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Abstract

Medical decisions directly impact individuals’
health and well-being. Extracting decision
spans from clinical notes plays a crucial role
in understanding medical decision-making pro-
cesses. In this paper, we develop a new dataset
called “MedDec,” which contains clinical notes
of eleven different phenotypes (diseases) anno-
tated by ten types of medical decisions. We
introduce the task of medical decision extrac-
tion, aiming to jointly extract and classify dif-
ferent types of medical decisions within clin-
ical notes. We provide a comprehensive anal-
ysis of the dataset, develop a span detection
model as a baseline for this task, evaluate re-
cent span detection approaches, and employ a
few metrics to measure the complexity of data
samples. Our findings shed light on the com-
plexities inherent in clinical decision extraction
and enable future work in this area of research.
The dataset and code are available through
https://github.com/CLU-UML/MedDec.

1 Introduction

Clinical notes contain rich information about medi-
cal decision-making. Such notes document patient
conditions, medications, laboratory and diagnos-
tic results, assessments and plans, prognoses, and
follow-up information, among other crucial data
points. However, automatic knowledge extraction
from clinical notes has been challenged by impre-
cise clinical descriptions, heterogeneous data, and
the need for data annotation. In particular, although
there exist comprehensive and manually verified
taxonomies of medical decisions (Braddock et al.,
1997; Ofstad et al., 2018), and successful infor-
mation extraction techniques in medical (Mullen-
bach et al., 2021; Miwa and Sasaki, 2014; Isla-
maj Doğan et al., 2011; He et al., 2017; Uzuner
et al., 2010), and general (Dethlefs et al., 2012;
Goodman, 2002; Frampton et al., 2009; Bui and
Peters, 2010; Hsueh and Moore, 2007) domains,

Mr. [..] is a 61 y/oM with HIV and HCV and Hemophilia 

[DEFINING PROBLEM] ... with suspicion for diffuse neoplastic process
of the liver [DEFINING PROBLEM] ...
admitted for biopsy   [THERAPEUTIC PROCEDURE RELATED]

He was treated with interferon   [DRUG RELATED]...
He has had multiple imaging that showed multliple focal lesions
that were not previously seen   [EVALUATING TEST RESULT] ...
Past Medical History: Hemophilia  [DEFINING PROBLEM]  - followed
by Dr [..], Drs [..] and [..] **   [CONTACT RELATED] 

Figure 1: An example excerpt from a de-identified clini-
cal note in MedDec, where text spans are annotated into
10 medical decision categories defined by the Decision
Identification and Classification Taxonomy for Use in
Medicine (DICTUM) (Ofstad et al., 2016). Color-coded
texts represent medical decisions and their annotated
decision categories are in [BRACKETS].

there is currently no dataset for extracting (i.e. de-
tecting and classifying) medical decisions in clin-
ical narratives. A medical decision is defined as
a particular course of clinically relevant actions
and/or a statement concerning the assessment of
a patient’s health as defined in the Decision Iden-
tification and Classification Taxonomy for Use in
Medicine (DICTUM) (Ofstad et al., 2016).

Automatic extraction of medical decisions from
clinical notes has the potential to transform clin-
ical practice. It can inform the development of
evidence-based decision-making guidelines and
stewardship programs, identify potential deviations
from best decision-making practices, and deter-
mine potential risks to patient based on prior medi-
cal decisions and their outcomes. In addition, be-
yond clinical applications, understanding clinical
decision patterns can inform health policy develop-
ment and refinement, especially when evaluating
the impact of particular interventions or policies.

This paper develops the first expert-annotated
dataset for medical decision extraction and classifi-
cation within discharge summaries (MedDec). It is
developed using patient data sourced from the Med-
ical Information Mart for Intensive Care (MIMIC-

https://github.com/CLU-UML/MedDec


III) (Pollard and Johnson III, 2016), which is a
publicly available dataset of de-identified clinical
data of patients who were treated in intensive care
units (ICUs). MedDec contains annotated deci-
sions in 451 discharge summaries, covering more
than 54k sentences and containing diverse patient
groups based on sex, race, and English proficiency.
In addition, 187 out of the 451 discharge summaries
were previously classified into eleven phenotypic
(main disease) categories through manual annota-
tion by Gehrmann et al. (2018). We extend the
dataset as follows: all medical decisions in the
discharge summaries are annotated by domain ex-
perts according to the Decision Identification and
Classification Taxonomy for Use in Medicine (DIC-
TUM) (Ofstad et al., 2016). DICTUM covers ten
(10) medical decision categories listed in Table 1;
we add the residual category “None” for spans of
texts that do not contain any medical decision. Two
expert annotators independently label all text spans
of medical decisions in each discharge summary
according to the DICTUM guidelines. Disagree-
ments between the annotators are adjudicated by a
senior third annotator. Figure 1 shows an excerpt
from a de-identified discharge summary annotated
with several categories of medical decisions.

