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Abstract

Supervised contrastive learning (SCL) frame-
works treat each class as independent and thus
consider all classes to be equally important.
This neglects the common scenario in which la-
bel hierarchy exists, where fine-grained classes
under the same category show more similar-
ity than very different ones. This paper in-
troduces a family of Label-Aware SCL meth-
ods (LASCL) that incorporates hierarchical
information to SCL by leveraging similari-
ties between classes, resulting in creating a
more well-structured and discriminative feature
space. This is achieved by first adjusting the
distance between instances based on measures
of the proximity of their classes with the scaled
instance-instance-wise contrastive. An addi-
tional instance-center-wise contrastive is intro-
duced to move within-class examples closer to
their centers, which are represented by a set of
learnable label parameters. The learned label
parameters can be directly used as a nearest
neighbor classifier without further finetuning.
In this way, a better feature representation is
generated with improvements of intra-cluster
compactness and inter-cluster separation. Ex-
periments on three datasets show that the pro-
posed LASCL works well on text classification
of distinguishing a single label among multi-
labels, outperforming the baseline supervised
approaches. Our code is publicly available.!

1 Introduction

Supervised contrastive learning (SCL) (Khosla
et al., 2020) aims to learn generalized and discrim-
inative feature representations given labeled data.
It relies on the construction of positive pairs from
the same class and negative pairs from different
classes, thereby encouraging similar data points
to have similar representations while pushing dis-
similar data points apart in the feature space. This
method considers each class to be independent and
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Figure 1: Supervised v.s. label-aware supervised con-
trastive loss: The supervised contrastive loss (left) con-
trasts the set of all samples from the same class as pos-
itives against the negatives from the remainder of the
batch (Khosla et al., 2020). The label-aware supervised
contrastive loss (right) proposed in our work incorpo-
rates label hierarchy by considering class similarities.

considers all classes to be of equal importance,
thus treating the problem without awareness of any
relationships among the labels. However, in the
real world, it is natural that class labels may re-
late to each other in complex ways, in particular,
they may exist in a hierarchical or tree structure
(Matkinski and Mandziuk, 2022; Demszky et al.,
2020; Murdock et al., 2016; Verma et al., 2012;
Han et al., 2018). Within a data hierarchy, different
sub-categories under the same branch tend to be
more similar than those from different branches,
since they will tend to have similar high-level se-
mantics, sentiment, and structure. This similarity
should be reflected in the feature representations.

Hierarchical text classification (HTC) is one way
to structure textual data into a tree-like category or
label hierarchy, representing a taxonomy of classes
(Kowsari et al., 2017). Existing HTC can be di-
vided into global and local approaches. Global
approaches treat the problem as a flat classification,
while local approaches build classifiers for labels at
each level of the hierarchy. An et al. (2022) propose
FCDC, which aims to transfer information from
coarse-grained levels to fine-grained categories and
thus adapt models to categories of different gran-
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ularity. Besides, Wang et al. (2022) incorporate
label hierarchy information extracted from a sepa-
rate encoder. Some other works leverage additional
hierarchical information (Lin et al., 2023; Long and
Webber, 2022; Suresh and Ong, 2021).

Other than that, Zeng et al. (2023) augment the
classification loss by the Cophenetic Correlation
Coefficient (CPCC) (Sokal and Rohlf, 1962) as
a standalone regularizer to maximize the corre-
lation between the label tree structure and class-
conditioned representations. Li et al. (2021) pro-
pose a ProtoNCE loss, a generalized version of the
InfoNCE loss (Oord et al., 2018) to learn a repre-
sentation space by encouraging each instance to
become closer to an assigned prototype such as
the clustering centroid. In this way, the underlying
semantic structure of the data can be encoded.

Based on these studies, the hierarchical struc-
ture of the labels suggests that learning methods
could be enhanced if the learning mechanism can
be made aware of the class taxonomy. We explore
several ways of exploiting such hierarchical rela-
tionships between classes by proposing to augment
the SCL loss function as depicted in Fig. 1. Since
this incorporates class taxonomy information, we
call it label-aware SCL (LASCL). This is achieved
by first using pairwise class similarities to scale
the temperature in the SCL to encourage samples
under the same branches to cluster more closely
while driving apart samples with different labels
under different coarse clusters. In addition, we
add instance-center-wise contrastive with learned
label representations as the center of the sentence
embeddings from the corresponding class. These
result in making sub-classes under the same coarse-
grained classes closer to each other and generat-
ing more discriminative representations by making
intra-class samples closer to their centers.

