k-SEMSTAMP : A Clustering-Based Semantic Watermark for
Detection of Machine-Generated Text

Abe Bohan Hou®* Jingyu Zhang® Yichen Wang®

Daniel Khashabi*
*Johns Hopkins University
{bhou4, jzhan2373}@jhu.edu

Abstract

Recent watermarked generation algorithms in-
ject detectable signatures during language gen-
eration to facilitate post-hoc detection. While
token-level watermarks are vulnerable to para-
phrase attacks, SEMSTAMP (Hou et al., 2023)
applies watermark on the semantic represen-
tation of sentences and demonstrates promis-
ing robustness. SEMSTAMP employs locality-
sensitive hashing (LSH) to partition the seman-
tic space with arbitrary hyperplanes, which may
lead to a suboptimal trade-off between robust-
ness and speed. We propose k-SEMSTAMP,
a simple yet effective enhancement of SEM-
STAMP, utilizing k-means clustering as an al-
ternative of LSH to partition the embedding
space with awareness of inherent semantic
structure. Experimental results indicate that
k-SEMSTAMP saliently improve its robustness
and sampling efficiency while preserving the
generation quality, advancing a more effective
tool for machine-generated text detection.

1 Introduction

To facilitate the detection of machine-generated
text (Mitchell et al., 2019), recent watermarked
generation algorithms usually inject detectable sig-
natures (Kuditipudi et al., 2023; Yoo et al., 2023;
Wang et al., 2023; Christ et al., 2023; Fu et al.,
2023; Hou et al., 2023, i.a.). A major concern for
these approaches is their robustness to potential
attacks, since a malicious user could attempt to re-
move the watermark with text perturbations such
as editing and paraphrasing (Wang et al., 2024; Kr-
ishna et al., 2023; Sadasivan et al., 2023; Kirchen-
bauer et al., 2023b; Zhao et al., 2023). Hou et al.
(2023) propose SEMSTAMP, a paraphrase-robust
and sentence-level watermark which assigns sig-
natures to each watermarked sentence according
to the locality sensitive hashing (LSH) (Indyk and
Motwani, 1998) partitioning of semantic space (see
2.1). While demonstrating promising robustness
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Figure 1: Illustrations of the semantic space. Sentence
embeddings with close meanings share similar colors.
(Left) Random planes from LSH arbitrarily partition
the semantic space and split similar sentences into dif-
ferent regions. (Right) Margin-based rejection in k-
SEMSTAMP. Sentence embeddings which fall into the
gray-shaded areas of a valid region will be rejected.

against paraphrase attacks, SEMSTAMP arbitrarily
partitions the semantic space by a set of random
hyperplanes, possibly splitting semantically similar
sentences into different partitions (see Fig.1).
This limitation motivates our proposed method,
k-SEMSTAMP (detailed in §2.2), which partitions
the space via k-means clustering (Lloyd, 1982)
on the semantic structure of a given text domain
(e.g. news, narratives, etc.). In §3, we show that
the clustering-based partitioning in k-SEMSTAMP
greatly improves its robustness against sentence-
level paraphrase attacks and sampling efficiency. '

2 Approach

We first review the existing watermark algorithms
for machine-generated text detection (§2.1) and
introduce our proposed watermark (§2.2).

2.1 Preliminaries

Token-Level Watermark Kirchenbauer et al.
(2023a) develop a notable token-level watermark

'We have released the code for reproducibility. Corre-
sponding authors: Abe Hou, Jingyu Zhang, and Tianxing He.
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https://github.com/bohanhou14/SemStamp

Prompt: Jackie woke up.
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Figure 2: An overview of the proposed k-SEMSTAMP algorithm. k-means clustering partitions the semantic space
into semantically similar regions. The sentence generation is accepted if the closest cluster of its sentence embedding

corresponds to a "valid" region in the semantic space.

Prompt: In Chapter 18, Richard begins at Kenge and
Carboy’s.

Non-Watermarked Generation: He goes to the inn
where Mr. Kenge has been let off by the landlord. There,
he meets a woman named Hannah, who is looking for
him. He asks her where he is wanted.

