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Abstract

Fine-tuning and testing a multilingual large lan-
guage model is expensive and challenging for
low-resource languages (LRLs). While previ-
ous studies have predicted the performance of
natural language processing (NLP) tasks us-
ing machine learning methods, they primarily
focus on high-resource languages, overlook-
ing LRLs and shifts across domains. Focus-
ing on LRLs, we investigate three factors: the
size of the fine-tuning corpus, the domain simi-
larity between fine-tuning and testing corpora,
and the language similarity between source and
target languages. We employ classical regres-
sion models to assess how these factors impact
the model’s performance. Our results indicate
that domain similarity has the most critical im-
pact on predicting the performance of Machine
Translation models.

1 Introduction

Fine-tuning large language models for natural lan-
guage processing (NLP) tasks across varying lan-
guages, tasks, and domains is a resource-intensive
and environmentally harmful process. (Xia et al.,
2020). This challenge is especially magnified for
low-resource languages (LRLs). However, know-
ing how well a language model performs on a par-
ticular language can be useful information, such as
improving the accuracy of quality estimation (QE)
models (Zouhar et al., 2023). Therefore, there is a
need to estimate the performance of these models
for LRLs without conducting time-consuming and
computationally expensive model pre-training and
fine-tuning.

Existing approaches for predicting the perfor-
mance of models for NLP tasks have shown
promise using linear regression and gradient-
boosting trees (Birch et al., 2008; Xia et al., 2020;
Srinivasan et al., 2021; Ye et al., 2021). These stud-
ies have considered data size, typological features,
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and language similarity as factors contributing to
the model performance. However, most of these
studies are conducted for high-resource languages
(HRLs) (e.g., Romance and Germanic families)
thus limiting their applicability to LRLs. Further-
more, performance drops in NLP tasks have been
observed due to domain shift (Elsahar and Gallé,
2019). However, this factor is not explicitly consid-
ered in the existing works that predict the perfor-
mance of language models.

Based on the aforementioned limitations in the
literature, we considered three factors for the Ma-
chine Translation (MT) performance prediction for
LRLs using classical regression models. These fac-
tors are the size of the fine-tuning corpus, the do-
main similarity between fine-tuning and testing cor-
pora, and the language similarity between source
and target languages.

Then, we tested the statistical reliability of these
regression models and evaluated them based on
their prediction accuracy. We selected those with
relatively high accuracy for each factor and ex-
plored how data partitioning (described in § 2) af-
fects the quality of fit using these preferred models.
Additionally, we analyzed the importance of the
factors by ranking them based on their correlation
with the MT performance, their weights in multi-
factor regression models, and their importance in
multifactor models using the Random Forest Re-
gressor.

Our contributions are as follows: 1) we devel-
oped a statistically rigorous method for perfor-
mance prediction that can be repeated on any com-
bination of LRLs, NLP tasks, and LLMs; 2) we
specifically evaluated the impact of various factors
on the performance of MT models; 3) we provided
domain-specific and language-specific interpreta-
tions based on the performance of the regression
models.
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2 Model and Data

Our data is collected from experiments of a prior
study (Nayak et al., 2023) on fine-tuning and test-
ing different corpora and target languages using
the multilingual large language model mBART (Ta-
ble 1). Each experiment consists of performance
measured by spBLEU, with the source language
(always English (EN)), the target language, [, the
fine-tuning corpus, ¢ and its size, s, and the testing
corpus, 7.

Language Model and Evaluation Metric
mBART is a pre-trained multilingual sequence-to-
sequence model that is built based on the encoder-
decoder Transformer architecture (Vaswani et al.,
2017). Lee et al. (2022) has shown that mBART
outperforms mT5, another multilingual large lan-
guage model, especially on LRLs. Lee et al. (2022)
also suggested the use of spBLEU as the evalua-
tion metric for LRLs because it is a sentence-level
metric that is more robust to the lack of reference
translations than corpus-level metrics like BLEU.
Although the size has been found to impact model
loss rather than performance, Ghorbani et al. (2021)
has demonstrated a negative linear relationship be-
tween performance and model loss.

Languages We covered five South Asian lan-
guages that are all considered low-resource other
than Hindi (11) (Joshi et al., 2020), (Table 2)!; Sin-
hala (S1) and Tamil TA are the official languages of
Sri Lanka and Hindi (S1), Gujarati (GU), and Kan-
nada (KA) are three of the many official languages
of India. Kannada (KA) is unseen during mBART’s
pre-training. Note that we only considered the EN-
XX direction because it often performs better than
the XX-EN direction (Johnson et al., 2017; Lee
et al., 2022). This mitigates our regression models
from skewing excessively toward the low spBLEU
extreme.

Corpora We had two fine-tuning corpora for
each language. The first fine-tuning corpus is either
an administrative (Government; S1,TA) Or a news
(PMlIndia; HI, GU, KA) corpus. The second fine-
tuning corpus is a religious (Bible) corpus. Due
to limited availability, we scrapped the Bible cor-
pus for SI from a different website?. For testing

'The classification in Joshi et al. (2020) is outdated. (SI)
must be at least Joshi’s class 3 because it is used to train
mBART. According to their definitions, all the languages in
our study fall are at least class 2.

2Sinhala: https://www.wordproject.org/bibles/si/
index.htm; and others: https://ebible.org/download.

corpora, on top of the administrative/ news corpus
and religious corpus, we also had an open-domain
corpus (FLORES). Also due to limited availability,
we used a slightly different corpus, FLORES-V1
instead of FLORES-101 for SI. For complete de-
tails of the corpora, see Appendix A.1). We define
the experiments where the fine-tuning and testing
corpora are from the same domain as in-domain
experiments, and out-domain otherwise. To ensure
that MT systems perform consistently across cor-
pora of varying sizes, we extracted fixed-size fine-
tuning sets from each corpus as in Table 1, based
on the available amount of parallel text that we
could sample from. All testing corpora are about
1k tokens.