To utilize intrinsic information from label and
data hierarchies, we encode the textual label infor-
mation to be class centers and compute pairwise
class Cosine similarities on top of that. This quan-
tifies the proximity between classes and forms the
basis for instantiating variations of LASCL objec-
tives. Since the dimension of these label represen-
tations is the same as the linear classifier, we show
that it can be applied directly to downstream classi-
fication without further finetuning. To the best of
our knowledge, we are the first to work on leverag-
ing the textual hierarchical label and integrating it
into the SCL to improve the representations. Our

methods can be transferred to various backbone
models, and are simple yet effective across differ-
ent datasets. The only changes we make are in the
cost function so that the method can be applied in
any situation where labels in a hierarchy exist.

Our contributions are summarized as follows:

* LASCL integrates label hierarchy information
into SCL by leveraging the textual descriptions
of the label taxonomy.

* Our method learns a structured feature space by
making fine-grained categories under the same
coarse-grained categories closer to each other.

* Our method also encourages more discrimina-
tive representations by improving intra-cluster
compactness and inter-cluster separation.

* The learned label parameters from our method
can be used directly as a nearest neighbor classi-
fier without further finetuning.

2 Background

Problem Setup For a supervised classification
task, a labeled dataset D = {(xl,yz)}f\il con-
sists of IV examples from a joint distribution Pyy,
where X is the input space of all text sentences,
Y = {1,...,C} is the label space, and C is the
number of classes. The goal of representation
learning is to use D to learn a feature encoder
fo : X — Z that encodes a text sentence to a
semantic sentence embedding in a feature space Z.
This allows us to measure the pairwise similarity
between two text sentences x;, x; by a similarity
function sim(x;, x;), which first projects x; and x;
to Z, i.e., z; = fp(x;), and computes a distance
between two sentence embeddings in Z. More-
over, learning meaningful embeddings facilitates
the learning of a classifier g4 : £ — ) that maps
learned embeddings to their corresponding labels.

Supervised Contrastive Learning (SCL) A ma-
jor thread of representation learning focuses on su-
pervised contrastive learning (Khosla et al., 2020)
that encourages embedding proximity among exam-
ples in the same class while simultaneously pushing
away embeddings from different classes using the
loss function in Eq. (1). Specifically, for a given
example (z;,y;), we denote P(y;) = {z;ly; =
Yi, (xj,y;) € D} as the set of sentences in D hav-
ing the same label as y;. Thus, the SCL loss is
computed on D as:
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The fixed hyper-parameter 7 is the temperature that
adjusts the embedding similarity of sentence pairs.

3 Method

This section describes our proposed label-aware
supervised contrastive learning objectives.

Overview: In the embedding space, we hypoth-
esize that sentences from different fine-grained
classes under the same coarse-grained class are
closer to each other in comparison to sentences
from different high-level categories. Given this in-
trinsic information provided by the label and data
hierarchy, we use the pairwise cosine similarities
of a set of learnable parameters representing label
features to quantify the proximity between classes,
which are used to instantiate variants of label-aware
supervised contrastive learning objectives.

3.1 Label Hierarchy and Class Similarities

This section describes the construction of learnable
label representations given label hierarchies, which
are used to calculate similarities between classes.

A label hierarchy of a labeled dataset refers to a
hierarchical tree that defines an up-down, coarse-
to-fine-grained structure with labels being assigned
to a corresponding branch. We use label textual
descriptions to construct the tree structure. Let
T be a hierarchical tree with V' being the set of
intermediate and leaf nodes. Each leaf node v,
represents a class label ¢ € )/, and is associated
with a set of examples in class ¢, i.e., P(c), where
P(c) N P(c) = 0, Ve # . Each parent node
represents a coarse-grained category containing a
set of fine-grained children nodes. The leaf nodes
can have different depths in 7", which refers to the
distance between each leaf node v. and root node
vp. Let L; be the ¢-th layer of 7. Figure 2a shows
an example of a tree-structured label hierarchy built
from 20News dataset (Lang, 1995).