In addition, we introduce the new task of clinical
decision extraction, which involves identifying and
classifying spans of medical decisions within rela-
tively long clinical notes. This focused information
extraction task contributes to the advancement of
bioNLP techniques and has the potential to improve
healthcare. We develop several baselines including
span detection and named entity recognition mod-
els, and evaluate and analyze their performance on
MedDec. In addition, we introduce a framework
for medical decision extraction to set a baseline for
future research.

The contributions of this paper are:

• to the best of our knowledge, MedDec is the
first expert-annotated dataset for research on
medical decision extraction and classification
from clinical notes;

• we provide a comprehensive analysis of the
dataset, including distribution reports for
protected variables, including sex, race, and
English proficiency; and

• we evaluate existing span detection ap-
proaches on MedDec, and develop a baseline
model to lay the foundation for future
research in this area.

2 MedDec

2.1 Taxonomy of Medical Decisions

Table 1 provides descriptions of different types of
medical decisions in clinical notes, adapted from
DICTUM (Ofstad et al., 2016). The “Contact re-
lated" category involves decisions related to patient
admissions, discharges, follow-ups, and referrals
within the healthcare system. “Gathering infor-
mation" decisions pertain to acquiring data from
sources other than patient interviews or charts, such
as ordering tests. “Defining problem" decisions
involve complex assessments that define medical
issues, including diagnoses, etiological inferences,
and prognostic judgments. “Treatment goal" deci-
sions specify treatment objectives beyond general
advice. “Drug" decisions pertain to initiation, alter-
ation, cessation, or maintenance of drug regimens.
“Therapeutic procedure" decisions involve interven-
tions or therapeutic procedure management. “Eval-
uating test result" decisions are those that evaluate
clinical findings and test outcomes. “Deferment"
decisions delay or reject medical decision-making,
often due to insufficient information or the need
to await test results. “Advice and precaution" de-
cisions involve providing advice or precautions to
patients and transferring responsibility for actions
to them. Finally, “Legal/insurance-related" deci-
sions deal with medical matters related to legal
regulations or financial arrangements.

These categories provide a comprehensive group-
ing of medical decisions in clinical notes. They can
be used for systematic classification and structured
analysis of medical decisions, and for understand-
ing the complex processes involved in clinical de-
cision making.

2.2 Data Collection

MedDec is created using patient data sourced from
the MIMIC-III (Pollard and Johnson III, 2016). It
contains annotated decisions in 451 discharge sum-
maries, representing diverse patient groups based
on sex, race, and English proficiency. All medical
decisions in each discharge summary are annotated
according to the 10 medical decision categories
introduced in DICTUM (Ofstad et al., 2016).

The token-level inter-annotator agreement, mea-
sured by Cohen’s Kappa between the first two an-
notators is substantial, k = 0.74, indicating that it
is fairly easy for domain experts to identify medical
decisions in discharge summaries. A similar agree-
ment level was reported in DICTUM (Ofstad et al.,



Decision Category Description Examples
Contact related Decision regarding admittance or discharge from hospi-

tal, scheduling of control and referral to other parts of
the healthcare system

Admit, discharge, follow-up, referral

Gathering information Decision to obtain information from other sources than
patient interview, physical examination and patient chart

Ordering test, consulting colleague,
seeking external information

Defining problem Complex, interpretative assessments that define what the
problem is and reflect a medically informed conclusion

Diagnostic conclusion, etiological in-
ference, prognostic judgment

Treatment goal Decision to set a defined goal for treatment and thereby
being more specific than giving advice

Quantitative or qualitative

Drug Decision to start, refrain from, stop, alter or maintain a
drug regimen

Start, stop, alter, maintain, refrain

Therapeutic procedure Decision to intervene on a medical problem, plan, per-
form or refrain from therapeutic procedures