SSTAMP: He meets up with Lydgate, who is there to see
if the money from the deal is still there. The lawyers are
ready to go to trial, but Richard says he has a better plan.
He wants to leave Middlemarch for good.

k-SSTAMP: He also sees Adam for the first time since
his imprisonment. They discuss the latest updates in their
respective personal lives. Adam is living with Dinah and
is still angry with Adam for having to leave him.

Figure 3: Generation Examples of k-SEMSTAMP com-
pared with SEMSTAMP. Both generations are con-
textually sensible and coherent as compared to non-
watermarked generations. Additional examples after
paraphrase are presented in Figure 5 in the Appendix.

algorithm. Given a token history w;.;—1, the vocab-
ulary V' is pseudo-randomly divided into a “green
list” G*) and a “red list” R(™), where a hash of the
previous token w;_1 is used as the seed of the par-
tition. The algorithm then adds a bias to the logits
of all tokens in the green-list and sample the next
token with an increased probability from the green-
list. For a given piece of text, the watermark can
be detected by conducting one proportion z-test
(detailed in §C) on the number of green list tokens.

SEMSTAMP Under the intuition that common
sentence-level paraphrase modifies tokens but pre-
serves sentence meaning, Hou et al. (2023) intro-
duce SEMSTAMP to apply watermark on sentence
semantics by partitioning the embedding space
with locality sensitive hashing (LSH).

To initialize the LSH partitioning, d normal vec-
tors are randomly sampled from a Gaussian dis-
tribution to specify d hyperplanes in the semantic
space R”. For an embedding vector v € R", a
d-bit binary LSH signature is assigned, where each

digit specifies the position of v in relation to each
hyperplane. Each signature ¢ € {0, 1}¢ indexes a
region consisting of all vectors with signature c.
During generation, given a sentence history de-
noted by 50 ... s(=1) the space of signatures is
pseudorandomly partitioned into a set of “valid”
regions G and a set of “blocked” region R®.
The LSH signature of the last generated sentenceis
used as the random seed to control randomness.
A new sentence generation, s(*), will be accepted
and if its embedding belongs to any valid region,
and rejected otherwise. To detect the watermark
in a given piece of text, a one-proportion z-test
is performed on the number of sentences whose
signatures belong to valid regions (see §C).

2.2 k-SEMSTAMP

As discussed earlier, SEMSTAMP partitions the se-
mantic space with random planes, which could
potentially separate semantically similar sentences
into two different regions, as shown in Fig.1. Para-
phrasing sentences near the margins of regions may
shift their sentence embeddings to a nearby region,
resulting in suboptimal watermark strength. This
weakness motivates our proposed k-SEMSTAMP, a
simple yet effective enhancement of SEMSTAMP
that partitions the semantic space with k-means
clustering (Lloyd, 1982).

To initialize k-SEMSTAMP , we assume the lan-
guage model generates text in a specific domain D
(e.g., news articles, scientific articles, etc.). We aim
to model the semantic structure of D and partition
its semantic space into k regions. Concretely, we
first randomly sample a large number of data from
D. We obtain their sentence embeddings with a
robust sentence encoder fine-tuned on D with con-
trastive learning (detailed in §A). We cluster the
sentence embeddings into K clusters with k-means
(Lloyd, 1982) and save the cluster centroids. We
index a region with ¢ € {1, ..., K} representing the
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Algorithm 1 k-SEMSTAMP text generation algo-
rithm and subroutines

Input: language model P m, prompt 59 the text domain
D, the number of sentences to generate 7.

Params: sentence embedding model fine-tuned on D,
MZP, , with embedding dimension k, maxout number Ny,
margin m > 0, valid region ratio v € (0, 1), the number of
k-means clusters K, a large prime number p, an integer N.
Output: generated sequence s s,

procedure k£-SEMSTAMP

Ck < INITIALIZE(D, K) to initialize K cluster cen-
troids based on D.

fort=1,2,...,T do

1. Find the index of the closest cluster centroid of
the previously generated sentence, g™
AsSIGN(s*™V  Ck), and use ¢~V - p as
the seed to randomly divide the index set of
clusters C'x into a “valid region set” G® of
size y - K and a “blocked region set” RW of
size (1 —7) - K.