Given T, we exploit the hierarchical relation-
ships among the classes by having more informa-
tive descriptions. To achieve this, given a leaf node
of class ¢ € ), its ancestor nodes are first col-
lected until reaching the leaf node. These up-down
textual classes at different levels are concatenated

into a text sequence, which is then filled in by a
sentence template. For Figure 2a, for a leaf node
of “Hardware” at Ls, we collect its ancestors and
assign “Computer, System, IBM, PC, Hardware”
as its label. In this way, the hierarchical informa-
tion of labels is collected and can be extracted by
an encoder. Let u. be a sentence of class ¢ € ).
A pretrained language encoder fy is used to ob-
tain a label representation denoted as u. = fy(uc).
This set of label representations are made of learn-
able parameters and will be updated during back-
propagation. To stabilize the process, we re-encode
the label representations less frequently than the
updates of the sentence embeddings, that is, extract
label embeddings only after every n iterations.

After encoding label representations for all
classes U = [uy, ..., uc], a pairwise cosine sim-
ilarity measurement is applied to compute a class
similarity matrix W € R¢*C, where each entry
is the similarity score between a label ¢ and an-
other label ¢/, i.e., wee = sim(uc, uy). W will
be further applied to scale the temperature in §3.2.
Note that this label embedding matrix U € R4*¢
can be directly used as a nearest-neighbor classifier,
where it can be applied to linearly map an input
sentence embedding z; € R? into the label space
Y. Therefore, U can be applied as a linear head
for the downstream classification without further
finetuning.

Figure 2b shows the t-SNE (Van der Maaten
and Hinton, 2008) visualization of 20 initialized
label embeddings of the 20News extracted from
their sentence description encoded by a pretrained
BERT-base model. Different high-level and lower-
level classes are displayed with different markers
and colors. Observe that labels from the same
coarse-grained classes are clustered closer to each
other than to other classes. Given the clustering na-
ture of the labels reflects their hierarchical structure,
these class similarities can be utilized as additional
information to scale the importance of different
classes, which is introduced in the next section.

3.2 Scaling with Class Similarities

This section describes a way to incorporate the
class hierarchy information into supervised con-
trastive loss by leveraging additional scalings intro-
duced in W. The overall idea is to scale the temper-
ature 7 in Eq. (1) by W, which reflects similarities
between classes and is updated every several iter-
ations. Specifically, the negative example pairs in
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Figure 2: (a) The label hierarchy of the 20News dataset. The root node contains 7 classes, each branch has multiple
fine-grained sub-categories. (b) t-SNE visualization of hierarchical label embeddings encoded by BERT-base.

SCL are weighted by the corresponding learned
class similarities, performing a scaled instance-to-
instance update. The final loss over a dataset D is
the same form as Eq. (1) with the individual loss
£, replaced by

sim(zi@j)
exp| ——L°

> EXP(

kEP(y;)

Csii (i, yi) = Ejup(y,) log T@zk)) , (2)

TSk

where the elements of the matrix W define the
pairwise similarity between labels, abbreviated by
Sik = Wy, y, for alabel pair y; and yy.

In this way, Eq. (2) scales the similarity between
negative pairs based on the similarity between the
corresponding classes. Consider two samples x;
and zj, from different classes y; and yi. The simi-
larity s;i tends to be greater if y; and y have the
same parent category. Thus, it applies a higher
penalty to the negative pairs when they are from
different coarse-grained categories, so the learning
update tends to push them further apart. In this way,
the label hierarchical information is introduced to
assign different penalties, reflecting the similarities
and dissimilarities between classes.

3.3 Label Representations as Class Centers

The label representations can also be used as class
centers to perform instance-center-wise contrastive
learning, as shown in another loss term ¢;.

exp (sim(mi,uyi))
2okgP(i) ©XP (m i )
This loss term ¢;. regards the label sequence u,.

constructed for the label c as the center of the sen-
tences from this class. Thus, for each input instance

lic(xi, ;) = log . (3

T, a positive pair is constructed between the in-
stance and its center as (x;, uy, ), and negative pairs
are constructed by comparing the instance z; with
other label sequences, (x;,uy, ), Vyr # y;. This
loss function pulls each sentence closer to its label
center and further from other centers, thus making
each cluster more compact in the embedding space.
Similarly to Eq. (2), the temperature in ¢;. can be
scaled by the class similarity s;, and thus we can
construct a scaled instance-center-wise contrastive
loss term as follow:
exp ( mm(:ii,ui) )

sim(z;,ug)
T:Sik

gSiC(xbyi) - log ) . (4)

>k P(i) €XP (

3.4 Label-Aware SCL Variants

Based on the aforementioned loss functions, we
propose four label-aware SCL (LASCL) variants
and compare their performance in §5.

