.1 Context-aware Machine Translation

A straightforward approach to incorporate context
into Machine Translation is to concatenate previ-
ous sentences with the current sentence, which has
been referred to as concatenation or single-encoder
architecture because only a single encoder is used
(Tiedemann and Scherrer, 2017; Ma et al., 2020;

Zhang et al., 2020). This architecture has achieved
very good results (Majumde et al., 2022) even on
long context sizes (of up to 2000 tokens) when data
augmentation was used (Sun et al., 2022) but even
longer context sizes will result in a sharply increas-
ing memory and computational complexity (Feng
et al., 2022). The multi-encoder approach is to en-
code the context sentences by a separate encoder
(Jean et al., 2017; Miculicich et al., 2018; Maruf
et al., 2019; Huo et al., 2020; Zheng et al., 2021).
While the encoders are separate in multi-encoder
architectures, weight-sharing between them has
been investigated in previous works (Voita et al.,
2018; Tu et al., 2018; Li et al., 2020; Wu et al.,
2022). Existing studies also investigated hierar-
chical attention (Miculicich et al., 2018; Bawden
et al., 2018; Wu et al., 2022; Chen et al., 2022),
sparse attention (Maruf et al., 2019; Bao et al.,
2021), aggregating the hidden representation of the
context tokens (Morishita et al., 2021), and post-
processing the translation (Voita et al., 2019b,a).
Similar to ours, several works use a memory mech-
anism (Feng et al., 2022; Bulatov et al., 2022). The
main differences are that the memory-based tech-
niques rely on the attention mechanism to collect
information from the sentences. In addition to that,
our method allows the tokens in the current sen-
tence to work as a hub tokens instead of the learned
(but fixed) tokens of the memory in the initial step
or the memory vectors from the previous steps. In
the memory approaches, the number of tokens is
constant while in the models employing shortening
the number of tokens is dependent on the number
of context segments.

Mostly orthogonal to architectural approaches,
another line of work concentrates on making the
models use the context more effectively. These
methods utilize regularization such as dropout of
the tokens in the source sentence (CoWord dropout;
Fernandes et al., 2021), attention regularization
based on human translators (Yin et al., 2021), and
data augmentation (Lupo et al., 2022) along with
contrastive learning (Hwang et al., 2021).

It has been argued that widely used sentence-
level metrics (such as BLEU (Papineni et al., 2002))
are ill-equipped to measure the translation qual-
ity with regard to the inter-sentential phenomena
(Hardmeier, 2012; Wong and Kit, 2012). For this
reason, research has been done to measure the
usage of context by machine translation models,
where two main avenues have been explored: intro-
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ducing new metrics (Fernandes et al., 2021, 2023)
and contrastive datasets (Müller et al., 2018; Baw-
den et al., 2018; Voita et al., 2019b; Lopes et al.,
2020). In the contrastive datasets, the model is pre-
sented with the task of ranking several translations
of the same source sentence with the same con-
text. The provided translations differ only partially
and the provided context is required to choose the
correct translation.

2.2 Sequence Shortening

Sequence Shortening has been introduced as a way
to exploit the hierarchical structure of language to
reduce the memory and computational cost of the
Transformer architecture (Subramanian et al., 2020;
Dai et al., 2020; Nawrot et al., 2022). Shortening
can be done by average pooling of the hidden repre-
sentation of the tokens (Subramanian et al., 2020).
Allowing the tokens of the shortened sequence to
attend to the hidden representation of the original
sequence was found beneficial (Dai et al., 2020).
Replacing average pooling with the linear transfor-
mation of the concatenated representation of the
tokens of the original sequence has also been used
(Nawrot et al., 2022). Another way of shortening
the sequence is to find and retain only the most
important tokens of the original sequence (Goyal
et al., 2020). Furthermore, a large body of work
improve the context size or the efficiency of the
Transformer model (Beltagy et al., 2020; Kitaev
et al., 2020; Dai et al., 2019) which has been refer-
enced in comprehensive surveys (Tay et al., 2022;
Lin et al., 2022).

The work that is architecturally most closely re-
lated to one of our methods Latent Grouping is the
Charformer (Tay et al., 2021) architecture, where
the tokenization is performed by a sub-network
that learns to select block sizes for characters of
the input sequence. The block size representations
are subsequently summed with weights predicted
by the sub-network. Latent Grouping differs from
Charformer in the placement of the grouping (after
the encoder in the case of Latent Grouping) and
the aggregated representation (encoder represen-
tations of tokens themselves in the case of Latent
Grouping).

Our work lies in the intersection of Context-
aware Machine Translation and Sequence Short-
ening. We test the performance of caching architec-
ture against single- and multi-encoder architectures
and investigate applying shortening to the cached

sentences.

3 Background

3.1 Transformer
The Transformer architecture, introduced for
sentence-level translation, consists of the encoder
and decoder (Vaswani et al., 2017). The sentence
in the source language is tokenized and embedded
before it is passed to the encoder. The encoder
processes the sequence by L consecutive encoder
layers, each consisting of the self-attention mod-
ule and the element-wise feed-forward network.
Residual connection is added around both modules
followed by Layer Normalization (Ba et al., 2016).