2. repeat Sample a new sentence from LM,
until the index of the closest cluster centroid
of the new sentence, q(t), is in the “valid re-
gion set”, and the margin requirement MAR-
GIN(s'Y), m) is satisfied or sampling has re-
peated over Npmax times.

3. Append the selected sentence s to context.

end for
return sV . . s(
end procedure

T)

function INITIALIZE(D, K)
D;V ~ D [/ sample N sentences from D
Ck + K-MEANS(D;V, K) // obtain k cluster centroids
return C'x

end function

function ASSIGN(s, Ck)

// find the index of the closest centroid by cosine distance

return arg min,_, ¢ deos(v,¢;), where ¢; € Cx

end function

set of all vectors assigned to the i-th centroid.

The generation process is analogous to SEM-
STAMP (Hou et al., 2023), as illustrated in Fig.2:
given a sentence history s st=D K regions
are pseudorandomly partitioned into a set of valid
regions G (t) of size - K and a set of blocked re-
gions R®) of size (1 — v) - K, where y € (0, 1) is
the ratio of valid regions. The cluster assignment
of st=1), C(s(*=1)), seeds the randomness of the
partition at time step ¢, where C/(.) returns the clus-
ter index by finding the closest cluster centroid of
the input sentence embedding. We then conduct re-
jection sampling and only sentences whose embed-
dings fall into any valid regions (i.e., C(s) € G())
are accepted while the rest are rejected. If no valid
sentence is accepted after a preset maxout number
(Nmax) of tries, the last decoded sentence will be
chosen. The full algorithm is presented in Algo 1.

Algorithm 2 k-SEMSTAMP detection algorithm

Input: a piece of text 7', saved k-means cluster centroids
Ck
Params: sentence embedding model finetuned on D,
MP,4, z-threshold range Z, human-written texts H, a large
prime number p, valid region ratio v € (0, 1), number of
k-means clusters K.
Output: a z-score based on the ratio of detected sentences.
procedure DETECT(T', Ck)
81,...,8N < SENTENCE-TOKENIZE(T)
¢ « ASSIGN(s1,Cr)
seed q(l) -p
G < RANDOM-SAMPLE(seed, K,v) // pseudo-
randomly sample a set of cluster centroid indices of size
K - 7y, where the randomness of sampling is controlled by
seed.
fort=2,...,Ndo
q® < ASSIGN(s¢, Ck)
if ¢ € G~V then
SV +=1
end if
SEED « ¢Y) - p
G + RANDOM-SAMPLE(seed, K, )
end for

end procedure
Sy —vN

—
VAN

return z

Cluster Margin Constraint To prevent the sam-
pled sentences from being assigned to a nearby
cluster after paraphrasing, we propose a cluster
margin constraint similar to (Hou et al., 2023).
We constrain the sentence embeddings to be suf-
ficiently away from the cluster boundaries (visu-
alized in Fig.1). Concretely, the cosine distance
(dcos) of the candidate sentence embedding (v) to
the closest centroid (c,) needs to be smaller than
other cluster centroids by at least a margin m:
min

deos(V, cq) < deos(v, ¢;) —m, 1
(v, cq) ie{1,...K}\q (v, ) M

where ¢ is the index of the closest cluster cen-
troid to v, i.e., ¢ = argmin,_; g deos(v, ¢;), and
v o= Membd(s(t)) is the embedding of the gener-
ated sentence at time step ¢ by a robust sentence
embedder Membd.

The detection procedure of k-SEMSTAMP
is analogous to SEMSTAMP which uses one-
proportion z-test on the number of sentences be-
long to valid regions, explained in §C and Algo 2.

3 Experiments

3.1 Experimental Setup

Following Hou et al. (2023), we conduct para-
phrase attack experiments and compare the detec-
tion robustness of watermarked generations.