Start, stop, alter, maintain, refrain

Evaluating test result Simple, normative assessments of clinical findings and
tests

Positive, negative, ambiguous test re-
sults

Deferment Decision to actively delay a decision or rejection to de-
cide on a problem presented by a patient

Transfer responsibility, wait and see,
change subject

Advice and precaution Decision to give the patient advice or precaution, trans-
ferring responsibility for action to the patient

Advice or precaution

Legal/insurance related Medical decision concerning to legal regulations or fi-
nancial arrangements

Sick leave, drug refund, insurance,
disability

Table 1: Descriptions and high-level examples of medical decisions. The table is re-printed from DICTUM (Ofstad
et al., 2016) with slight modification.

2016). We note that token-level agreement pro-
vides a lower bound for true inter-annotator agree-
ment as it may sometimes underestimate agreement.
This occurs, for instance, when minor variations
such as the inclusion or exclusion of less relevant
tokens (e.g. stopwords) at the start or end of deci-
sion spans are considered as disagreements.

2.3 MedDec Novelty
The novelty of MedDec is in its focused annotation
of medical decisions based on an expert-verified
and comprehensive taxonomy of medical decisions,
its diversity across sex, race, and language profi-
ciency patient groups and phenotypes (diseases),
and its potential to drive advancements in both
bioNLP research and clinical decision-making. To
our knowledge, MedDec is the first dataset specif-
ically developed for extracting medical decisions
in clinical notes. This diversity in MedDec enables
investigations on potential disparities in medical de-
cisions across the above-mentioned protected vari-
ables, which can provide insights for addressing
healthcare inequities. These features make Med-
Dec an asset in bioNLP.

2.4 MedDec Statistics
Table 2 reports the percentage of decision spans for
each decision category and each protected variable

in MedDec. The total counts of decision spans are
reported in the last row. Medical decisions related
to defining problems, drugs, evaluation, and ther-
apeutic procedures are categories with the highest
prevalence, while legal, deferment, treatment goal,
gathering information, advice, and contact have
considerably lower prevalence. In MedDec, 42.6%
of summaries are related to Female patients, 75.9%
belong to white patients (of patients with known
race), 9.7% to African American, and 85.2% to pa-
tients (with known language proficiency) identified
as proficient in the English language.

In addition, Table 3 shows the distribution of
patients across phenotypic (disease) categories.
Patients with psychiatric disorders (including
schizophrenia, bipolar, and anxiety disorders),
depression, chronic neurologic dystrophies, and
chronic pain are more prominently represented in
MedDec. Conversely, patients associated with sub-
stance abuse, lung conditions, cancer, and obesity
are less prevalent in the dataset.

The discharge summaries in MedDec contain
1.4M tokens, with 879K tokens forming part of a
span, while 37K tokens belong to more than one
span (accounting for 4.2% of labeled tokens). How-
ever, the majority of overlaps are minor, where a to-
ken marks the end of a span and the start of another.



Decision Type Sex Race Lng. Proficiency
Male Female White AA Hispanic Asian NH Other En Non-En

(n=259) (n=192) (n=327) (n=42) (n=25) (n=15) (n=1) (n=21) (n=260) (n=45)

Defining Problem 39.2 38.8 39.5 37.5 38.0 36.4 30.9 38.6 38.7 39.2
Drug 26.0 25.1 25.7 24.4 25.0 27.5 19.1 27.0 26.1 25.6
Evaluation 12.9 13.6 12.6 16.6 13.3 12.7 25.5 12.8 13.1 13.9
Therapeutic proc. 12.2 12.4 12.4 12.5 11.7 13.2 10.6 12.2 12.0 12.0
Contact 4.9 5.2 5.0 4.6 6.0 5.4 8.5 4.3 4.8 5.1
Advice 3.4 3.5 3.5 3.2 4.2 3.3 0.0 3.9 3.9 3.0
Gathering info 0.8 0.9 0.8 0.7 1.2 1.3 5.3 0.9 0.9 0.6
Treatment goal 0.3 0.3 0.3 0.3 0.4 0.2 0.0 0.2 0.2 0.4
Deferment 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.1 0.2 0.2
Legal/Insurance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total Count 33,054 24,235 41,666 5,684 3,264 1,737 94 3,078 37,026 6,295

Table 2: Percentage of annotated spans for each decision category across protected variables in MedDec. n is the
number of the discharge summaries for each category. The last row shows the total count of decisions per variable.