Hidden representation of the L-th encoder layer
HL is fed into the decoder, which auto-regressively
produces the output sequence Y = (y1, ..., yT ), un-
til it reaches the end-of-sequence token. Decoder
layers process the currently produced sequence
with the self-attention module, followed by the
cross-attention module and feed-forward network.
Unlike in the encoder, the self-attention module in
the decoder uses causal masking (the tokens can
not attend to the future tokens). In Cross-attention,
multi-head attention uses the decoded sequence as
queries and the encoder output as keys and values.
Residual connection and Layer Normalization are
applied after each module.

3.2 Pooling-based Shortening
Sequence Shortening is a method that results in a
reduction in the number of tokens in a sequence by
combining the tokens of the hidden representation
of the input sequence HL. In the pooling-based
shortening the sequence (of size M ) is divided into
non-overlapping groups of K neighboring tokens
each (K is a hyper-parameter). Pooling of the to-
kens in each group is then performed:

G̃ = Pooling(HL), (1)

where G̃ is the sequence of size ⌈M/K⌉ of the
pooled tokens. Subsequently, the pooled tokens G̃
attend to the hidden representation of the original
sequence using the attention module followed by
the residual connection and the Layer Normaliza-
tion:

G = LayerNorm(G̃+Attn(G̃,HL, HL)),
(2)

where G is the final shortened sequence. Com-
monly used pooling operations are average (Dai

1876



et al., 2020) and linear pooling (Nawrot et al., 2022)
(learned linear transformation of the concatenated
tokens).

4 Method

4.1 Latent Grouping

Figure 1: Illustration of Latent Grouping shortening
with the number of groups set to three.

In contrast to pooling, Latent Grouping, illus-
trated in Figure 1, results in a fixed number of
tokens in the shortened sequence corresponding
to the number of groups K, which is a hyper-
parameter. Each token is categorized into a group
by the feed-forward network with the number of
outputs equal to the number of groups. We obtain
the categorization for the i-th token to k-th group
ci,k by applying the Softmax function to the outputs
in the dimension of the groups:

ci = Softmax(FFN(hL
i )),

∀i = 1, ...,M,
(3)

where hL is the hidden representation of the last en-
coder layer and ci is the vector of size K represent-
ing the categorizations of the i-th token to all the
groups. As an alternative to Softmax, Sparsemax
function (Martins and Astudillo, 2016) can also be
used resulting in the categorizations of tokens that
are more sparse, which means that a token is cate-
gorized into a smaller number of groups, and most
categorizations are equal to zero. Subsequently, the
groups G̃ are constructed as the sum of the hidden
representations hL with categorizations ci,k used
as weights:

g̃k =
∑

i

ci,kh
L
i ,

∀k = 1, ...,K,

(4)

where g̃k is a k-th grouped token composing the
sequence G̃ in the equation (1). The network
learns how to soft-assign each token to the groups.
A group representation is computed using the
weighted average of tokens, which makes back-
propagation into the categorizing network possible.
Finally, the attention module is applied as in equa-
tion (2).

4.2 Latent Selecting
Latent Selecting differs from Latent Grouping by
enabling the groups to select tokens to aggregate
rather than assigning each token to a group and
allowing the model to ignore tokens entirely rather
than assigning them to at least one group. This is
similar to selecting the hub tokens in Power-BERT
(Goyal et al., 2020), where the selection is based on
the attention scores of the previous layer. Although
Latent Selecting can be achieved by maintaining a
categorizing feed-forward network for each group,
we utilize the same network as described for Latent
Grouping but apply the Softmax (or Sparsemax)
function in equation (3) in the sequence dimension
instead of the token dimension.

4.3 Context Shortening
The architecture we use, illustrated in Figure 2, is
based on caching the hidden representations pro-
duced by the encoder, where the representations of
the tokens of the current sentence are stored and
can be reused as context when the subsequent sen-
tences are translated. Although this architecture
uses only a single encoder, it is different from the
single-encoder models because the current sentence
and the context sentences are processed separately.
While in the standard caching architecture the hid-
den representation of all the tokens is stored, we
introduce a Sequence Shortening module directly
after the encoder, which returns the compressed hid-
den representation usually containing fewer tokens
than the original sequence. We consider: mean
pooling (Dai et al., 2020), max pooling, linear pool-
ing (Nawrot et al., 2022), Latent Grouping, and
Latent Selecting. Additionally, we also test the
simple aggregation of the whole context sequences
into a single vector by averaging the tokens. Con-
ceptually, Sequence Shortening of the context can
be seen as a middle-ground between storing tokens
and sentence aggregations.

The integration of the context with the decoder
can also be done in several ways. Firstly, the con-
text sentences can be concatenated to the current
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Figure 2: The illustration of a Shortening Architecture with the representation of the two previous sentences being
cached. The dashed line represents the optional blocking of the gradient during training.

sentence. This method is similar to the single-
encoder (concatenating) architecture, where the
difference is that the encoder does not have access
to other sentences in the case of caching architec-
ture. In this case, the decoder layers are the same as
in the vanilla transformer with the self- and cross-
attention modules. Secondly, the context sentences
can be processed in the decoder layers by a sepa-
rate context-attention module, where the decoder
tokens attend to the context tokens. We experiment
with the parallel and serial alignment of the cross-
and context-attention modules. Additionally, we
also experiment with gating the representation re-
sulting from applying context-attention using the
following equation:

λi = σ(FFN(ĥi)),

ĥ′
i = λiĥi,

∀i = 1, ...,M

(5)

where ĥi is the i-th token representation returned
by the context-attention module, FFN is a token-
wise linear layer with one output, σ is the Sigmoid
function.