Task and Metrics We evaluate 1000 water-
marked generations after paraphrase, respectively
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on the RealNews subset of the C4 dataset (Raffel
et al., 2020) and on the BookSum dataset (Krys-
cinski et al., 2021). We paraphrase watermarked
generations sentence-by-sentence with the Pegasus
paraphraser (Zhang et al., 2020), Parrot used in
Sadasivan et al. (2023), and GPT-3.5-Turbo (Ope-
nAl, 2022). We also implement the strong bigram
paraphrase attack as detailed in Hou et al. (2023).
Detection robustness of paraphrased watermarked
generations is measured with area under the re-
ceiver operating characteristic curve (AUC) and the
true positive rate when the false positive rate is at
1% and 5% (TP@1%, TP@5%).> Generation qual-
ity is measured with perplexity (PPL) (using OPT-
2.7B (Zhang et al., 2022)), trigram text entropy
(Zhang et al., 2018) (Ent-3), i.e., the entropy of the
trigram frequency distribution of the generated text,
and Sem-Ent (Han et al., 2022), an automatic met-
ric for semantic diversity. Following the setup in
Han et al. (2022), we perform k-means clustering
(k = 50) with the last hidden states of OPT-2.7B
on text generations, and Sem-Ent is defined as the
entropy of semantic cluster assignments of test gen-
erations. We also measure the paraphrase quality
with BERTScore (Zhang et al., 2019) between orig-
inal generations and their paraphrases.

Generation We use OPT-1.3B (Zhang et al.,,
2022) as our base autoregressive LM. To obtain
robust sentence encoders specific to text domains
for k-SEMSTAMP generations, we fine-tune two
versions of Mempd, respectively on RealNews (Raf-
fel et al., 2020) and on BookSum (Kryscirski et al.,
2021) datasets (see §A for specific procedure and
parameter choices).

Following Hou et al. (2023) and Kirchenbauer
et al. (2023a), we sample at a temperature of 0.7
and a repetition penalty of 1.05, with 32 being
the prompt length and 200 being the default gen-
eration length. Results with various lengths are
included in Fig. 4. For k-SEMSTAMP , we perform
k-means clustering on embeddings of sentences
in 8k paragraphs, respectively on RealNews and
BookSum. We keep k£ = 8 and a valid region ra-
tio v = 0.25, which is consistent with the number
of regions in SEMSTAMP, and we use a rejection
margin m = 0.035.

2We denote machine-generated text as the “positive” class
and human text as the “negative” class. A piece of text is
classified as machine-generated when its z-score exceeds a
threshold chosen based on a given false positive rate. See §C.

Baselines Our baselines include popular water-
marking algorithms Kirchenbauer et al. (2023a),
SEMSTAMP, UNIGRAM-WATERMARK (Zhao
et al., 2023), and the Semantic Invariant Robust
(SIR) watermark in Liu et al. (2023), implemented
with their recommended setups.

3.2 Results

Detection Detection results in Table 1 show that
k-SEMSTAMP is more robust to paraphrase at-
tacks than KGW (Kirchenbauer et al., 2023a)
and SEMSTAMP across Pegasus, Parrot, and GPT-
3.5-Turbo paraphrasers and their bigram attack vari-
ants, as measured by AUC, TP@1%, and TP@5%.
In particular, k.-SEMSTAMP demonstrates consider-
able robustness against GPT-3.5, in which none of
SEMSTAMP and KGW performed strongly. While
UNIGRAM-WATERMARK (Zhao et al., 2023) also
demonstrates strong robustness against paraphrase,
it has a critical vulnerability to reverse-engineering
attacks. We discuss its vulnerability and experimen-
tal results in §D. The BERTScores of paraphrases
are presented in Table 5.

Domain Shifts Since k-SEMSTAMP finetunes
sentence-embedder from a specified text domain,
we investigate the robustness of the fine-tuned
sentence-embedder inputs from a different domain.
In Table 2, we show that k-SEMSTAMP experiences
a drop in robustness when using a cross-domain
sentence-embedder. Nevertheless, k-SEMSTAMP
is able to retain some robustness compared to
KGW and SIR, staying especially resilient against
Pegasus-bigram attacks.