Data Partitioning In our modeling, we split our
data by grouping them according to their experi-
mental settings (fine-tuning corpus, testing corpus,
target language). We refer these groups of experi-
ments as partitions. For instance, the “KA partition”
refers to the first three columns in Table 1, while
the “Fined-tuned-on-Bible partition” refers to the
last three rows in Table 1. We refer the ways of par-
titioning the data as partitioning schemes, which
differs by the factor that we model, as in Table 4.3

3 Factors and Featurization of Factors

We consider three potential factors that impact the
performance score of the MT models: 1) the size
of fine-tuning corpus, 2) the domain similarity be-
tween fine-tuning and testing corpora, and 3) the
language similarity between source and target lan-
guage. We represent these factors as feature vari-
able(s) used as predictor(s) in the regression models
described in the next section. These predictors are:
¢s = size feature variable; ¢; = domain feature
variable; ¢; = language feature variable.

3.1 Fine-Tuning Corpus Size

It has been observed that the cross-entropy loss of
MT models behaves as a power-law with respect
to the amount of fine-tuning data (Gordon et al.,
2021; Ghorbani et al., 2021; Kaplan et al., 2020).
This suggests that the size of fine-tuning corpora
is an important factor to consider in our study. We
define the size factor, denoted as ¢s = 3, as the nor-
malized count of sentence pairs in the fine-tuning
php

3Partitions with less than 10 data points are too small and
thus not discussed.
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Fine- Target Language and Testing Corpus

Tuning Size Kannada (KA) Gujarati (GU) Hindi (HI) Sinhala (S1) Tamil (TA)

Corpus FLORES Bible PMI | FLORES Bible PMI | FLORES Bible PMI | FLORES* Bible! Gov | FLORES Bible Gov
1k 22 0.3 120 | 7.8 2.3 22.6 | 6.6 1.0 19.7 | 3.8 0.2 21.7 | 2.6 0.3 19.7

Gov/PMI 10k | 11.8 1.5 30.7 | 16.6 4.0 342 | 145 3.0 324192 0.9 41.7 | 71 0.8 34.8
25k | 14.2 1.7 343 | 199 4.8 379 | 17.0 35 355 | 11.3 1.2 47.0 | 9.0 1.3 38.2
50k | NA NA NA | NA NA NA | 19.0 34 36.7 | 12.3 1.5 4951113 1.6 40.8
1k 0.5 123 03 |22 129 1.8 1.5 186 1.0 | 0.8 21.6 04 |08 163 03

Bible 10k | 1.8 240 08 |41 239 26 |25 28.1 1.8 1.7 342 0.8 | 1.6 269 0.7
25k | 2.2 28.1 1.0 | 42 285 29 |28 323 1.8 1.9 38.5 09 |20 314 0.8

Table 1: MT Performance in spBLEU by fine-tuning mBART on different combinations of fine-tuning corpus, size
of fine-tuning corpus, target language, and testing corpus.
* We used FLORES-V1 instead of FLROES-101 for SI due to availability.

T The bible corpus for SI is scrapped from a different website due to availability.

Language Family Script Joshi Class mBART Token dgeo  dgen  dsyn  dpho  dinw  dfea
Kannada (KA) Dravidian = Kannada 1 - 040 1.00 064 035 047 0.50
Gujarati (GU) Indo Aryan Gujarati 1 140M 0.30 090 0.68 0.57 048 0.60
Hindi (HI) Indo Aryan Devanagari 4 1715M 040 090 059 034 047 0.50
Sinhala (S1) Indo Aryan Sinhala 1 243M 040 090 0.78 041 050 0.60
Tamil (TA) Dravidian ~ Tamil 3 595M 040 1.00 0.71 0.57 0.50 0.60

Table 2: Properties about the languages in our study and their lang2vec distances from English.

corpus. We achieve this normalization by employ-
ing a minimum-maximum scaling method, which
constrains it to a range of 0 < 5 < 1. This stan-
dardization aligns with the normalization applied
to other features in our study.

3.2 Domain similarity

It has been discovered that the performance of lan-
guage models faces significant drops when they
encounter unfamiliar vocabulary and writing style
(Blitzer, 2008; Jia and Liang, 2017; Calapodescu
et al., 2019; Elsahar and Gallé, 2019). We refer
to this situation as domain shift where domain is a
“distribution over language characterizing a given
topic or genre” (Gururangan et al., 2020). In our
case, domain shift happens when the testing cor-
pus is from a domain different from the fine-tuning
corpus. This motivates us to consider domain sim-
ilarity between fine-tuning and testing corpora as
one factor affecting the performance of MT mod-
els.

Previous studies have proposed various methods
to measure and mitigate domain divergence in MT
models (Kashyap et al., 2021; Pillutla et al., 2021;
Nayak et al., 2023; Lee et al., 2022). Kashyap
et al. (2021) showed that information-theoretic
measures such as Kullback—Leibler (KL) diver-
gence, Jensen—Shannon divergence (JSD), and
higher-order domain discriminator (e.g., Proxy A-

distance (PAD)) capture good correlation with per-
formance drop of MT models. Our study favors
entropy methods, particularly JSD over KL diver-
gence and PAD, for its symmetric property and rela-
tive simplicity. We refer to the domain feature, ¢,
as the JSD between fine-tuning and testing corpora,
that is, g = j = JSD(t, 7). (see Appendix A.2
for complete details on JSD calculation).

3.3 Language similarity

Language similarity between source and target lan-
guages is important in translating from one lan-
guage to another because it can help to leverage
the cross-lingual transfer and multilinguality of
the language model while exploiting parallel data
from related language pairs (Lee, 2022; Gaschi
et al., 2023; Philippy et al., 2023). This can be
particularly promising for LRLs with insufficient
quantities of high-quality parallel data (Goyal et al.,
2020).

To measure language similarity, we utilize six
distance features queried from URIEL Typologi-
cal Database using lang2vec (Littell et al., 2017).
The distance features are geographical distance,
dgeo, genetic distance, dgen, syntatic distance, dgyp,
phonological distance, d,,, inventory distance,
diny, and featural distance, d ., (Table 2, see Ap-
pendix A.3 for details). In our study, we refer to
the language feature, ¢;, as any combination of the
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six distance features.