For Sentence Aggregation and Shortening archi-
tectures, the aggregated or shortened representation
of the current sentence can be included in context
sentences. This helps with the training, as often
none of the previous sentences has an effect on the
translation, known as the two-fold sparsity prob-
lem (Lupo et al., 2022), and the context attention
module can still be trained to attend to the represen-
tation of the current sentence. To allow the decoder
to distinguish between context sentences we em-

ploy learned segment embeddings (Devlin et al.,
2019). Similarly, we also add learned positional
encoding for the shortened tokens inside context
sentences.

During training, caching is not used, meaning
that the model receives tokenized context sentences
and processes them using the same encoder. This
implies that the weights of the encoder receive the
backpropagated error from multiple sources - the
current sentence and each of the context sentences,
which can lead to difficulties in training. There-
fore, we consider blocking the gradient after the
encoder and before shortening (where applicable)
by allowing the gradient information to flow for a
specified number of context sentences, after which,
the gradient is blocked.

5 Experiments

All our experiments are implemented1 in fairseq
framework (Ott et al., 2019). We used the code
repository of Fernandes et al. (2021) as the base for
our implementation.

5.1 Data

We used the English-to-German and English-to-
French directions of the IWSLT 2017 (Cettolo et al.,
2017) document-level dataset that is based on the
subtitles of the TED Talks2. Following Fernandes
et al. (2021), we used tst2011-tst2014 as valida-
tion subset and tst2015 as the test subset. The data

1The code for this paper (based on https://github.com/
neulab/contextual-mt) can be found on Github https://
github.com/Pawel-M/shortening-context-mt.

2https://www.ted.com/
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Dataset Docs Sent/Doc Tok/Sent
En-De Train 1698 121.4 21.9
En-De Valid 62 87.6 20.6
En-De Test 12 90.0 20.8
En-Fr Train 1914 121.6 22.0
En-Fr Valid 66 88.2 20.9
En-Fr Test 12 100.8 21.4

Table 1: The details of the IWSLT 2017 datasets.

is byte-pair encoded (Sennrich et al., 2016) using
SentencePiece framework (Kudo and Richardson,
2018) on the training subset with 20,000 vocab-
ulary size for each language separately (see Ta-
ble 1). We measured BLEU (Papineni et al., 2002)
using sacreBleu library (Post, 2018). We also re-
port COMET (Rei et al., 2020) in Appendix B.

To measure the context usage of the trained mod-
els, we employed ContraPro (Müller et al., 2018)
contrastive dataset for the English-to-German di-
rection, and the contrastive dataset by Lopes et al.
(2020) for the English-to-French direction. Both
are based on the OpenSubtitles 2018 dataset (Lison
et al., 2018). These datasets consist of the source
sentence with the context (previous sentences on
the source and target side) with several translations
differing only in a pronoun that requires context
to be correctly translated. Models rank the trans-
lations by assigning probabilities to each of them.
The translation is considered to be accurate when
the right translation is ranked the highest by the
model.

5.2 Models

Based on the described methods, we trained the
following caching models:

• Caching Tokens - where the encoder repre-
sentations of the context sentences are stored
directly,

• Caching Sentence - where the representa-
tions of the context sentences are averaged
and stored,

• Shortening - Avg Pooling - Sequence shorten-
ing with mean pooling applied to the outputs
of the encoder, based on (Dai et al., 2020),

• Shortening - Max Pooling - shortening with
max pooling,

• Shortening - Linear Pooling - shortening
with linear pooling, based on (Nawrot et al.,
2022),

• Shortening - Grouping - shortening with La-

tent Grouping (Section 4.1),
• Shortening - Selecting - shortening with La-

tent Selecting (Section 4.2).

For all the aggregating models, the current sentence
is also used as context and is concatenated with the
context sentences after embedding. Moreover, we
also test the following baseline models:

• Sentence-level Transformer - where context
sentences are ignored,

• Single-encoder Transformer - where con-
text sentences are prepended to the current
sentence and processed by the encoder, we
used Fernandes et al. (2021) implementation,

• Multi-encoder Transformer - with the sepa-
rate encoder (without weights-sharing) used
to encode the context sentences, again based
on the Fernandes et al. (2021) implementation,
where the context and the current sentence are
concatenated in the decoder. Our experiments
revealed that this integration yields better re-
sults than with the separate context-attention
module.