Sampling Efficiency k-SEMSTAMP not only
demonstrates stronger paraphrastic robustness, but
also generates sentences with higher sampling
efficiency. To produce the results on BookSum
(Kryscinski et al., 2021) in Table 1, k-SEMSTAMP
samples 13.3 sentences on average to accept one
valid sentence, which is 36.2% less compared to
the average 20.9 sentences sampled by SEMSTAMP.
We analyze the reasons of candidate sentences for
being rejected respectively by k-SEMSTAMP and
SEMSTAMP, discovering that around 42.0% and
80.7% of the sentences are rejected due to the mar-
gin requirements. Since k-SEMSTAMP determines
the cluster centroids by k-means clustering on the
semantic structure of a given text domain, the em-
beddings of most candidate sentences generated
in this text domain are closer to the centroids and
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AUC 1/ TP@1% 1 | TP@5% 1

Domain Algorithm No Paraphrase Pegasus Pegasus-bigram  Parrot Parrot-bigram GPT3.5 GPT3.5-bigram
KGW 99.6/98.4/989 959/82.1/91.0 92.1/42.7/729 88.5/31.5/554 83.0/150/39.9 82.8/17.4/46.7 751/ 59/26.3
RealNews SIR 99.9/99.4/99.9 94.4/792/854 94.1/72.6/82.6 93.2/62.8/759 95.2/66.4/80.2 80.2/24.7/42.7 71.7/209/36.4
SEMSTAMP 99.2/93.9/97.1 97.8/83.7/92.0 96.5/76.7/86.8 93.3/56.2/755 93.1/54.4/74.0 83.3/33.9/529 822/31.3/48.7
k-SEMSTAMP  99.6/98.1/98.7 99.5/92.7/96.5 99.0/88.4/943 97.8/78.7/894 97.5/78.3/87.3 90.8/55.5/71.8 88.9/50.2/66.1
KGW 99.6/99.0/99.2 97.3/89.7/953 96.5/56.6/853 94.6/42.0/758 93.1/37.4/71.2 87.6/17.2/52.1 77.1/ 4.4/27.1
BookSum SIR 1.0/99.8/1.0 93.1/79.3/85.9 93.7/69.9/81.5 96.5/729/85.1 97.2/76.5/88.0 80.9/39.9/23.6 758/19.9/35.4
SEMSTAMP 99.6/98.3/98.8 99.0/94.3/97.0 98.6/90.6/955 98.3/83.0/91.5 98.4/857/92.5 89.6/456/62.4 86.2/37.4/53.8
k-SEMSTAMP  99.9/99.1/99.4 99.3/94.1/97.3 99.1/92.5/96.9 98.4/86.3/93.9 98.8/88.9/949 95.6/65.7/83.0 95.7/64.5/81.4

Table 1: Detection results against various paraphrase attacks. All numbers in each cell are in percentages and
correspond to AUC, TP@1%, and TP@5%, respectively. All three metrics prefer higher values. KGW and SIR
refer to the watermarks in Kirchenbauer et al. (2023a) and Liu et al. (2023). k-SEMSTAMP is more robust than
SEMSTAMP and KGW across most paraphrasers and their bigram attack variants and both datasets.

AUC 1/ TP@1% 1/ TP@5% 1
Algorithm  Train Domain Test Domain Pegasus Pegasus-bigram  Parrot Parrot-bigram
KGW N/A BookSum 97.3/89.7/953 96.5/56.6/853 94.6/42.0/75.8 93.1/37.4/71.2
SIR N/A BookSum 93.1/793/859 93.7/69.9/81.5 96.5/72.9/85.1 97.2/76.5/88.0
J-SSTAMP RealNews BookSum 98.2/782/949 97.3/70.7/93.8 96.8/655/90.9 96.4/61.9/89.2
BookSum BookSum 99.3/94.1/97.3 99.1/92.5/96.9 98.4/86.3/93.9 98.8/88.9/94.9

Table 2: Ablation study on the detection robustness of k-SEMSTAMP (shown as k-SSTAMP) to domain shifts. Bold
texts mark the highest and underline texts mark the second-highest result. In face of domain shifts, k-SEMSTAMP

suffers a drop in performance yet is still able to retain some robustness over baselines we are comparing with.