Label-aware Instance-to-Instance (LI) The
first variant is shown in Eq. (2), which modifies
the original SCL by scaling the temperature by the
label similarity.

Label-aware Instance-to-Unweighted-Center
(LIUC) The second variant augments the original
SCL by adding an unweighted instance-center-wise
contrastive loss.

)

Label-aware Instance-to-Center (LIC) The
third variant augments our first variant by adding an
unweighted instance-center-wise contrastive loss.

(6)

lriue = fscL + lic

lric = lsii + Lic
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Label-aware Instance-to-Scaled-Center (LISC)
The final one augments our first variant by adding
a weighted instance-center-wise contrastive loss.

lrisc = iz + Lsic @)

4 Experimental Settings

Dataset train/val/test  train/val/test classes
(original) (K) ~ (LP) (K)  (|Ly[/[Ly])
20News 10/1/7 21217 7/20
WOS 38/4/4 1/1/4 7/134
DBPedia 238/2/60 12/12/60 9/70

Table 1: Dataset statistics. |L;| and |L,,| are number of
coarse-grained and fine-grained classes, respectively.

Datasests 20NewsGroups” (news classifica-
tion) (Lang, 1995), WOS (paper classification)
(Kowsari et al., 2017), DBPedia (topic classifi-
cation)(Auer et al., 2007), and their originally
provided label structures and textual labels are
used in our experiments. Each leaf node label
of 20News has different depth, while each leaf
node lable of WOS and DBPedia have the same
depth 2. Dataset statistics is shown in Table 1. For
linear-probe (LP) experiments, we randomly select
samples with balanced distribution.

Sentence Templates We use the following tem-
plates to fill in the label string for each dataset,
which is further encoded by a BERT model.

* 20News: “It contains {label;} news.”

2

* WOS: “It contains article in domain of {label; }.

* DBPedia: “It contains {label;[Ls]} under
{label;[L1]} category.”

Implementation Details We use bert-base-
uncased provided in huggingface’s packages (Wolf
etal., 2019) as our backbone models. The averaged
word embeddings of the last layer are used as sen-
tence representations. We used learning rate le-5
with linear scheduler and weight decay 0.1. The
model is trained with 20 epochs and validated ev-
ery 256 steps. To avoid overfitting, the best check-
points were selected with an early stop and patience
of 5 according to evaluation metrics. For LP, we
use a learning rate of 5e-3 with a weight decay of
0.01. The classifier was trained with 10 epochs and
validated after each epoch. The best checkpoint
was selected according to validation accuracy. The

2http ://qwone.com/~jason/2@Newsgroups/

batch size and max sequence length are 32 and 128,
respectively, across all the experiments. The tem-
perature 7 is 0.3. During training, we re-encode
the label embeddings every 500 steps. Cosine simi-
larity was used over all experiments.

Evaluation Metrics We report: (1) classification
accuracy on the leaf node called nodeAcc (2) clas-
sification accuracy on the parent node of the leaf,
which is called midAce, (3) classification accuracy
on the root node, which is the highest level of each
branch and is called rootAcec.

S5 Results and Analysis

To demonstrate the effect of the amount of labeled
data to LASCL, we perform experiments with both
the few-shot setup and full dataset in §5.1 and §5.2.
In §5.3, we visually show how the proposed meth-
ods generate a more well-structured and discrim-
inative embedding space by visualizations. We
discuss how the size of the hierarchy plays a role
by constructing a bottom-up label hierarchy with
different depths in §5.4.

The experimental results are reported with linear
probes (LP) and with direct testing (DT). For LP, a
randomly initialized linear layer was trained on a
small number of labeled samples with the encoder
frozen. We denote DT as directly applying the
learned label parameters as the classifier (§3.4).