4 Methodology

In this section, we outline our methodology for
modeling and evaluating spBLEU predictions us-
ing factors mentioned previously, including the ex-
ploration of different regression models and their
statistical reliability. We also examine the impor-
tance of individual features through correlation and
feature importance analyses.

4.1 Modeling and Evaluation

Each model is defined by a predictor function
f, which predicts a spBLEU value given a fea-
ture value = or a vector of feature values x =
[z1, ..., :):n]T of an experiment. Table 3 catalogues
the predictor functions employed. Our selection
includes straightforward mathematical functions
such as linear, polynomial, and logarithmic types.
This choice is grounded in the exploratory nature of
our research and the classic use of these functions
in regression analysis. It is important to note that in
polynomial regressions, interaction variables (for
instance, x;xj,7 # j) are omitted in multifactor
models. This exclusion is deliberate, as it allows
us to focus on the impact of individual factors. The
intricate interdependencies among these factors are
comprehensively addressed through weight analy-
sis (see § 4.3) in the multifactor linear regression
model.

Name Definition

Linear fine(x) = Bo + 32, Bjw;

Quadratic Tooly, (X) = Bo + 25 | Arjzj + 52]'953’]

Cubic Tooly, (X) = Bo + 225 | Brjz; + ,82]-:15]2 + /33jm?]

Logarithmic

Jiog (x)
Scaling Law  fs1.(3)

Bo+ 3, Bjlogz;
50(571 + ﬁl)ﬁz (only used for size)

Table 3: The predictor functions explored in our study.

In order to understand the impact of individual
factors, we explored predictor functions with one
factor at a time as an input variable*. In addition,
data partitioning mentioned in § 2 allowed us to
minimize differences between experiments, except
for the modeled factor. This approach provides
insights into the relationships between individual
factors and experimental settings.

“Specifically for size, scaling law was used as an additional
predictor function as scaling law as supported by multiple
studies (Gordon et al., 2021; Ghorbani et al., 2021; Kaplan
et al., 2020).

For further exploration, the same predictor func-
tions were explored using multiple features as
multi-factor input variables. This approach allows
for a more robust predictor function that captures
the interactions between multiple factors, which
had been postulated from the partitioning in single-
factor modeling. The investigated multi-factor com-
binations included size and JSD, all six language
features, and size, JSD, and all six language fea-
tures.

To evaluate the prediction accuracy of our re-
gression models, we used root-mean-square er-
ror (RMSE) as a metric for ranking models. The
RMSE was determined by averaging the RMSE
values obtained from each partition’s k-fold cross-
validation folds (k = 10).

4.2 Statistical Assessment on Regression
Residuals

Residuals reflect the discrepancy between our
model’s predicted spBLEU and the true spBLEU
for any given experiment. Residuals can provide a
quantitative measure of our model’s accuracy and
how our model’s predictions deviate from the true
spBLEU, offering insights on any issues with the
model’s robustness and overall reliability. We veri-
fied two model assumptions described in Bates and
Watts (1988), namely, normality and homoscedas-
ticity of residuals. The normality of residuals is
verified using D’ Agnostino-Pearson test (Pearson
et al., 1977), whereas the homoscedasticity is ob-
served from the plots.

4.3 Ranking Feature Importance

To assess the correlation between each feature and
spBLEU as well as their importance as predictors
in our regression models, we ranked the features
by the following three analyses:

(I) Pearson’s Correlation Analysis To measure
the strength and direction of the linear relationship
between each feature and spBLEU, we calculated
the Pearson Correlation coefficient along with the
statistical significance p-value for the correlation.

(IT) Weight analysis In addition to pairwise rela-
tionships measured by Pearson’s Correlation Anal-
ysis, we also analyzed the unique contribution of
each feature while considering the interdependen-
cies among them by ranking the features by their
weight in the multifactor linear regression model.
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(IIT) Random Forest To assess the importance
of each factor in our modeling using various regres-
sion models, we used Random Forest to identify
the most important features in the multifactor mod-
els. See Appendix B for optimal hyperparameters
settings used in our study.

5 Results

In this section, we discuss the performance of our
regression models based on their RMSE in k-fold
cross-validation (Table 4). In § 5.1, we extensively
discuss the regression models that work well, along
with their statistical reliability. Then, in § 5.2, we
analyze the residuals’ distribution of those mod-
els on specific partitions and provide our domain-
specific and language-specific interpretations of the
observations. Lastly, in § 5.3, we compare the cor-
relation between each feature and spBLEU, as well
as their importance in multifactor models, which
gives us insights into the impact of various factors
on the performance of MT models.

5.1 Prediction Accuracy of Factors

To explore the impact of each factor on spBLEU,
we performed regression based on subsets of fac-
tors. The prediction accuracy of each regression
model was measured in RMSE from k-fold cross-
validation.

Regression using size feature In the case of pre-
dictor functions that take the size feature as a pre-
dictor, we observed that the partitioning scheme
has a more significant impact on the RMSE than
the predictor functions. For instance, the RMSE
is significantly lower when partitioning by fine-
tuning and testing corpora (Table 4). Such a trend
could be attributed to the concentration of data
points when mBART is tested in-domain and out-
domain (Figure 1a). Consequently, separating the
in-domain and out-domain experiments (i.e., par-
titioning by both fine-tuning and testing corpora)
results in a notably lower RMSE. On the best par-
titioning scheme, the scaling law model has the
lowest RMSE (Figure 1a, RMSE = 2.2998). This
result is consistent with the current literature, which
asserts that encoder-decoder Transformers used for
MT exhibit a scaling law relationship between the
volume of training data and model performance.
(Gordon et al., 2021; Ghorbani et al., 2021; Kaplan
et al., 2020).

When modeling with scaling law, the residuals
follow normal distribution on all partitions, as in

Table 5a. However, the model is heteroscedastic for
partitions involving the Bible corpus that are out-
domain. This suggests that translation involving
out-of-domain data (particularly Bible corpus) may
exhibit highly variable performance. Consequently,
it implies that the Bible corpus is better suited for
the in-domain corpora rather than out-domain cor-
pora.