All tested models are based on the Transformer
base architecture (Vaswani et al., 2017). The hyper-
parameters and model details can be found in Ap-
pendix A. We tuned the hyper-parameters of the
models based on the performance on the validation
subset. From the K values of [2, 3, 4] for pooling
architectures 2 was selected. For grouping and se-
lecting architectures, we considered K values of
[8, 9, 10, 11] and selected 9 and 10 respectively for
he English-to-German direction and 11 (for both
models) for the English-to-French direction. For
the categorizing network, we used one hidden layer
with 512 units and the Sparsemax activation func-
tion to obtain more sparse categorizations in an
effort to increase the interpretability of the models
(Correia et al., 2019; Meister et al., 2021). We per-
formed preliminary experiments to find the archi-
tectural choices (gradient stopping and the decoder
integration) for each caching model. In Caching To-
kens, Caching Sentence, and Pooling architectures,
we block gradient past the encoder for context sen-
tences. Additionally, we allow gradient into the
shortening from one and two context sentences for
Selecting and Grouping architectures respectively.
All models apart from Caching Sentence use se-
quential attention modules in the decoder (self-
attention, cross-attention, and context-attention)
without any gating mechanism. Caching Sentence
yields the highest performance when parallel cross-
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Model BLEU Accuracy
Sentence-level 28.11 43.67%

Context: 1 Context: 2 Context: 3
Model BLEU Accuracy BLEU Accuracy BLEU Accuracy
Single-encoder 28.31 47.42% 27.95 48.18% 27.88 48.88%
Multi-encoder 28.67 44.93% 28.50 46.65% 28.26 45.00%
Caching Tokens 28.35 54.06% 28.50 54.13% 29.08 51.23%
Caching Sentence 28.38 45.72% 26.73 45.26% 26.70 44.91%
Shortening - Max Pooling 27.62 51.67% 27.88 55.08% 28.26 50.89%
Shortening - Avg Pooling 28.09 53.37% 27.85 54.81% 28.38 50.54%
Shortening - Linear Pooling 27.62 52.71% 28.03 52.13% 28.18 51.27%
Shortening - Grouping 28.21 56.98% 28.70 54.51% 28.49 51.16%
Shortening - Selecting 28.15 54.48% 28.55 54.21% 28.01 51.95%

Table 2: Results of the En-De IWSLT 2017 experiment. The models were trained to use only the source-side context.
We report BLEU of the test subset and the accuracy of the ContraPro (Müller et al., 2018) contrastive dataset.

and context-attention decoder is used with the gate
on the context branch (see equation (5)).

5.3 Results

The results of the single run (with the predeter-
mined seed) of the English-to-German translation
on the IWSLT 2017 dataset up to the context size
of three can be seen in Table 2. The BLEU score
of the context-aware models is generally similar
to or slightly higher than the sentence-level Trans-
former. BLEU does not correlate well with the
contrastive accuracy, which is strictly higher for all
context-aware models. This confirms that sentence-
level metrics do not reflect the context usage of the
models. The highest contrastive dataset accuracy
was achieved by the Grouping Shortening model
for the context size of one, the Max Pooling Short-
ening model for the context size of two, and the
Selecting Shortening model for the context size
of three. The highest accuracy averaged over the
context sizes up to three was reached by the model
employing Latent Grouping, followed by the La-
tent Selecting model. Caching Tokens architecture
exhibits comparable BLEU scores to the Single-
and Multi-encoder architectures while achieving
higher accuracy on the contrastive dataset. Caching
Sentence architecture performed worse than other
tested models, suggesting that representing the
whole sentence as a single vector is not sufficient
for contextual translation.

Table 3 shows the results of the English-to-
French translation with the context size up to three.
The BLEU scores of all models are comparable
(apart from the Caching Sentence architecture). La-

tent Grouping achieved the highest accuracy on the
contrastive dataset for the context size of one, and
Latent Selecting and Single-encoder architectures
for the context sizes of one and three, respectively.
The results in terms of COMET (Rei et al., 2020)
can be found in Appendix B. The detailed results
of the performance of the models on the contrastive
datasets are presented in Appendix C.We show sev-
eral examples of translations by the tested models
in Appendix D.

Caching Tokens and Shortening models achieved
higher accuracies than the Single- and Multi-
encoder architectures (with the exception of Single-
encoder on the English-to-French translation with
the context size of three). In order to examine
the effectiveness of the investigated architectures
on even longer contexts we trained the models on
the English-to-German IWSLT 2017 dataset with
context sizes of up to 10. The results in terms
of BLEU can be seen in Figure 3. The detailed
results (in terms of BLEU, COMET, and the ac-
curacy on the ContraPro dataset) are presented in
Appendix E. The performance of the models em-
ploying Sequence Shortening is relatively high and
stable for all tested context sizes. The caching ar-
chitecture shows the reduction in BLEU for context
sizes of 8 to 10 compared to the shortening archi-
tectures. We attribute the poor performance of the
single-encoder (and to an extent multi-encoder) ar-
chitecture to the large input sizes and the small size
of the training dataset.

Applying Sequence Shortening to the cached
sentence does not hurt the performance and ex-
hibits more stable training with the long context
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Model BLEU Accuracy
Sentence-level 37.64 75.92%

Context: 1 Context: 2 Context: 3
Model BLEU Accuracy BLEU Accuracy BLEU Accuracy
Single-encoder 37.25 77.27% 37.18 78.98% 37.12 80.87%
Multi-encoder 37.44 75.72% 37.12 77.23% 37.34 75.76%
Caching Tokens 36.88 79.67% 37.29 80.14% 37.73 79.90%
Caching Sentence 36.50 77.33% 34.21 76.25% 34.78 75.71%
Shortening - Max Pooling 37.48 79.51% 36.72 80.59% 37.85 79.71%
Shortening - Avg Pooling 37.13 77.75% 37.12 80.16% 38.18 80.41%
Shortening - Linear Pooling 37.02 80.47% 37.12 79.37% 37.42 79.64%
Shortening - Grouping 37.05 79.91% 37.98 81.13% 37.18 79.54%
Shortening - Selecting 37.38 80.89% 37.83 80.32% 37.81 80.09%

Table 3: Results of the En-Fr IWSLT 2017 experiment. The models were trained to use only the source-side context.
We report BLEU of the test subset and the accuracy of the contrastive dataset by Lopes et al. (2020).

sizes while reducing the memory footprint of the in-
ference (Section 5.5). Furthermore, Latent Group-
ing and Latent Selecting are increasing the inter-
pretability of the model through the sparse assign-
ment of tokens into groups (Section 5.4).