Decision Types Phenotypes
Substance
Abuse

Lung Alcohol
Abuse

Psychi-
atric

Obesity Heart Cancer Chronic
Neuro

Depre-
ssion

Chronic
Pain

None

(n=8) (n=12) (n=18) (n=27) (n=12) (n=23) (n=12) (n=22) (n=32) (n=26) (n=62)

Defining Problem 38.1 36.4 40.5 38.4 37.1 38.9 38.7 40.2 36.8 36.8 38.1
Drug 25.1 32.4 28.5 26.9 29.6 29.1 25.5 26.4 30.3 29.9 24.0
Evaluation 16.2 10.6 11.1 14.0 12.9 11.3 10.4 14.6 13.1 13.2 14.9
Therapeutic proc. 12.8 13.3 11.3 11.9 12.1 12.9 13.7 10.7 12.1 11.4 12.5
Contact 5.5 4.4 4.1 4.9 4.8 3.9 5.2 4.3 4.4 4.7 5.7
Advice 1.1 1.5 2.9 2.7 2.5 2.7 4.7 3.0 2.4 2.8 3.6
Gathering info 0.6 0.9 1.0 0.9 0.3 0.8 1.2 0.5 0.6 0.9 0.7
Treatment goal 0.4 0.3 0.2 0.1 0.3 0.3 0.3 0.1 0.1 0.1 0.3
Deferment 0.2 0.2 0.3 0.2 0.4 0.1 0.2 0.2 0.2 0.2 0.2
Legal/Insurance 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total Count 2,062 4,319 4,464 8,726 2,957 7,126 2,271 8,301 10,289 8,639 16,790

Table 3: Percentage of annotated spans for each decision category across different phenotypes. n is the number of
the discharge summaries for each category. The last row shows the total count of decisions for each phenotype.

3 Learning to Extract Medical Decisions

We present an overview of our approach and de-
scribe its two key components in subsequent sec-
tions. Figure 2 shows our approach for extracting
and classifying medical decisions. First, a long
note is chunked into segments of acceptable length
to the model. Each segment is fed into the model
to generate hidden representations and token clas-
sification probabilities (this step can be batched
for efficiency). Then, the resulting labeled text se-
quences are concatenated to obtain classification
results for the entire clinical note. Finally, we post-
process the results to convert them into spans, de-
fined by a start position, end position, and category.

3.1 Sequence Labeling Framework

We develop a multi-class sequence labeling ap-
proach that fine-tunes a pre-trained model for span
detection. The data consists of a sequence of n
tokens t = {t1, . . . , tn} and token labels y =
{y1, . . . , yn}, and each label indicates a set of k+1

categories indicating k decision types and the none
category, yi ∈ {C1, .., Ck, O}. Practically, the la-
bels follow the BIO (beginning-inside-outside) to-
ken labeling scheme (Ramshaw and Marcus, 1995).

We use a pre-trained bidirectional transformer
encoder f to encode the tokens and generate d-
dimensional hidden states. Formally, the latent
representation of the i-th token is computed as:

hi = f(t)i, (1)

where hi ∈ Rd. We then employ a fully-connected
layer g(.) on top of the hidden representation that
maps each hidden state to obtain the logits across
all classes of decision categories:

zik = g(hi)k. (2)

To realize multi-class classification, the logits are
fed into a softmax function, where the class with
the maximum predicted probability is considered
the predicted label. This approach does not take
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Mr. [..] is a 61 y/oM with HIV and HCV and Hemophilia[DEFINING

PROBLEM]  ... with suspicion for diffuse neoplastic process of the
liver[DEFINING PROBLEM]

admitted for biopsy[THERAPEUTIC PROCEDURE RELATED] and post-bx
observation[CONTACT RELATED] ... He was treated with interferon[DRUG

RELATED]...
He has had multiple imaging that showed multliple focal lesions that
were not previously seen[EVALUATING TEST RESULT]...