Scaling Law

60
50
Train Set+Test Set
—— Gov/PMI-Flores
30 1 —— Gov/PMI-Bible

204 . Gov/PMI-Gov/PMI
10 o
= 3

Bible-Flores
=10 T

Bible-Bible
Bible-Gov/PMI
T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Normalized Train Set Size

40 1

sp-BLEU

(a) Regression plot using scaling law on size, fs.(3); par-
titioned by both fine-tuning and testing corpora.

Polynomial of Degree 3

60
50 -
40 P Target Language
LN ]
T 30952 — KA
R —. 8 - — GU
& 201 H
0| * ® ) P sl
0 o« T A

-10 T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6

JSD of Train and Test Set

(b) Regression using polynomial (deg 3) regression on
JSD, fpoly, (§); partitioned by language.

Logarithmic

Target Language
— KA
— GU

HI
Sl
TA

sp-BLEU

-10 T T T T T
0.1 0.2 0.3 0.4 0.5 0.6

JSD of Train and Test Set

(c) Regression plot using logarithmic regression on JSD,
fiog(7); partitioned by language.

Figure 1: Regression plots using best predictor functions
for size and domain on best partitioning schemes.

Regression using domain similarity For predic-
tor functions that take JSD as the predictor, polyno-
mial regression with degree 3 has the lowest RMSE
(Figure 1b, RMSE = 4.1202). Since polynomial
regression models have a higher chance of being
overfitted as their degree increases, we also con-
sider the best performing non-polynomial model
using JSD, i.e., the logarithmic regression model
(Figure 1c, RMSE = 4.9355). Regarding their sta-
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Feature Variable(s)* and partitioning scheme

Predictor
Function @5 only ¢q only Ps, @d | Psy Pds P

None Fine-tune Test Lang Fine-tune, test | None = Lang None | None
Linear 13.2388 12.9270  11.1404 13.0014 2.9682 5.6433 5.0782 | 4.8766 | 4.5786
Polynomial-2 13.2092 12.8183 11.1218 13.0414 2.4561 5.4633 4.5698 | 4.6604 | 4.3840
Polynomial-3 13.1706 12.7914  22.4824 13.0601 2.3335 54141 4.1202 | 4.4509 | 4.2168
Logarithmic 13.1543  12.7835 11.3084 12.8578 2.3077 5.6315 4.9247 | 49502 | 4.6815
Scaling Law 13.1541 12.7828  11.1960 12.8929 2.2998 NA NA NA NA

Table 4: Average Error Measurement' for Various Prediction Methods and Schemes.
* Feature variable(s) used as predictor(s) in the regression models: ¢ = size feature variable; ¢4 = domain feature variable;

?l = language feature variable.

Measured by average RMSE from k-fold cross validation: Bold = function with lowest RMSE on this combination of feature
variable(s) and partitioning scheme; underline = partitioning scheme with lowest RMSE using this combination of feature

variable(s) and predictor function.

tistical reliability, the polynomial regression with
degree 3 failed normality test on HI partition while
the logarithmic regression failed normality test on
TA partition, suggesting specific transformation per
language on JSD is needed, otherwise more data-
points is required for the above to ensure model
reliability.

We also noticed that models with size as the pre-
dictor have higher RMSE than those with JSD as
the predictor. This difference can be attributed to
the fact that there are only four unique size values’.
Unless we have small enough partitions that con-
tain fewer data points for a fixed size value, for
instance, in the fine-tuning-test partition, size as a
factor will obtain a lower RMSE.

We also observed that partitioning by language
does not lead to a significant improvement in
RMSE of the models on either size or JSD. This
indicates that there is no substantial difference in
spBLEU when mBART is tested on various lan-
guages, which can be attributed to the limited di-
versity in our languages. Furthermore, this may
suggest a weak correlation between language fea-
tures and spBLEU as described in Table 6.

Regression using multiple factors We evaluated
two additional regression models with multiple fac-
tors to examine how these factors interact with
each other in predicting spBLEU scores. Table 4
includes RMSE of multifactor models with ¢4 and
¢4 as predictors, and multifactor models with ¢,
¢4, and ¢; (all lang2vec distances in Table 2) as
predictors.

Relative to single-factor models that take only
¢4 without partitioning, we observed that including

SFor future work, we are collecting more sample points
using low-cost transformers.

¢s and ¢; does improve the RMSE. However, the
improvement is insignificant, further suggesting
the high importance of domain similarity in the
prediction relative to other factors considered in
this study.

5.2 Residuals by Partition

To observe how our models performs on different
partitions, we created boxplots of residuals when
modeling data on each partition using the predictor
functions. Using the best predictor function for size
(scaling law) with the best partitioning scheme (by
both fine-tuning and testing corpora), we noticed
that the mean and variance of the residuals were
lower for out-domain partitions (gov-gov and bible-
bible, Figure 2a). This suggests that our model pre-
dicts better for out-domain partitions, which could
be explained by the difference in the range of raw
spBLEU when mBART is tested on in-domain and
out-domain experiments ([6.5, 49.5] for in-domain,
[0.2,19.9] for out-domain).

Figure 2b presents how well the scaling law
works for different languages. We noticed that the
SI partition has relatively high residual mean and
variance, implying that the performance of mBART
on Sinhala is harder to predict with respect to the
size of the fine-tuning corpus. This could be due
to the use of different versions of the Bible corpus
and FLORES corpus for SI, resulting in a higher
range of spBLEU in this partition ([0.2, 49.5], Ta-
ble 1) and hence harder to predict. However, this
phenomenon is not observed in Figure 2¢ when
the feature variable is JSD. This implies that using
JSD as the predictor yields a more stable prediction
for ST because it is not affected by using different
fine-tuning corpora.
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Fine-tuning — test | Normality =~ Homoscedastic? Jpory3 (4) fiog (7)
bible-bible 0.3996 Yes Language | Normality =~ Homoscedastic? | Normality =~ Homoscedastic?
bible-FLORES 0.1380 No KA 0.1578 Yes 0.2155 Yes
bible-gov 0.2570 No GU 0.0563 Yes 0.2027 Yes
gov-bible 0.2534 No HI 0.0129 Yes 0.7290 Yes
Z2OV-FLORES 0.2623 Yes SI 0.6021 Yes 0.2702  Yes
gov-gov 0.6127 No TA 0.0500 Yes 0.0299 Yes

(@) fsL(s) on each train-test partition.