Figure 3: BLEU of the models trained on the En-De
IWSLT 2017 dataset with the context sizes up to 10.
Caching Sentence model was not included for clarity.

5.4 Token Assignment Visualization

An example visualization of groupings and selec-
tions of the Latent Grouping and Selecting architec-
tures can be seen in Figure 4 and more can be found
in Appendix F. Latent Grouping seems to group
tokens according to position with nouns given a
high categorization score within a group. Further-
more, some groups contain more tokens than other
groups. We hypothesize that the groups that con-
tain more tokens are responsible for the general

sense of the sentence and the groups with less to-
kens are responsible for encoding the details. Sur-
prisingly, only four groups out of nine are utilized
by the model. We hypothesize that the rest are
used as the no-op tokens (Clark et al., 2019) in the
context-attention when the context is not needed.
Latent Selecting, by design, has to assign tokens to
each group. Again, nouns seem to be included in a
group more often than other parts of speech. Some
groups select punctuation marks and the <eos> to-
ken, which could take the role of the no-op tokens.

5.5 Memory Usage

We measured the memory used by the
tested models as the value returned by the
torch.cuda.max_memory_allocated() func-
tion. For clarity we omit the Caching Sentence
model (as the worst performing) and the Max
Pooling model (with results the same as the Avg
Pooling model). We report the operation memory -
the memory during inference on top of the memory
taken by the model itself - on the examples from
the test subset of the English-to-German IWSLT
2017 dataset with different numbers of context
sentences. For context sizes above three, we used
the models trained on the context size of three in
order to not disadvantage the Single- and Multi-
encoder architectures that were not able to learn
on the dataset for large context sizes. The results
are presented in Figure 5. Although the number
of parameters (see Appendix A) is a dominant
factor determining the overall memory usage, the
operation memory grows at different paces for
different architectures with the increased context

1881



(a) Latent Grouping

(b) Latent Selecting

Figure 4: Visualization of tokens of the sentence from
the ContraPro dataset grouped (4a) and selected (4b) by
the model using Latent Grouping and Latent Selecting.

size. The operational memory of the Single- and
Multi-encoder models grows quadratically, while
for caching and shortening architectures it grows
linearly. Furthermore, the rate of increase is slower
for shortening architectures compared to the
Caching Tokens architecture, which can allow the
significant advantage of shortening in the setting
of long sentences or large contexts.

6 Conclusions

Caching architectures for Context-aware Machine
Translation have not been widely explored in the
literature so far. In this study, we show that a simple
method of remembering the hidden representations
of the previous sentences is comparable with more
established Single- and Multi-encoder approaches

Figure 5: The mean operation memory of the models
when performing inference on the examples from the
En-De IWSLT 2017 test subset with the varying context
sizes. For the context sizes above three, we used the
models trained on the context size of three.

in terms of BLEU and can be more effective in
capturing context (up to 6 percentage points of the
accuracy on the contrastive dataset for the context
size of one) in the relatively low-resource training
scenario. Furthermore, the caching architectures
are more stable to train in the regime of larger
context sizes according to our experiments.

Pooling-based shortening of the cached sentence
maintains the comparable results to the caching
architecture, while our introduced shortening meth-
ods - Latent Grouping and Selecting - show on av-
erage a strong performance both in terms of BLEU
and accuracy while maintaining slower growth of
the memory usage during inference, and poten-
tial increased interpretability of the model through
sparse assignment of tokens into groups. Sequence
Shortening, in general, exhibit stable training in
the regime of large context sizes compared to other
tested methods. In future work, we will explore
the integration of Sequence Shortening with the
target-side context.

7 Limitations

Our investigation is limited to the source-side con-
text. There exist linguistic phenomena that can only
be addressed by using target-side context (Voita
et al., 2019b). While both caching and shortening
could be applied to the target side as well, we do
not provide an empirical evaluation of the perfor-
mance of this approach.

Additionally, we do not apply sentence-level
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pre-training to our models. Architectures using
Sequence Shortening could benefit from multiple
stages of pre-training.

Lastly, our experiments involve language pairs
from the same language family (English-to-
German and English-to-French). We trained the
models using the relatively low-resource datasets
(IWSLT 2017) and the contrastive datasets used in
this work target only the pronoun disambiguation
task.
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A Models and Training Details

To implement and train our models we used fairseq
framework (Ott et al., 2019) and based our code on
the codebase of Fernandes et al. (2021). All models
were based on the transformer-base configuration.
The shared hyper-parameters are presented in Ta-
ble 4. We trained each model on a single GPU
(NVIDIA GeForce RTX 3090 24GB).