Mr. [..] is a 61 y/oM with HIV and HCV and Hemophilia ... with
suspicion for diffuse neoplastic process of the liver ...
admitted for biopsy  and post-bx observation  ...
He was treated with interferon ...
He has had multiple imaging that showed multliple focal lesions
that were not previously seen  ...
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He was treated with
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RELATED]...
He has had multiple
imaging that
showed multliple
focal lesions that
were not
previously[EVALUATING

TEST RESULT]

Figure 2: Architecture of the proposed framework for
medical span detection. The framework is a multi-class
sequence labeling approach that fine-tunes a pre-trained
transformer network for span detection.

into account the categorical similarity of neighbor-
ing tokens. Previous studies indicate that token
classification remains competitive as the most ef-
fective span detection and named entity recogni-
tion method (Aarsen, 2023; Jurkiewicz et al., 2020;
Chhablani et al., 2021; Gu et al., 2022).

There are several alternative methods for span
detection, such as detecting the start and end posi-
tions, classifying a pair of tokens to check if they
constitute a span’s boundary, detecting each span
category using a separate query process (Devlin
et al., 2019; Shen et al., 2022), and conditional ran-
dom fields (Panchendrarajan and Amaresan, 2018)
that compute the maximum probable span assign-
ment from logits.1

3.2 Sequence Chunking

Clinical notes are typically thousands of tokens
long, and transformer models are computationally

1Our experiments show that CRF does not improve perfor-
mance; so, we do not include it in our architecture.

restricted and can typically process a maximum of
512 tokens at once. To overcome this challenge,
we develop a data sampling function that samples
segments of 512 tokens or fewer from random start-
ing points at each training iteration. Therefore, a
unique set of text segments is seen at each iteration.
This sampling method acts as a data augmenta-
tion method by sampling different segments of the
same clinical note with different start and end posi-
tions, different sentence compositions, and differ-
ent lengths. At inference time, the input is chunked
into segments of 512 tokens with no overlap, each
segment is tagged, and the results are concatenated.

4 Experiments

4.1 Experimental Setup

Models We evaluate the following models:

• Binder (Zhang et al., 2023): employs encoders
for tokens and token types, optimizes a con-
trastive objective, with a dynamic threshold
loss for negative sampling.

• PIQN (Shen et al., 2022): uses NER pointer
mechanism (Yang and Tu, 2022) for span
boundary detection and an entity classifier for
classification. A dynamic label assignment
objective is proposed to assign gold labels to
instance queries. It dynamically learns query
semantics for instance queries and extracts all
types of entities simultaneously.

• DyLex (Wang et al., 2021): a sequence labeling-
based approach that incorporates lexical
knowledge with an efficient matching algo-
rithm to generate word-agnostic tag embed-
dings for NER.

• Instance-based NER (Ouchi et al., 2020):
formulates NER as instance-based learning,
where model assigns labels based on a nearest-
neighbor approach.

The following BERT-based models employ the to-
ken classification approach described in Devlin
et al. (2019). All experiments use the base-size
version of the models.

• DeBERTa v3 (He et al., 2022): uses advanced
training strategies, primarily disentangled at-
tention and mask decoder.

• ALBERT (Lan et al., 2020): implements shared
weights across layers, leading to a greatly re-
duced memory footprint.



Model Token Level Span Level CR GI DP TG Dr TP ETR De A&P
(Accuracy) (F1) (F1) (F1) (F1) (F1) (F1) (F1) (F1) (F1) (F1)

ELECTRA 78.2 34.7 19.9 0.0 37.9 0.0 47.4 25.2 19.7 15.4 35.1
BioClinicalBERT 77.8 34.5 15.9 4.2 38.9 11.8 46.4 27.0 19.4 0.0 33.8
RoBERTa 79.9 34.8 19.3 5.1 37.3 6.1 44.7 27.9 23.4 12.5 42.6
DeBERTa v3 77.4 31.9 15.2 2.2 32.7 7.4 46.8 24.6 18.5 0.0 28.0
ALBERT v2 74.6 27.8 10.9 4.1 33.0 0.0 38.8 16.6 15.2 0.0 12.0

BINDER 71.2 30.3 17.4 2.5 59.6 1.0 50.9 36.8 34.0 0.9 10.2
PIQN 69.5 28.9 16.9 2.4 57.6 1.0 48.9 33.8 32.7 0.9 9.1
DyLex 67.7 27.8 17.4 2.4 57.1 0.9 46.0 31.7 30.1 0.8 0.9
Instance-based 66.2 27.0 16.1 2.5 56.7 0.9 44.3 31.8 28.7 0.8 8.4

Table 4: Span detection performance of different models on MedDec. Span level evaluates the exact match at the
span level, while token level evaluates the prediction of decision categories for individual tokens in inputs. Columns
4-11 show the performance on each decision category, abbreviated according to the order in Table 1

• ELECTRA (Clark et al., 2020): a bidirectional
encoder employing a new pre-training objec-
tive. It learns to discriminate between real and
fake (but plausible) input tokens.