(b) froty3(7) and fieg(j) for each language partition.

Table 5: Statistical Assessment on Normality and Homoscedasticity for size and JSD on best partitioning schmes
respectively. For normality, bold = residuals are not normally distributed (p < 0.05).

Cubic Polynomial Residuals When Predictor is 5D

Residuals

60
40 °
20

==

& [ ] o

=

o

gov-flores
Partition: fine-tune + test

gov-bible  gov-gov ~bible-flores bible-bible bible-gov

Residuals
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Figure 2: Boxplots of residuals using best predictor functions for size and domain on some partitioning schemes.

5.3 Feature Rankings

In order to assess the impact of the features in
predicting spBLEU, Table 6 provided Pearson cor-
relation coefficient and the statistical significance
measured in p-value. We also include weights for
each feature in the best multifactor linear regres-
sion model computed and their feature importance
based on the best-performing Random Forest Re-
gressor.

In Pearson’s Correlation Analysis ranking, JSD
stands out with a strong and statistically signifi-
cant correlation to spBLEU (Table 6), suggesting
a strong linear relationship between JSD and sp-
BLEU. It also ranks highest in both weight analysis
and Random Forest feature importance analysis,
further illustrating its importance in predicting sp-
BLEU (Table 6). This finding brings hope for de-
veloping a reliable model to understand the relation-
ship between domain similarity and performance
in MT tasks.

Surprisingly, all six language features show low
correlations with spBLEU. The high similarity
amongst our South Asian languages could be a
factor, resulting in a similar distance from EN in
Table 2. It suggests that the language features are
not as significant as other features, like size and
domain, for use as predictors in our regression mod-
els.

o] o e | Wt | R
able Coefficient (p-value) s1s Forest (%)
j -09176 [1] 847 x 107" -68.5404 [1] 88.393 [1]
s 0.2468 [2] 0.0010 19.1317 [3=] 7.805 [2]
dgen -0.0863 [3] 0.2574 -25.7118 [2] 0.365 [5]
dsyn 0.0365 [4] 0.6325 3.6204 [7] 2.267 [3]
dinv 0.0239 [6] 0.7542 13.0297 [5] 0.782 [4]
dfea 0.0337 [5] 0.6585 19.1317 [3=] 0.079 [8]
dgeo 0.0025 [7] 0.9738 7.1308 [6] 0.147 [7]
dpho -0.0076 [8]  0.9104 -1.1780 [8] 0.161 [6]

Table 6: Feature importance rankings by Pearson’s cor-
relation analysis (along with its statistical significance),
weight in linear regression model, and Random Forest
feature importance analysis. Rankings in brackets.

6 Discussion

In this study, we revealed that domain similarity
plays an important role in MT. In other words, it
significantly affects the performance of MT mod-
els. All three feature rankings in § 5.3, as depicted
in Table 6, underscore the significance of domain
similarity in predicting spBLEU. The relationship
between JSD and spBLEU is best modeled by poly-
nomial regression of degree 3 in terms of k-fold
RMSE, whereas the best non-polynomial model
was logarithmic regression. Both models are rel-
atively reliable in terms of the normality and ho-
moscedasticity of the residuals.

Recognizing the importance of domain similar-
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ity in MT, we also observed how it affects the pre-
dictability of spBLEU when modeling with the
scaling law, which uses size as a predictor. The
separation of in-domain and out-domain data im-
proves the RMSE due to the distinct clustering of
in-domain and out-domain data points. Addition-
ally, we found that the performance of MT models
on out-domain partitions is easier to predict. In
other words, the prediction models are more con-
fident that the spBLEU values are low when the
range of spBLEU values is small. However, despite
the lower variance in the residuals of the scaling
law on out-domain partitions, the residuals exhibit
heteroscedasticity in most of the out-domain parti-
tions when using the scaling law for modeling.

Furthermore, the FLORES-v1 dataset for Sin-
hala includes data from OpenSubtitles, which are
mainly transcripts of spoken data (Guzmén et al.
(2019); Lison et al. (2018)). It should be noted
that these transcripts may exhibit varying degrees
of reliability, as they lack a control mechanism
for verifying the translation accuracy. In addition,
spoken Sinhala has different syntactical rules of
written Sinhala (De Silva, 2019)), which means
that there is variation in our Sinhala corpus (e.g.,
Bible and government documents corpora) as well.
This would likely result in a lower translation score
across FLORES-v1 and out-domain corpus. How-
ever, the JSD score can predict some of these differ-
ences in language caused by domain shift, similar
to partitioning out by fine-tuning and test datasets.
This explains why our model’s predictive perfor-
mance improved under these conditions.

Additionally, the Sri Lanka constitution states
that “Sinhala shall be the language of administra-
tion and be used for the maintenance of public
records and the transaction of all business” for most
regions (Sri Lanka Const. art. XXII, § 1). Tamil,
also an official language of Sri Lanka, would in-
stead be translated. This difference in language
choice could also explain why Sinhala outperforms
Tamil in government-related in-domain documents
and why domain similarity is such a powerful pre-
dictor in these cases.

Furthermore, we have detected heteroscedastic-
ity in various models. For JSD, the data points
will be heteroscedastic due to the inherent high do-
main divergence, resulting in experiments with very
low spBLEU. In contrast, low domain divergence
is highly variable, as other factors, such as lan-
guage and fine-tuning set size, can impact the MT
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performance. The observation that JSD does not
guarantee good model performance in single-factor
regression motivates us to consider alternative tech-
niques. The alternative techniques should be more
robust or include additional variables to capture
variations during low-JSD predictions. Addition-
ally, we observed from the boxplots of residuals
that residuals are skewed towards low spBLEU.