5.1 Few-Shot Cases

LASCL works well on few-shot cases. We first
conduct k-shot experiments with k=1 and k=100.
To be specific, we take 1 and 100 sentences from
each class to construct the training set. The valida-
tion and test sets remain the same as the original.
NodeAcc on direct testing experiments are shown
in Figure 3, and the accuracies are summarized in
Table 6 in the Appendix.

We can observe improvements under few-shot
cases by applying LASCL across three datasets,
while there are some differences in terms of hierar-
chical label granularities reflected by the datasets.
LI is effective when there exists a more compre-
hensive label hierarchical information as shown in
Fig. 3a, where 20News has a deeper hierarchy of
fine-grained labels compared to DBPedia and WOS
(Fig. 3c and 3b) which have only two layers for
each label. It indicates that a more comprehensive
hierarchy that captures the intricate relationships
between classes would be more beneficial.
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Figure 3: Directly testing (DT) the k-shot prediction performance (measured by NodeAcc) on three datasets.

direct test

linear probe

Dataset  Objective

nodeAcc midAcc rootAcc nodeAcc midAcc rootAcc

SCL 54.44 61.74 69.41 65.64 72.54 78.98

LI 61.01 67.19 73.09 67.59 74.04 79.82

20News LIUC 61.09 69.62 79.17 66.42 73.66 79.67

LIC 69.40 75.64 81.05 68.32 75.21 80.87

LISC 69.45 75.90 81.08 68.47 75.33 81.07

SCL 28.71 - 46.50 54.03 - 70.06

LI 58.57 - 70.91 62.14 - 74.97

WOS LIUC 56.35 - 71.89 58.32 - 72.89

LIC 65.97 - 78.46 73.17 - 83.12

LISC 66.02 - 78.47 73.56 - 83.13

SCL 2.42 - 38.26 96.00 - 96.79

LI 2.84 - 31.25 96.14 - 96.80

DBPedia LIUC 91.34 - 94.65 96.00 - 96.79

LIC 94.85 - 96.30 96.52 - 97.25

LISC 95.52 - 97.06 96.71 - 97.35

Table 2: Classification accuracy (%) in terms of the leaf, mid-layer, and root nodes with models trained on SCL, LI,
LIUC, LIC, and LISC on 20News, WOS, and DBPedia datasets.

Besides, LIC, LIUC, and LISC, which incor-
porate additional contrastive objectives between
instances and centers, achieve notable performance
and largely close the gap, especially between
full dataset and 100-shot on DBPedia and WOS
datasets. It effectively utilizes the label informa-
tion even if the hierarchical structure is shallow.
With 100-shot, the computation cost is decreased
by reducing the training set size to 1% while main-
taining decent performance compared to with full
dataset.

5.2 Full Dataset

LASCL outperforms SCL in full-data setting.
Table 2 shows the results on the full dataset with
our proposed four LASCL objectives, which out-
perform SCL in terms of the accuracy on the leaf

node, mid-layer, and root level metrics for both DT
and LP experiments. In most cases, LP enhances
the performance compared to DT, while maintain-
ing a comparable performance across different ob-
jectives. The performance gain introduced by LIC
and LISC is substantial enough to narrow the per-
formance gap between DT and LP. In particular,
DT performs better than LP on 20News, indicating
the creation of effective label representations.

Among the four proposed variants, the addi-
tional scaling introduced by the class similarities
contribute to the performance gains, especially
when dealing with fine-grained hierarchies. The
improvement is clearest using the nodeAcc test
comparing SCL and LI where the accuracy is in-
creased by effectively penalizing the distance be-
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(a) bert-base

(b) SCL

(c) LISC

Figure 4: t-SNE visualization on 20News dataset (keep the original distribution) with (a) bert-base, (b) SCL, (c¢)
LISC. Label representations are marked by appropriately colored “x”.

tween classes. Moreover, compared to SCL, the
additional instance-center-wise contrastive loss in-
troduced by LIUC also induces performance gains,
especially on rootAcc of coarse-grained categories.
It leads to clearer decision boundaries between
coarse-grained categories, and moves within-class
instances closer to their centers. LIC contributes
to a further improvement on both nodeAcc and
rootAcc by combining the aforementioned two ad-
vantages. In contrast, compared to LIC, LISC pro-
vides only a marginal improvement by weighing
the class centers because it only introduces small
adjustments in the feature space. Further detailed
comparison of these methods is presented in §5.3.