PPL| Ent-37 Sem-Ent?
No watermark 11.89  11.43 2.98
KGW 1492 11.32 2.95
SIR 2034 11.57 3.18
SEMSTAMP 1249 11.48 3.00
k-SEMSTAMP 11.82 1148 2.98

Table 3: Quality evaluation of generations on BookSum.
1 and | indicate the direction of preference (higher and
lower). k.-SEMSTAMP generation quality is on par
with non-watermarked generations.

away from the margins, and they are less likely to
relocate to a blocked region after paraphrase.

Quality Table 3 shows that the perplexity, text di-
versity, and semantic diversity of both SEMSTAMP
and k-SEMSTAMP generations are on par with the
base model without watermarking, while KGW
and SIR notably degrade perplexity. Qualitative
examples of k-SEMSTAMP are presented in Figure
3 and 5. Compared to non-watermarked generation,
k-SEMSTAMP convey the same level of coherence
and contextual sensibility. The Ent-3 and Sem-Ent
metrics also show that k.~-SEMSTAMP preserves
token and semantic diversity of generation com-
pared to non-watermarked generation.

Generation Length As shown in Fig. 4, k-
SEMSTAMP has higher AUC than Kirchenbauer
et al. (2023a) and than SEMSTAMP across most
generation lengths by number of tokens.

KGW w. Pegasus
SStamp w. Pegasus
-# k-SStamp w. Pegasus

KGW w. Pegasus-Bigram
i SStamp w. Pegasus-Bigram
k-SStamp w. Pegasus-Bigram
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98- m-—- N e
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Length By Tokens
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Figure 4: Detection results (AUC) under different gen-

eration lengths. k-SEMSTAMP is more robust than

SEMSTAMP and KGW across length 100-400 tokens
in most cases.

4 Conclusion

We propose k-SEMSTAMP, a simple but effective
enhancement of SEMSTAMP. To watermark gen-
erated sentences, k-SEMSTAMP maps embeddings
of candidate sentences to a semantic space which
is partitioned by k-means clustering, and only ac-
cept sampled sentences whose embeddings fall into
a valid region. This variant greatly improves the
paraphrastic robustness and sampling speed.
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Limitations

A core component of k-SEMSTAMP is performing
k-means clustering on a particular text domain and
partitioning the semantic space according to the
semantic structure of the text domain. However,
this requires specifying the text domain of gener-
ation to initialize k-SEMSTAMP . If the k-means
clusters and the sentence embedder are not specific
to the text domain, k-SEMSTAMP suffers from a
minor drop in paraphrastic robustness (see Table 2
for experimental results with k-SEMSTAMP using
a sentence embedder trained on RealNews).

Ethical Considerations

The proliferation of large language models capa-
ble of generating realistic texts has drastically in-
creased the need to detect machine-generated text.
By proposing k-SEMSTAMP, we hope that practi-
tioners will use this as a tool for governing model-
generated texts. Although k-SEMSTAMP shows
promising paraphrastic robustness, it is still not
perfect for all kinds of attacks and thus should not
be solely relied on in all scenarios. Finally, we
hope this work motivates future research interests
in not only semantic watermarking but also general
adversarial-robust methods for Al governance.
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Supplemental Materials

A Contrastive Learning and Sentence
Encoder Fine-tuning

To make sentence encoders robust to paraphrase,
we fine-tune following the procedure in Hou et al.
(2023) and Wieting et al. (2022).