7 Conclusion

In our research, we conducted a comprehensive
analysis focusing on three key factors (the size
of the fine-tuning corpus, domain similarity be-
tween the fine-tuning and testing corpora, and the
linguistic similarity between the source and tar-
get languages) affecting performance prediction
of the MT for five South Asian languages. We
find that domain similarity exerts the most signif-
icant influence on performance, surpassing even
the impact of fine-tuning the corpus size. Addi-
tionally, the background of the corpora and lan-
guage being translated emerged as a crucial fac-
tor in predicting performance and stability. Lastly,
we verify that our approach to ascertain predic-
tive factors for LRLs’ performance is statistically
rigorous. This approach enables performance pre-
diction without the need for fine-tuning and testing
resource-intensive and costly language models, ul-
timately fostering greater accessibility and equity
for LRLs.

Limitations

The most prominent limitation of our study is the
amount of data to fine-tune our regression models.
As we observed that our models are generally bi-
ased towards experiments with low spBLEU and
we could include more experiments with larger fine-
tuning corpus size, or perhaps at constant interval
between 1k and 100k tokens. There could also be a
need to balance the amount of data from in-domain
and out-domain.

The high degree of similarity between the lan-
guages in our data set rendered the effectiveness
of language features from lang2vec as predictors.
Due to the lack of LRL data in the URIEL library,
lang2vec may not have sufficient data to provide
approximation that accurately describe the LRL.
Consequently, many languages might exhibit simi-
lar values for the same features, making it difficult
to distinguish between them. This motivates us
to consider incorporating experiments involving a



more diverse range of languages in future studies in
order to thoroughly examine the impact of language
similarity on MT. Additionally, apart from dataset-
independent linguistic features, as suggested by
Linetal. (2019), we will explore dataset-dependent
language features (e.g., Type-Token Ratio (TTR),
word overlap, and subword overlap). Therefore,
a more rigorous investigation into measuring lan-
guage similarity is essential to identify suitable
predictors for our task.

In addition, it is also important to consider ad-
ditional factors that could potentially impact the
performance of MT models, such as the use of
pivot languages (Srinivasan et al., 2021) and the
presence of noise (Gordon et al., 2021). Expand-
ing our analysis to include data from different MT
models and various evaluation metrics will help us
assess the transferability of our prediction models
across different MT models and evaluation metrics.

Acknowledgement

We extend our profound gratitude to the Fields Un-
dergraduate Summer Research Program (FUSRP)
for their invaluable support and the unique oppor-
tunity they provided for engaging in high-quality
mathematical research. Our sincere thanks also go
to Juan Armando Parra Flores and Leandro Arcos
Roman, whose contributions through the FUSRP
were instrumental in the success of our work.

Ethical Considerations

Equitability in Language Representation
Given that our study revolves around LRLs, it is
imperative to conscientiously acknowledge the
imperative to foster equitable technological devel-
opments across varied linguistic communities. Our
exploration into optimizing MT models for LRLs
partially addresses this, but it’s vital to consistently
prioritize and amplify underrepresented languages
in our future research and model development
to prevent linguistic bias and facilitate digital
inclusivity.

Data Bias and Representation Our regression
models, as indicated in the limitations section, have
potential biases towards experiments with low sp-
BLEU, which may affect the robustness and fair-
ness of our predictive models across various lan-
guage datasets and use-cases. Ensuring unbiased
and representative datasets is crucial not only for
the accuracy of predictive models but also for avoid-
ing the unintentional marginalization of certain lin-

guistic features or dialects within the LRLs.

References

Douglas M. Bates and Donald G. Watts. 1988. Nonlin-
ear regression analysis and its applications. Wiley
series in probability and mathematical statistics. Ap-
plied probability and statistics. Wiley.

Alexandra Birch, Miles Osborne, and Philipp Koehn.
2008. Predicting success in machine translation. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 745—
754, Honolulu, Hawaii. Association for Computa-
tional Linguistics.

John Blitzer. 2008. Domain adaptation of natural lan-
guage processing systems. Ph.D. thesis, University
of Pennsylvania.

Ioan Calapodescu, Caroline Brun, Vassilina Nikoulina,
and Salah Ait-Mokhtar. 2019. “sentiment aware
map”: exploration cartographique de points d’intérét
via I’analyse de sentiments au niveau des aspects ().
In Actes de la Conférence sur le Traitement Automa-
tique des Langues Naturelles (TALN) PFIA 2019.
Volume IV: Démonstrations, pages 635-638.

Chris Collins and Richard Kayne. 2011. Syntactic struc-
tures of the world’s languages.

Nisansa De Silva. 2019. Survey on publicly avail-
able sinhala natural language processing tools and
research. arXiv preprint arXiv:1906.02358.

Matthew S. Dryer and Martin Haspelmath, editors. 2013.
WALS Online (v2020.3). Zenodo.

Hady Elsahar and Matthias Gallé. 2019. To annotate
or not? predicting performance drop under domain
shift. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2163-2173, Hong Kong, China. Association for Com-
putational Linguistics.

Aloka Fernando, Surangika Ranathunga, and Gihan
Dias. 2021. Data augmentation and terminology in-
tegration for domain-specific sinhala-english-tamil
statistical machine translation.

Félix Gaschi, Patricio Cerda, Parisa Rastin, and Yannick
Toussaint. 2023. Exploring the relationship between
alignment and cross-lingual transfer in multilingual
transformers. arXiv preprint arXiv:2306.02790.

Behrooz Ghorbani, Orhan Firat, Markus Freitag, Ankur
Bapna, Maxim Krikun, Xavier Garcia, Ciprian
Chelba, and Colin Cherry. 2021. Scaling laws for
neural machine translation.