For Latent Grouping and Shortening, we used a
categorizing FFN with 512 hidden units, the num-
ber of inputs equal to the Embed Dim, and the
number of outputs equal to the number of groups.
Table 5 shows the number of parameters for each
model.

B COMET Results

Apart from BLEU and contrastive dataset ac-
curacy presented in Section 5, we also mea-
sured COMET (Rei et al., 2020) based on
Unbabel/wmt22-comet-da model (Rei et al.,
2022). See Tables 6 and 7 for the results on English-
to-German and English-to-French respectively.

C Detailed Contrastive Results

In this section we report the accuracy on the con-
trastive datasets for the different placements of the
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Hyper-parameter Value
Encoder Layers 6
Decoder Layers 6
Attention Heads 8
Embed Dim 512
FFN Embed Dim 2048
Dropout 0.3
Share Decoder In/Out Embed True
Optimizer Adam
Adam Betas 0.9, 0.98
Adam Epsilon 1e-8
Learning Rate 5e-4
LR Scheduler Inverse Sqrt
LR Warmup Updates 2500
Weight Decay 0.0001
Label Smoothing 0.1
Clip Norm 0.1
Batch Max Tokens 4096
Update Frequency 8
Max Epoch -
Patience 5
Beam 5
Max Vocab Size 20000
Seed 42

Table 4: The shared hyper-parameters of the tested mod-
els.

Model Parameters
Sentence-level 64.42M
Single-encoder 64.42M
Multi-encoder 83.33M
Caching Tokens 71.25M
Caching Sentence 71.26M
Shortening - Max Pooling 72.83M
Shortening - Avg Pooling 72.83M
Shortening - Linear Pooling 73.35M
Shortening - Grouping 72.58M
Shortening - Selecting 72.58M

Table 5: The number of parameters in the tested models.

antecedent. The antecedent distance of zero corre-
sponds to the examples where the antecedent is in
the current sentence. The value of one represent the
antecedent in the first context sentence (counting
backward from the current sentence), etc. The re-
sults of the ContraPro dataset (English-to-German)
and the contrastive dataset by Lopes et al. (2020)
(English-to-French) are presented in Tables 8 and
9 respectively.

D Examples of Translations

We present the examples of the translation of
the sentence-level Transformer, and Selecting and
Grouping Shortening architectures on the IWSLT
2017 English-to-German dataset in Table 10. We
marked the pronoun disambiguation from context
sentences.

E Larger Context Results

In order to examine the behavior of the tested mod-
els in response to larger contexts, we trained the
models on the IWSLT 2017 English-to-German
dataset with context sizes up to 10. We present
the results in terms of BLEU, accuracy on the
ContraPro contrastive dataset, and COMET in Ta-
bles 11, 12, and 13 respectively.

F Groupings and Selections Visualization

The visualizations of groupings and selections done
by the models using Latent Grouping and Select-
ing of the additional examples from the ContraPro
dataset (Müller et al., 2018) can be found in Fig-
ure 6. Figure 7 shows the visualizations of the
groupings and selections of the sentences from the
contrastive dataset by Lopes et al. (2020).
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Model Context: 0
Sentence-level 0.7778
Model Context: 1 Context: 2 Context: 3
Single-encoder 0.7831 0.7789 0.7758
Multi-encoder 0.7831 0.7871 0.7856
Caching Tokens 0.7806 0.7776 0.7821
Caching Sentence 0.7712 0.7640 0.7673
Shortening - Max Pooling 0.7743 0.7772 0.7799
Shortening - Avg Pooling 0.7774 0.7770 0.7844
Shortening - Linear Pooling 0.7757 0.7745 0.7823
Shortening - Grouping 0.7842 0.7828 0.7811
Shortening - Selecting 0.7774 0.7826 0.7836

Table 6: Results in terms of COMET (Rei et al., 2020) based on Unbabel/wmt22-comet-da model (Rei et al., 2022)
of the En-De IWSLT 2017 experiment.

Model Context: 0
Sentence-level 0.7943
Model Context: 1 Context: 2 Context: 3
Single-encoder 0.7930 0.7979 0.7913
Multi-encoder 0.7968 0.7934 0.7934
Caching Tokens 0.7923 0.7935 0.7945
Caching Sentence 0.7845 0.7654 0.7737
Shortening - Max Pooling 0.7911 0.7913 0.7974
Shortening - Avg Pooling 0.7920 0.7924 0.7952
Shortening - Linear Pooling 0.7933 0.7951 0.7927
Shortening - Grouping 0.7933 0.7976 0.7921
Shortening - Selecting 0.7951 0.7945 0.7935

Table 7: Results in terms of COMET (Rei et al., 2020) based on Unbabel/wmt22-comet-da model (Rei et al., 2022)
of the En-Fr IWSLT 2017 experiment.
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Antecedent Distance
Model Context 0 1 2 3 >3
Sentence-level 0 72.21% 31.82% 44.90% 48.87% 67.42%
Single-encoder 1 70.08% 38.42% 46.16% 49.04% 70.59%

2 73.96% 37.87% 48.48% 50.79% 69.00%
3 71.79% 40.00% 47.88% 52.01% 66.06%

Multi-encoder 1 75.17% 33.16% 44.64% 47.47% 66.97%
2 73.54% 35.63% 47.42% 50.79% 69.00%
3 70.88% 33.99% 46.16% 50.61% 69.46%