First, we paraphrase 8000 paragraphs from Re-
alNews (Raffel et al., 2020) and BookSum (Krys-
cinski et al., 2021) using the Pegasus paraphraser
(Zhang et al., 2020) through beam search with
25 beams. We then fine-tune two SBERT mod-
els® with an embedding dimension h = 768 for
3 epochs with a learning rate of 4 x 107>, using
the contrastive learning objective with a margin
0=0.8:

meianax{5 — fo(si, ti) + fa(si, th), 0}7 )

where fy measures the cosine similarity be-
tween sentence embeddings, fy(s,t) =
cos(Mpy(s), My(t)), and My is the sentence
encoder parameterized by 6 that is to be fine-tuned.

B Algorithms

The algorithms of k-SEMSTAMP are presented in
Algorithm 1.

C Watermark Detection

The detection of both SEMSTAMP and k-
SEMSTAMP follows the one-proportion z-test
framework proposed by Kirchenbauer et al.
(2023a). The z-test is performed on the number
of green-list tokens in Kirchenbauer et al. (2023a),
assuming the following null hypothesis:

Null Hypothesis 1. A piece of text, T, is not gener-
ated (or written by human) knowing a watermark-
ing green-list rule.

The green-list token z-score is computed by:

yo NeZNr 3)
V(1 =)Nr

where Ng denotes the number of green tokens, N1

refers to the total number of tokens contained in

the given piece of text 7', and -y is a chosen ratio of
green tokens.

The z-test rejects the null hypothesis when the

green-list token z-score exceeds a given threshold

M. During the detection of each piece of text, the

3sentence-transformers/all-mpnet-base-v1

number of the green tokens is counted. A higher
ratio of detected green tokens after normalization
implies a higher z-score, meaning that the text is
classified as machine-generated with more confi-
dence.

Hou et al. (2023) adapts this z-test to detect SEM-
STAMP, according to the number of valid sentences
rather than green-list tokens.

Null Hypothesis 2. A piece of text, T, is not gener-
ated (or written by human) knowing a rule of valid
and blocked partitions in the semantic space.

L Sy — St ’ @)
V(L =7)5r
where Sy refers to the number of valid sentences,
~ is the ratio of valid sentences out of the total
number of sentences St in a piece of text I'. To
detect SEMSTAMP, the given piece of text, T, is
first broken into sentences and the number of valid
sentences Sy is counted to calculate the z-score.
Likewise, the null hypothesis 2 is rejected when
the z-score exceeds a threshold M.

The detection procedure of k-SEMSTAMP is
analogous to SEMSTAMP. We break a text into
sentences and count the number of valid sentences
to calculate the z-score, where only the determina-
tion of whether a sentence falls into a valid region
is different. k-SEMSTAMP assigns the sentence
generation to its closest cluster centroid and con-
sider if the index of the cluster centroid belongs to
a valid partition. See the full detection algorithm
in Algorithm 2.

For a comprehensive evaluation of detection ro-
bustness, we consider a range of possible threholds
M; € [0,6.0], where each M is determined by a
given false positive rate 7, and consider machine-
generated text as "positive" and human text as "neg-
ative" in a traditional classification setting. We es-
timate a false positive rate of corresponding M
by computing the misclassification rate of human
text samples. We let 7y = 0.01 and ry = 0.05 to
respectively measure TP@1% and TP@5% metrics
in Table 1.

D Additional Experimental Results

Table 4 shows the detection results of UNIGRAM-
WATERMARK (Zhao et al., 2023) against para-
phrase attacks, demonstrating more robustness
compared to SEMSTAMP and k-SEMSTAMP . How-
ever, UNIGRAM-WATERMARK has the key vul-
nerability of being readily reverse-engineered by
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Prompt: Pompey has a meeting with the pirates and they discuss the fact that Antony is in Egypt with Cleopatra.

SEMSTAMP: The pirates want to ransom him, but they aren’t sure how high the price would be. They have heard that
Antony is a powerful monarch who can do whatever he wants. The pirates also say that he has a lot of money. Pompey
says it wouldn’t matter if he had 1,000 times as much money as Antony; he would still be a tyrant. The conversation
turns to the bribes Antony was accused of taking. One pirate says that if Antony were a man of honor, he would have
given up his rights to the Sea-Sir by now.