Mitchell A Gordon, Kevin Duh, and Jared Kaplan. 2021.
Data and parameter scaling laws for neural machine
translation. In Proceedings of the 2021 Conference

1482


libgen.li/file.phpmd5=addb5a67999918ecf5975209e81a4948
libgen.li/file.phpmd5=addb5a67999918ecf5975209e81a4948
https://aclanthology.org/D08-1078
https://doi.org/10.5281/zenodo.7385533
https://doi.org/10.18653/v1/D19-1222
https://doi.org/10.18653/v1/D19-1222
https://doi.org/10.18653/v1/D19-1222
http://arxiv.org/abs/2011.02821
http://arxiv.org/abs/2011.02821
http://arxiv.org/abs/2011.02821
http://arxiv.org/abs/2109.07740
http://arxiv.org/abs/2109.07740
https://doi.org/10.18653/v1/2021.emnlp-main.478
https://doi.org/10.18653/v1/2021.emnlp-main.478

on Empirical Methods in Natural Language Process-
ing, pages 5915-5922, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’ Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522-538.

Vikrant Goyal, Sourav Kumar, and Dipti Misra Sharma.
2020. Efficient neural machine translation for low-
resource languages via exploiting related languages.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: Student
Research Workshop, pages 162—168, Online. Associ-
ation for Computational Linguistics.

Suchin Gururangan, Ana Marasovi¢, Swabha
Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342-8360, Online. Association for Computational
Linguistics.

Francisco Guzman, Peng-Jen Chen, Myle Ott, Juan
Pino, Guillaume Lample, Philipp Koehn, Vishrav
Chaudhary, and Marc’ Aurelio Ranzato. 2019. The
FLORES evaluation datasets for low-resource ma-
chine translation: Nepali—-English and Sinhala—
English. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6098-6111, Hong Kong, China. Association for Com-
putational Linguistics.

Barry Haddow and Faheem Kirefu. 2020. Pmindia — a
collection of parallel corpora of languages of india.

Harald Hammarstrom, Robert Forkel, and Martin
Haspelmath. 2018. Glottolog 3.0. Max Planck Insti-
tute for the Science of Human History.

Robin Jia and Percy Liang. 2017. Adversarial examples
for evaluating reading comprehension systems. arXiv
preprint arXiv:1707.07328.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages

6282-6293, Online. Association for Computational
Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Abhinav Ramesh Kashyap, Devamanyu Hazarika, Min-
Yen Kan, and Roger Zimmermann. 2021. Domain
divergences: a survey and empirical analysis.

En-Shiun Lee, Sarubi Thillainathan, Shravan Nayak,
Surangika Ranathunga, David Adelani, Ruisi Su,
and Arya McCarthy. 2022. Pre-trained multilin-
gual sequence-to-sequence models: A hope for low-
resource language translation? In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 58—67, Dublin, Ireland. Association for Com-
putational Linguistics.

En-Shiun Annie Lee. 2022. Improving translation ca-
pabilities of pre-trained multilingual sequence-to-
sequence models for low-resource languages.

M. Paul Lewis, editor. 2009. Ethnologue: Languages of
the World, 16th editon. SIL International.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li,
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junx-
ian He, Zhisong Zhang, Xuezhe Ma, Antonios Anas-
tasopoulos, Patrick Littell, and Graham Neubig. 2019.
Choosing transfer languages for cross-lingual learn-
ing.

Pierre Lison, Jorg Tiedemann, and Milen Kouylekov.
2018. Opensubtitles2018: Statistical rescoring of
sentence alignments in large, noisy parallel corpora.
In Proceedings of the 11th International Confer-
ence on Language Resources and Evaluation (LREC
2018). European Language Resources Association
(ELRA).

Patrick Littell, David R. Mortensen, Ke Lin, Katherine
Kairis, Carlisle Turner, and Lori Levin. 2017. URIEL
and lang2vec: Representing languages as typological,
geographical, and phylogenetic vectors. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 8—14, Valencia, Spain.
Association for Computational Linguistics.

Arya D. McCarthy, Rachel Wicks, Dylan Lewis, Aaron
Mueller, Winston Wu, Oliver Adams, Garrett Nicolai,
Matt Post, and David Yarowsky. 2020. The Johns
Hopkins University Bible corpus: 1600+ tongues
for typological exploration. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 2884-2892, Marseille, France. European
Language Resources Association.

Steven Moran, Daniel McCloy, and Richard Wright.
2014. Phoible online.

1483


https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.18653/v1/2020.acl-srw.22
https://doi.org/10.18653/v1/2020.acl-srw.22
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
http://arxiv.org/abs/2001.09907
http://arxiv.org/abs/2001.09907
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1611.04558
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2010.12198
http://arxiv.org/abs/2010.12198
https://doi.org/10.18653/v1/2022.findings-acl.6
https://doi.org/10.18653/v1/2022.findings-acl.6
https://doi.org/10.18653/v1/2022.findings-acl.6
https://www.sil.org/resources/archives/6133
https://www.sil.org/resources/archives/6133
http://arxiv.org/abs/1905.12688
http://arxiv.org/abs/1905.12688
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://aclanthology.org/2020.lrec-1.352
https://aclanthology.org/2020.lrec-1.352
https://aclanthology.org/2020.lrec-1.352

Shravan Nayak, Surangika Ranathunga, Sarubi
Thillainathan, Rikki Hung, Anthony Rinaldi, Yining
Wang, Jonah Mackey, Andrew Ho, and En-Shiun An-
nie Lee. 2023. Leveraging auxiliary domain parallel
data in intermediate task fine-tuning for low-resource
translation.

E. S. Pearson, R. B. D’ Agostino, and K. O. Bowman.
1977. Tests for departure from normality: Compari-
son of powers. Biometrika, 64(2):231-246.

Fred Philippy, Siwen Guo, and Shohreh Haddadan.
2023. Towards a common understanding of con-
tributing factors for cross-lingual transfer in multi-

lingual language models: A review. arXiv preprint
arXiv:2305.16768.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers.

Sri Lanka Const. art. XXII, § 1. Constitution of
Sri Lanka (as amended in 2022). https://www.
parliament.lk/files/pdf/constitution.pdf.