• RoBERTa (Liu et al., 2019): a BERT-based
model with an improved training objective,
hyperparameters, and increased data.

• BioClinicalBERT (Alsentzer et al., 2019): a
BERT-based model pre-trained on PubMed
abstracts and MIMIC-III clinical notes.

Evaluation We use the standard evaluation met-
rics for NER, span exact match, and token accu-
racy.2 The correctness of a span is determined by
an exact match (both boundaries and category). We
report results in terms of micro-F1 score. Token-
level accuracy is a more flexible metric, allowing
partial overlap with the true spans.

Difficulty Score We use span length and num-
ber of UMLS medical concepts to divide med-
ical decisions into into three difficulty levels,
namely Easy, Medium, and Hard. Example of
a span with a single medical concept and low
cognitive load: “you will continue taking two
antibiotics.” Example of a span with a high number
of medical concepts (underlined) and high cogni-
tive load: “CT abdomen with intravenous contrast:
The heart size is at the upper limits of normal.
Dense coronary calcifications are identified. In the
lung bases, there is bibasilar atelectasis. There
are also chronic pleural inflammatory changes in-
cluding fat deposition and fibrotic changes, left
greater than right. Bilateral small pleural effusions
are also identified, right greater than left. No
focal pulmonary nodules or opacities are identified

2https://huggingface.co/spaces/
evaluate-metric/seqeval
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Figure 3: Span detection F1 score on spans with in-
creasing difficulty for two difficulty scores. The shaded
area is the 95% confidence interval for three models:
ELECTRA, RoBERTa, and BioClinical-BERT.

in the lung bases.” These difficulty scores provide
insights into the difficulty of learning medical deci-
sions and can also inform curriculum discovery (El-
gaar and Amiri, 2023).

4.2 Main Results

We compare recent span detection and classifica-
tion models using our training framework.3 Table 4
shows the results where we observe that RoBERTa
achieves the best performance with a 34.8 F1 score,
followed by ELECTRA and BioClinicalBERT.

Span and token accuracy are not perfectly cor-
related. Although ALBERT performs lower than
BINDER in span exact-match, it achieves a higher
token accuracy, meaning that it is more effective in
partial span detection. BINDER, PIQN, and DyLex
achieve higher span-level but lower token-level ac-
curacy than ALBERT, stemming from their design
that emphasizes span exact matching.

Our approach focuses on training a model to reli-
ably label segments in clinical notes, irrespective of
their boundaries. This strategy results in improved
span boundary prediction at inference time.

3We note that the performance of current models without
our training framework is significantly lower.

https://huggingface.co/spaces/evaluate-metric/seqeval
https://huggingface.co/spaces/evaluate-metric/seqeval
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Figure 4: F1 score performance of span detection at phenotype level. The orange bars show the generalizability
performance of the model when the phenotype is unseen during training.

4.2.1 Span Complexity

We suggest two factors that offer insights into the
difficulty of learning spans of medical decisions:
(a): the number of medical concepts in each span
according to the UMLS ontology, and (b) the length
of spans as a heuristic metric; the longer spans
may contain more diverse semantic content and can
involve more complex sentence structures, which
requires the model to maintain more contextual
information. We divide the spans into three groups
based on their complexity: low, medium, and high.

The results show significant performance dis-
parity across three complexity levels and two met-
rics. In particular, performance varies consider-
ably based on span length, where predictions are
most accurate on shorter spans and least accurate
on longer ones. The performance reaches up to
17.7 on easy samples and as low as 10.0 on hard
samples. However, we do not observe such a de-
creasing trend in performance using the number
of UMLS concepts, see Figure 3. Span detection
performance drops when there is either a very low
or very high number of medical concepts in a span.
A span with a low number of medical concepts is
likely ambiguous and hard to interpret and clas-
sify, while a span with a large number of medical
concepts is complex and hard to understand. There-
fore, sentence length is a better measure of sample
complexity, perhaps due to the use of broader con-
textual information.