Caching Tokens 1 72.21% 49.07% 45.03% 50.09% 71.27%
2 70.75% 47.17% 58.74% 48.69% 66.74%
3 70.25% 42.53% 52.98% 60.91% 68.78%

Caching Sentence 1 66.83% 36.78% 45.63% 50.26% 68.55%
2 66.83% 35.42% 47.81% 49.74% 71.04%
3 60.17% 37.16% 47.95% 50.96% 67.87%

Shortening - Max Pooling 1 68.92% 46.33% 44.64% 48.17% 71.95%
2 72.83% 47.63% 62.12% 47.64% 63.57%
3 72.13% 40.83% 53.71% 63.00% 71.27%

Shortening - Avg Pooling 1 70.04% 48.58% 45.50% 48.52% 72.62%
2 72.67% 47.04% 62.58% 47.64% 64.93%
3 70.88% 40.71% 54.24% 60.56% 71.95%

Shortening - Linear Pooling 1 69.13% 47.84% 44.64% 49.21% 73.53%
2 70.38% 43.75% 59.34% 47.99% 67.87%
3 72.58% 41.06% 54.90% 64.05% 69.91%

Shortening - Grouping 1 73.67% 53.64% 45.56% 46.95% 71.72%
2 69.17% 47.66% 61.85% 47.29% 68.78%
3 71.21% 41.58% 55.03% 62.13% 68.10%

Shortening - Selecting 1 72.88% 50.16% 43.77% 47.64% 69.00%
2 71.75% 45.85% 64.04% 47.99% 67.19%
3 73.29% 42.04% 54.57% 65.10% 68.78%

Table 8: Detailed results of the accuracy on the ContraPro contrastive dataset for different antecedent locations of
the models trained on the En-De IWSLT 2017 dataset.
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Antecedent Distance
Model Context 0 1 2 3 >3
Sentence-level 0 75.86% 75.76% 76.98% 76.70% 74.55%
Single-encoder 1 76.88% 77.16% 78.39% 78.86% 76.89%

2 78.92% 78.69% 80.17% 78.98% 78.70%
3 80.37% 80.99% 81.77% 81.70% 81.15%

Multi-encoder 1 75.71% 75.08% 76.92% 76.93% 75.72%
2 77.03% 77.16% 78.08% 78.52% 76.14%
3 75.08% 76.11% 77.53% 77.27% 74.01%

Caching Tokens 1 79.80% 79.11% 80.72% 80.68% 78.81%
2 79.77% 80.44% 80.79% 81.25% 78.81%
3 79.27% 80.27% 81.28% 80.34% 79.34%

Caching Sentence 1 76.81% 77.18% 78.21% 80.23% 77.10%
2 75.73% 76.52% 76.98% 78.64% 74.76%
3 75.01% 75.87% 78.27% 75.68% 74.97%

Shortening - Max Pooling 1 80.49% 80.38% 80.11% 80.11% 81.90%
2 80.25% 80.73% 81.15% 80.68% 81.04%
3 78.98% 80.27% 81.28% 80.80% 77.96%

Shortening - Avg Pooling 1 77.36% 77.70% 79.19% 77.61% 78.06%
2 79.94% 80.00% 80.79% 81.70% 79.77%
3 79.94% 80.77% 81.65% 81.02% 79.02%

Shortening - Linear Pooling 1 79.87% 80.35% 82.44% 80.57% 81.36%
2 78.80% 79.06% 80.72% 80.68% 80.94%
3 79.03% 80.09% 80.85% 80.23% 78.59%

Shortening - Grouping 1 79.28% 80.40% 81.46% 79.89% 78.91%
2 80.91% 81.30% 81.65% 81.36% 80.62%
3 79.07% 80.20% 78.88% 81.14% 78.91%

Shortening - Selecting 1 80.30% 81.03% 81.89% 82.73% 80.40%
2 80.17% 80.33% 81.40% 81.02% 78.70%
3 79.28% 80.33% 81.89% 79.55% 81.36%

Table 9: Detailed results of the accuracy on the contrastive dataset by Lopes et al. (2020) for different antecedent
locations of the models trained on the En-Fr IWSLT 2017 dataset.
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Source Context This is a nice building.
Source Sentence But it doesn’t have much to do with what a library actually does today.
Target Reference Aber es hat nicht viel mit dem zu tun, was eine Bibliothek heute leistet.
Sentence-level Aber es hat nicht viel damit zu tun, was eine Bibliothek heute tut.
Shortening - Selecting Aber es hat nicht viel mit der heutigen Bibliothek zu tun.
Shortening - Grouping Aber es hat nicht viel mit dem zu tun, was eine Bibliothek heute tut.
Source Context Zak Ebrahim is not my real name.
Source Sentence I changed it when my family decided to end our connection with my father

and start a new life.
Target Reference Ich habe ihn geändert, als meine Familie beschloss, den Kontakt zu meinem

Vater abzubrechen und ein neues Leben zu beginnen.
Sentence-level Ich änderte es, als meine Familie entschied, unsere Verbindung mit meinem

Vater zu beenden und ein neues Leben zu starten.
Shortening - Selecting Ich habe ihn verändert, als meine Familie entschied, unsere Verbindung mit

meinem Vater zu beenden und ein neues Leben zu beginnen.
Shortening - Grouping Ich habe es verändert, als meine Familie beschloss, unsere Verbindung mit

meinem Vater zu beenden und ein neues Leben zu beginnen.
Source Context And this work has been wonderful. It’s been great.
Source Sentence But it also has some fundamental limitations so far.
Target Reference Aber sie hat auch noch immer einige grundlegende Grenzen.
Sentence-level Aber es hat bis jetzt auch einige fundamentale Grenzen.
Shortening - Selecting Aber es hat bis jetzt noch grundlegende Grenzen.
Shortening - Grouping Aber sie hat auch bis jetzt einige fundamentale Grenzen.