5.3 Visualization

LISC generates a more well-structured and dis-
criminative representation space. Figure 4 shows
a scatter plot of sentence and label embeddings,
marked by dots and colored “x” respectively, and
colored by classes. The distribution of the sampled
examples in the figure is the same as the origi-
nal dataset. Figures 4a - 4c show the represen-
tations extracted from bert-base, SCL, and LISC,
respectively. We find that LISC generates a bet-
ter representation than SCL by bringing clusters
belonging to the same high-level classes closer to
each other while simultaneously separating clus-
ters of different classes. For instance, consider
samples under the coarse-grained class “recreation”
depicted in green. Initially, in Figure 4b, these sub-
categories are widely dispersed. While in Figure
4c, the four sub-categories of “recreation” have be-
come grouped closer to each other. This shows that
penalizing the weights between classes with the
class similarity matrix effectively guides the model
to bring related sub-categories together. This can
be interpreted to be a consequence of the ability of

LISC to exploit dependencies among the classes,
instead of considering each class independently as
SCL does. In addition, the LISC also mitigates
issues when there exist common themes where the
corresponding label embeddings overlap one an-
other.

Method IntraCluster | InterCluster 1
SCL 14.59 22.96
LI 14.32 23.66
LIUC 14.04 23.21
LIC 13.62 24.31
LISC 13.52 24.48

Table 3: Averaged inter- and intra-cluster Lo distances
on 20News, which measure the compactness and sepa-
ration of clusters, respectively.

To quantitatively demonstrate the effectiveness
of these methods, we calculate the average pairwise
Lo intra- and inter-cluster distances on 20News to
measure the compactness of each cluster and dis-
tance between clusters as shown in Table 3. Smaller
intra-cluster distance implies a more compact clus-
ter. Meanwhile, the clusters are well-separated with
a larger inter-cluster distance. Comparing SCL
and LIUC, we can see that the additional instance-
center-wise contrastive particularly improves clus-
ter compactness by moving within-class examples
closer to their centers. Comparing SCL to LI shows
that the inter-cluster distance increases by applying
class similarity to scale the temperature, leading
to a more discriminative embedding space. LISC
achieves the best performance among all variations
by combining the aforementioned advantages. As a
result, LISC facilitates clearer decision boundaries
and improves the representation and organization
in the embedding space.
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5.4 Sensitivity to Different Label Hierarchies

Deeper hierarchical structures work better. To
demonstrate the effect of hierarchy size, we assess
how each leaf node label performs under different
hierarchical structures. By manipulating the layers
of the labels, we simulate different levels of granu-
larity. To achieve this, we construct different label
hierarchies with bottom-up levels ranging from 1-5
on 20News. The performance is always measured
on the leaf nodes to make a fair comparison.
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Figure 5: Measure the sensitivity to different hierarchies
on 20News in (a) nodeAcc with different bottom-up
label hierarchies ranging from 1-5. (b) nodeAcc on
labels grouped by different hierarchies.

We observe that the overall performance changes
in response to different levels of label granularity,
as shown in Figure 5a. A similar observation can be
found in Figure 5b, which groups the performance
based on the hierarchy of leaf nodes with depths
ranging from 2-5. From Figure 5b, we notice that
the model makes more precise predictions with
more specific label information as the hierarchical
depth increases. Besides, the proposed methods
can also be applied to flat labels when the label
depth is 1 given that we can leverage the label
description as long as we have that prior knowledge.
Thus, the model can better distinguish between
closely related classes when provided with more
detailed comprehensive labels.

6 Related Work

Learning Label Hierarchy Hierarchical text
classification is a task involving assigning samples
to specific labels (most commonly fine-grained lev-
els) arranged in a structured hierarchy, which is
typically represented as a tree or directed acyclic
graph, where each node corresponds to a label
(Puljjala and Gauch, 2004). Recent studies have
suggested integrating the label structure into text
features by encoding them with a label encoder.
For instance, Chen et al. (2020a) embed the word
and label hierarchies jointly in the hyperbolic space.