Anirudh Srinivasan, Sunayana Sitaram, Tanuja Ganu,
Sandipan Dandapat, Kalika Bali, and Monojit Choud-
hury. 2021. Predicting the performance of multilin-
gual nlp models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Mengzhou Xia, Antonios Anastasopoulos, Ruochen Xu,
Yiming Yang, and Graham Neubig®. 2020. Predicting
performance for natural language processing tasks.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 8625—
8646, Online. Association for Computational Lin-
guistics.

Zihuiwen Ye, Pengfei Liu, Jinlan Fu, and Graham Neu-
big. 2021. Towards more fine-grained and reliable
NLP performance prediction. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 3703-3714, Online. Association for Computa-
tional Linguistics.

Vilém Zouhar, Shehzaad Dhuliawala, Wangchunshu
Zhou, Nico Daheim, Tom Kocmi, Yuchen Eleanor
Jiang, and Mrinmaya Sachan. 2023. Poor man’s
quality estimation: Predicting reference-based MT
metrics without the reference. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 1311—
1325, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

A Experimental Setup

A.1 Details of Corpora
Bible corpus (Bible)

The JHU Bible Corpus (McCarthy et al., 2020) con-
tains Bible translations in over 1600 languages and
serves as the only available parallel text for several
low-resource languages. Due to the limited data
available for our languages, we created a Bible cor-
pus specifically for our experiments by scrapping
Bible data from web® and aligned the sentences
at verse level automatically. The resulting curated
multi-way parallel corpus consists of 25k parallel
sentences in KA, GU, HI, and TA. Note that SI
was sourced from a different website, resulting in
distinct content for this language.

FLORES corpus

FLORES-101 (Flores) (Goyal et al., 2022) is a cor-
pus containing translations of English Wikipedia
sentences into 101 different languages. The trans-
lations were done manually, and the corpus covers
diverse topics and domains. For SI, we use FLO-
RES-v1 (Guzman et al., 2019) instead since it is not
present in FLORES-101 .

Government corpus (Gov)

The government corpus (Gov) (Fernando et al.,
2021) is a multi-way parallel corpus comprising
Sinhala, Tamil, and English texts. The corpus is
manually curated and includes data from various
official Sri Lankan government sources, such as
annual reports, committee reports, government in-
stitutional websites, procurement documents, and
acts of the Parliament.

PMlIndia corpus (PMI)

The PMIndia corpus (PMI) (Haddow and Kirefu,
2020) is a multi-way parallel corpus consisting
of 13 Indian languages, along with English. The
corpus has been curated from news updates taken
from the Prime Minister of India’s website.

A.2 Jensen-Shannon Divergence

Jensen-Shannon divergence (JSD) beteen two dis-
tributions P and () is calculated using the formula

TSD(P|[Q) = SKL(PI|M) + L KL(@QI|M)

6Sinhala: https://www.wordproject.org/bibles/si/
index.htm; and others: https://ebible.org/download.
php
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where M is an equally weighted sum of the wo
distributions and K L(||) is the Kullback-Leibler
divergence.

In preparation of this calculation, we first to-
kenized each corpus using the NLTK package’,
striped all stopwords, and transformed them into
a (discrete) frequency distribution over all word
tokens. Then, we convert all times and numbers
into the tokens <TIME> and <NUMBER>, respectively.
Finally, we compared the frequency distributions
of each fine-tuning and test set using the formula
above.

Note that JSD ranged from O to 1, with lower
values indicating higher similarity between the two
distributions.

A.3 Language Features

In this study, language feature refers to measures of
similarity between two languages that are based on
phylogenetic or typological properties established
by linguistic study. The six language features from
the URIEL database Littell et al. (2017) utilized in
this study includes:

Geographic distance (dy.,)

The orthodromic distance between the languages
on the surface of the earth, divided by the antipodal
distance. It is based primarily on language loca-
tion descriptions in Glottolog (Hammarstrom et al.,
2018).

Genetic distance (dge,,)

The genealogical distance of the languages, derived
from the hypothesized tree of language descent in
Glottolog.

Inventory distance (d;;,,,)

The cosine distance between the phonological fea-
ture vectors derived from the PHOIBLE database
(Moran et al., 2014).

Syntactic distance (d,,)

The cosine distance between the syntactic struc-
tures feature vectors of the languages (Collins and
Kayne, 2011), derived mostly from the WALS
database (Dryer and Haspelmath, 2013).

"Documentation of NLTK package: https://www.nltk.
org/

Phonological distance (d,,)

The cosine distance between the phonological fea-
ture vectors derived from the WALS and Ethno-
logue databases (Lewis, 2009).

Featural distance (d.,)

The cosine distance between feature vectors com-
bining all 5 features mentioned above.

B Hyperparameters of Random Forest
Regressor

We conducted grid search with k-fold cross-
validation to find the optimal hyperparameter set-
tings, including the number of decision trees in the
ensemble (n_estimators), the maximum depth
of each decision tree (max_depth), the minimum
number of samples required to split an internal
node (min_samples_split), the minimum num-
ber of samples required to be at a leaf node
(min_samples_leaf), and whether bootstrap sam-
ples were used in building trees (bootstrap). The
optimal hyperparameter settings are tabulated in
Table 7, resulting in an RMSE of 3.29.

Hyperparameter Values Searched Optimal Setting
n_estimators {n|n="50+25k0<k<14} 100

max_depth {n|n=3+2k 0<k<E6} 9
min_samples_split {2,3,4,5} 1
min_samples_leaf  {1,2,3} 2

bootstrap {TRUE, FALSE} TRUE

Table 7: List of hyperparameters used in the optimiza-
tion of the Random Forest Regressor using grid search.
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C Scatter Plots

In this section, we present the scatter plots of spBLEU with respect to size of fine-tuning corpora using
different partitioning schemes.
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Figure 3: Scatter Plots of spBLEU with respect to size using different partitioning schemes.

In this section, we present the scatter plot of spBLEU with respect to JSD, partitioned by target language.
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Figure 4: Scatter Plot of spBLEU with respect to JSD, partitioned by target language.
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