Table 10: Example translations of sentence-level Transformer and Grouping and Selecting shortening context-aware
models of the English sentence with the context size of one to German. We marked antecedent and pronoun in the
source sentence and correct and incorrect pronoun translations.

Context Size
Model 4 5 6 7 8 9 10
Single-encoder 10.60 24.89 1.99 1.64 1.43 1.18 0.95
Multi-encoder 28.49 28.34 27.58 26.69 25.23 8.76 7.10
Caching Tokens 28.75 28.61 27.67 27.90 27.22 27.15 26.24
Caching Sentence 27.87 28.30 27.55 27.67 27.20 25.87 5.84
Shortening - Max Pooling 28.32 28.42 28.15 28.06 28.03 28.25 28.53
Shortening - Avg Pooling 28.33 27.66 28.68 28.21 28.29 28.35 28.52
Shortening - Linear Pooling 28.83 27.91 28.17 28.44 28.24 28.28 28.05
Shortening - Grouping 28.73 28.15 28.27 28.21 27.85 27.65 28.10
Shortening - Selecting 28.85 28.15 27.93 28.18 27.67 28.04 28.23

Table 11: Results in terms of BLEU of the En-De IWSLT 2017 experiment for larger context sizes.
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Context Size
Model 4 5 6 7 8 9 10
Single-encoder 46.09% 44.03% 43.05% 42.07% 42.00% 38.49% 37.03%
Multi-encoder 47.02% 44.92% 46.25% 46.48% 43.63% 41.53% 41.44%
Caching Tokens 53.54% 47.68% 46.88% 47.04% 45.79% 48.15% 48.88%
Caching Sentence 46.57% 46.20% 44.59% 44.91% 43.29% 41.03% 43.01%
Shortening - Max P. 51.75% 47.13% 46.78% 46.73% 46.38% 46.38% 45.03%
Shortening - Avg P. 49.53% 49.43% 47.90% 45.88% 45.59% 46.27% 44.66%
Shortening - Linear P. 48.45% 46.40% 49.31% 46.35% 46.90% 45.23% 45.79%
Shortening - Grouping 49.55% 46.06% 45.10% 47.66% 47.19% 46.47% 46.53%
Shortening - Selecting 47.88% 48.98% 47.58% 45.58% 45.91% 45.52% 47.43%

Table 12: Results in terms of the accuracy on the ContraPro contrastive dataset of the models trained on the En-De
IWSLT 2017 dataset for larger context sizes.

Context Size
Model 4 5 6 7 8 9 10
Single-encoder 0.6266 0.7376 0.4425 0.4253 0.3950 0.3738 0.3597
Multi-encoder 0.7830 0.7809 0.7692 0.7621 0.7280 0.5682 0.5187
Caching Tokens 0.7824 0.7826 0.7773 0.7744 0.7682 0.7560 0.7450
Caching Sentence 0.7766 0.7741 0.7680 0.7680 0.7637 0.7413 0.5403
Shortening - Max Pooling 0.7784 0.7782 0.7799 0.7804 0.7824 0.7825 0.7790
Shortening - Avg Pooling 0.7815 0.7806 0.7812 0.7812 0.7776 0.7781 0.7814
Shortening - Linear Pooling 0.7803 0.7810 0.7802 0.7816 0.7780 0.7808 0.7783
Shortening - Grouping 0.7815 0.7808 0.7794 0.7742 0.7785 0.7757 0.7789
Shortening - Selecting 0.7811 0.7793 0.7782 0.7771 0.7759 0.7750 0.7791

Table 13: Results in terms of COMET (Rei et al., 2020) based on Unbabel/wmt22-comet-da model (Rei et al.,
2022) of the En-De IWSLT 2017 experiment for larger context sizes.
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(a) Latent Grouping (b) Latent Selecting

(c) Latent Grouping (d) Latent Selecting

(e) Latent Grouping (f) Latent Selecting

Figure 6: Visualization of tokens of the sentences from the ContraPro dataset (Müller et al., 2018) grouped (6a, 6c,
6e) and selected (6b, 6d, 6f) by the model using Latent Grouping and Latent Selecting.
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(a) Latent Grouping (b) Latent Selecting

(c) Latent Grouping (d) Latent Selecting

(e) Latent Grouping (f) Latent Selecting

Figure 7: Visualization of tokens of the sentences from the contrastive dataset by Lopes et al. (2020) grouped (7a,
7c, 7e) and selected (7b, 7d, 7f) by the model using Latent Grouping and Latent Selecting.1894