Zhou et al. (2020) propose a hierarchy-aware global
model to extract the label structural information.
Zhang et al. (2022b) design a label-based atten-
tion module to extract information hierarchically
from the labels on different levels. Wang et al.
(2022) propose a network to embed label hierar-
chy to text encoder with contrastive learning. Chen
et al. (2021a) propose a matching network to match
labels and text at different abstraction levels. Other
than these studies on network structure, Ge (2018)
propose a hierarchical triplet loss, which is useful
for finding hard negatives by hierarchically merg-
ing sibling branches. Recent work by (Zhang et al.,
2022a) introduces a hierarchy-preserving loss, ap-
plying a hierarchical penalty to contrastive loss
with the preservation of a hierarchical relationship
between labels on images by using images under
the same branch as positive pairs. Our LASCL,
in contrast, exploits a small number of known la-
bels and their hierarchical structure to improve the
learning process. It differs from these works in con-
structing penalties from the hierarchical structure
and exploiting it in the contrastive loss.

Contrastive Learning Self-supervised con-
trastive learning is a representation learning
approach that maximizes agreement between
augmented views of the same instance and pushes
different instances far apart. Works on text data
(Rethmeier and Augenstein, 2023) constructing
various augmentations on text level (Wu et al.,
2020; Xie et al., 2020; Wei and Zou, 2019; Giorgi
et al., 2021), embedding level (Wei and Zou, 2019;
Guo et al., 2019; Sun et al., 2020; Uddin et al.,
2021), and via language models (Meng et al., 2021;
Guo et al., 2019; Chuang et al., 2022), etc. SCL
effectively learns meaningful representations and
improves classification performance by combining
supervised and contrastive learning advantages. It
was initially introduced in SimCLR (Chen et al.,
2020b). Other following works introduce novel
insights to improve the representation learning
such as MoCo (He et al., 2020), BYOL (Grill et al.,
2020), and SwAV (Caron et al., 2020). SCL has
also been applied to NLP tasks such as sentence
classification (Chi et al., 2022), relation extraction
(Li et al., 2022; Chen et al., 2021b) and text
similarity (Zhang et al., 2021; Gao et al., 2021),
where it has shown promising results in learning
effective representations for text (Sedghamiz et al.,
2021; Khosla et al., 2020; Chen et al., 2022).
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Multi-label classification Multi-label text classi-
fication is to assign a subset of labels to a given text
(Patel et al., 2022; Giunchiglia and Lukasiewicz,
2020). It acknowledges that a document can belong
to more than one category simultaneously, and is
especially useful when dealing with complex and
diverse content that may cover multiple topics or
themes. The modeling dependencies amongst la-
bels in this work only consider assigning a single
category to each sequence, and our future study is
to extend this method to multi-label classification.

7 Conclusion

In this work, we propose LASCL to include infor-
mation about the label hierarchy by introducing
scaling to the SCL loss to penalize distances be-
tween negative example pairs using the class simi-
larities constructed from the learned label feature
representations. An additional instance-center-wise
contrastive is introduced. These bring instances
with similar semantics or belonging to the same
high-level categories closer to each other, encour-
age each instance to become closer to its centers,
and the underlying hierarchical structures can be
encoded. A better-structured and discriminative
feature space is generated by improving the intra-
cluster compactness and inter-class separation. The
learned labeled parameters can be directly applied
as a nearest neighbor classifier without further tun-
ing. Their effectiveness is demonstrated with ex-
periments on three text classification datasets.

Limitations

Our proposed methods have some limitations, par-
ticularly when dealing with highly fine-grained la-
bel structures where most of the branches exhibit
significant similarities. In this case, it is challeng-
ing to distinguish between label embedding sim-
ilarities. Assigning weights to different classes
may not be effective since the similarity scores
we are almost identical. This hinders the ability
to accurately differentiate between classes and fur-
ther impacts the performance. Another limitation
comes from the common underlying issue of data.
Bias can be learned by the model. To mitigate this,
debias techniques can be employed to ensure fair
and unbiased representation.
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A Appendix
A.1 LP with Label Embeddings

In the experiments of Section 5, we randomly ini-
tialized the parameters of the classifier. An alter-
native is to use the pretrained label-representative
parameters as the linear head, and then to further
train on the labeled dataset used in the linear probe.
Results on 20NewsGroups are shown in Table 4.
Comparing their performance to Table 2. Further
tuning the label embedding matrix on labeled sam-
ples with cross-entropy loss impairs the perfor-
mance with LI and LIUC. It achieves comparable
or slightly better performance in terms of LISC and
LIC.