Paraphrased SEMSTAMP: The pirates don’t know how much they would get for him. They have heard that Antony
can do whatever he wants. He has a lot of money according to the pirates. He would still be a tyrant if he had more
money than Antony. Antony was accused of taking bribes. According to a pirate, Antony would have given up his
rights to the Sea-Sir by now if he were a man of honor.

k-SEMSTAMP : They also discuss Caesar Augustus. The captain invites Pompey to share his thoughts on
Caesar. He says that he doesn’t like him very much. In fact, he thinks he’s probably a bad leader. He goes on to say that
Brutus should be his guest. Brutus replies that he can’t because he’s already got a guest for that matter - the Senate’s
spaghetti-spilling friend, Publius Cornelius.

Paraphrased k-SEMSTAMP : They talked about Caesar Augustus. Pompey was invited by the captain to share his
thoughts on Caesar. He doesn’t like him very much. He thinks he’s a bad leader. He said that he should be his guest.
Publius Cornelius is the Senate’s spaghetti-spilling friend and he can’t because he’s already there.

Figure 5: Examples of k-SEMSTAMP after being paraphrased by Pegasus Paraphraser (Zhang et al., 2020). Green
and plain sentences are detected, while red and underlined sentences are not. k.-SEMSTAMP generations are more

robust to paraphrase, having a higher detection z-score than SEMSTAMP.

AUC/TP@1% / TP@5%
Pegasus-bigram

Algorithm Domain Pegasus

Parrot-bigram

RealNews 99.1/92.2/96.4 98.4/87.9/943 989/82.7/94.0 98.7/79.6/91.5
BookSum  99.4/96.4/99.0 99.7/91.6/982 99.5/91.6/97.7 99.6/87.8/97.2

UNIGRAM-WATERMARK

Table 4: Detection results of UNIGRAM-WATERMARK in Zhao et al. (2023)

an adversary. Since UNIGRAM-WATERMARK can
be understood as a variant of the watermark in
Kirchenbauer et al. (2023a) but with only one fixed
greenlist initialized at the onset of generation. An
adversary can reverse-engineer this greenlist by
brute-force submissions to the detection API of |V|
times, where each submission is repetition of a to-
kenwj, i € {1, ..., |V} drawn without replacement
from the vocabulary V' of the tokenizer. Therefore,
upon each submission to the detection API, the ad-
versary will be able to tell if the submitted token is
in the greenlist or not. After |V| times of submis-
sion, the entire greenlist can be reverse-engineered.
On the other hand, such hacks are not applicable
to SEMSTAMP and k-SEMSTAMP , since both al-
gorithms do not fix the list of valid regions and
blocked regions during generation. In summary,
despite having strong robustness against various
paraphrase attacks, UNIGRAM-WATERMARK has
a notable vulnerability that may limit its applica-
bility in high-stake domains where adversaries can
conduct reverse-engineering.

Computing Infrastruture and Budget We ran
sampling and paraphrase attack jobs on 8§ A40 and
4 A100 GPUs, taking up a total of around 200 GPU
hours.
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RealNews BookSum

Algorithm| Paraphraser— | Pegasus Parrot GPT3.5 | Pegasus Parrot GPT3.5
KGW 71.0/66.6 57.1/584 54.8/533 | 71.8/69.3 62.0/61.8 60.3/56.7
SStAMP 722/69.7 57.2/574 55.1/53.8 | 73.0/71.3 644/67.1 55.4/50.0
k-SSTAMP 719/67.8 55.8/56.1 54.8/533 | 73.5/71.5 642/67.1 35.7/334

Table 5: BERTScore (Zhang et al., 2019) between original and paraphrased generations under different watermark
algorithms and paraphrasers. All numbers are expressed in percentages. The first number in each entry is the result
under regular sentence-level paraphrase attack in Hou et al. (2023), while the second number is the result under the
bigram paraphrase attack. Compared to regular paraphrase attacks, bigram paraphrase attack only slightly
corrupts the semantic similarity between paraphrased outputs and original generations.
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