Objective | nodeAcc midAcc rootAcc

LI 67.26 73.74 78.78
LIUC 64.42 68.08 78.45
LIC 68.99 72.90 80.75

LISC 69.15 76.00 81.40

Table 4: (%). LP by using label embeddings as an
initialized classifier on 20NewsGroups.

A.2 Sensitivity on Different Label Templates

We explore the sensitivity of different label tem-
plates on 20NewsGroups as an example. Other
than the template used in section §4, we also use
the following templates

1. This sentence delivers {label;} news under
the category of {label;[L;]}

2. Description of {label;} by generating a sen-
tence from ChatGPT, the prompt given to
ChatGPT is “Please generate a sentence to
describe {label; } news.”

3. {label; }: description of {label, }

In 2nd template, we use ChatGPT to generate a
sentence description for each label. For instance,
the description of “recreation,sport,hockey” is “In
the latest recreation and sport news, hockey enthu-
siasts are buzzing with excitement as teams gear up
for an intense season filled with thrilling matches
and adrenaline-pumping action on the ice.”

A.3 Comprehensive Few-Shot Cases Results

This section includes the full results in supplement
to §5.1 shown in Table 6.
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Templates  Objective directly test linear probe

nodeAcc midAcc rootAcc nodeAcc midAcc rootAcc

LI 61.35 64.63 76.62 58.47 65.75 74.50

1 LIUC 67.66 75.31 79.93 58.30 65.53 74 .44
LIC 63.39 71.92 80.35 57.79 65.52 74.08

LISC 67.34 75.66 79.43 57.78 65.44 74.16

LI 66.62 73.43 78.98 94.62 - 93.69

’ LIUC 67.49 74.79 79.65 94.66 - 95.66
LIC 65.45 73.88 80.02 94.25 - 95.35

LISC 68.35 75.11 79.61 94.25 - 95.35

LI 65.43 72.29 78.52 66.88 73.62 79.13

3 LIUC 67.69 74.88 80.24 94.66 - 95.66
LIC 64.70 73.25 80.20 65.69 73.39 79.02

LISC 67.90 75.00 79.49 94.25 - 95.35

Table 5: Results with different label templates on 20News.

L directly test linear probe
Dataset Objective nodeAcc midAcc rootAcc nodeAcc midAcc rootAcc
1-shot
SCL 16.89 22.81 42.06 58.68 66.60 74.97
LI 32.71 41.20 56.03 58.47 65.75 74.50
20News LIUC 33.43 41.66 57.32 58.30 65.53 74 44
LIC 33.82 42.11 57.47 57.79 65.52 74.08
LISC 33.30 40.96 56.47 57.78 65.44 74.16
SCL 0.32 - 12.22 34.39 - 52.05
LI 0.70 - 14.43 49.94 - 66.08
WwOS LIUC 0.41 - 13.30 49.33 - 65.18
LIC 0.71 - 14.07 50.20 - 66.16
LISC 0.70 - 14.47 50.69 - 66.23
SCL 0.52 - 22.95 95.50 - 95.56
LI 1.45 - 20.9 94.62 - 93.69
DBPedia LIUC 1.42 - 21.33 94.66 - 95.66
LIC 3.55 - 21.11 94.25 - 95.35
LISC 3.58 - 20.26 94.25 - 95.35
100-shot

SCL 49.47 58.26 65.59 62.97 69.95 76.86
LI 50.70 58.22 67.07 63.06 70.42 77.50
20News LIUC 54.73 63.09 75.05 64.23 71.38 78.09
LIC 63.52 70.83 78.21 63.21 70.17 76.95
LISC 63.54 70.88 78.48 64.49 72.34 78.61
SCL 1.17 - 16.30 42.65 - 46.95
LI 1.19 - 16.54 29.35 - 46.65
WwOS LIUC 37.54 - 66.61 51.25 - 66.97
LIC 59.59 - 72.70 61.14 - 73.25
LISC 60.02 - 72.65 62.23 - 74.56
SCL 0.06 - 2545 96.03 - 96.69
LI 1.00 - 23.72 96.18 - 96.83
DBpedia LIUC 84.45 - 88.10 95.55 - 96.69
LIC 93.13 - 94.48 95.80 - 96.61
LISC 93.19 - 94.63 95.78 - 96.61

Table 6: Results on few-shot in supplement to §5.1.
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