We note that the difficulty analysis is the average
of the following three models, ELECTRA (Clark
et al., 2020), RoBERTa (Liu et al., 2019), and Bio-
ClinicalBERT (Alsentzer et al., 2019). Comparing
model performance across varying levels of sample
complexity provides a better understanding of each
model’s strengths and weaknesses.

4.2.2 Insights Across Patient Phenotypes
Figure 4 shows a significant disparity in the per-
formance of span detection at the phenotype level,
with a standard deviation of 7.5. The highest F1
score is achieved for “Heart Disease” (44.7), while
the lowest is for “Substance Abuse” (19.1). Across
11 phenotypes, performance exceeds the average
performance (from Table 4) for six phenotypes but
falls under the average for the remaining five pheno-
types: “Depression,” “Neurological Dystrophies,”
“Substance Abuse,” “Fibromyalgia” and “Alcohol
Abuse”. The variability in the performance of
decision extraction across different patient groups
identified by different phenotypes highlights the
challenges associated with the practical use of the
system. We attribute this variance in performance
to two potential factors: (a): MedDec contains
more training data for the high-performing pheno-
types and less training data for the low-performing
phenotypes, (b): the intrinsic characteristics of
phenotypes affect their difficulty in learning. For
example, “Heart Disease” is identifiable through
clear clinical markers like abnormal ECG findings
or chest pain. Conversely, “Fibromyalgia” is a
more complex condition due to its complex nature
and subjective symptoms like widespread pain and
fatigue. The subjective nature of these symptoms
and their overlap with other conditions make it chal-
lenging to precisely classify “Fibromyalgia" cases.

4.2.3 Generalizability to Unseen Phenotypes
Results in Figure 4 show a performance drop for
7/11 phenotypes when they are not present in the
training data. Conversely, Substance Abuse, Fi-
bromyalgia, Depression, and Neurological do not
suffer from being unseen, as perhaps they are suf-
ficiently informed by transferred knowledge from
available phenotypes in the training data. Heart



Method F1 (exact match) F1 (fuzzy match)
Zero-shot 3.8 10.4
One-shot 4.8 17.9

Table 5: Preliminary analysis of span extraction perfor-
mance for a prompted LLM in terms of F1 scores of
exact and fuzzy match on 10 discharge summaries.

disease and Psychiatric disorders are among the
most affected phenotypes, perhaps due to specific
domain knowledge related to their decisions that
differentiate them from others.

4.2.4 IFT for Span Extraction
Large language models (LLMs) have shown ef-
fectiveness in performing a wide variety of tasks
through instruction-tuning (IFT) (Zhao et al., 2023;
Li et al., 2024; Tran et al., 2024). In tasks such
as medical question answering, recent works have
shown that LLMs show comparable performance to
extensively fine-tuned models (Nori et al., 2023a;
Singhal et al., 2023; Thirunavukarasu et al., 2023)
using domain-specific prompting methods, such as
the retrieval of relevant medical queries to serve as
demonstrations (Nori et al., 2023b).

We evaluate LLama-3-8B-Instruct (AI@Meta,
2024) on 10 discharge summaries. We prompt the
LLM to extract decision spans for each decision
category separately, prompting it ten times for each
clinical note. We experiment with the zero-shot and
one-shot settings both using the following prompt:

[[[System]]]
Extract all sub-strings from the
following clinical note that contains
medical decisions within
the specified category.
Print each sub-string in a new line.
If no such sub-string exists, output "None".
[Clinical Note]: {Discharge summary here}

# IF: one-shot setting
[[[User]]]
[Category]: {Decision category here}

[[[Assistant]]]
{Demonstrations}
# End IF

[[[User]]]
[Category]: {Decision category here}

[[[Assistant]]]
{Response}

In the one-shot setting, we present as demonstra-
tions all decisions of a single category other than
the one being asked for. The demonstration cate-
gory is selected as the category with the most num-
ber of decisions in the clinical note. The results are
shown in Table 5. The LLM returns the extracted
spans without token-level annotations, therefore it
is not possible to calculate token-level accuracy.
We compute the performance of span exact match
and fuzzy match F1-score. The span fuzzy match
is a substitute for token-level accuracy used in Ta-
ble 4, as the span may be partially detected by the
LLM but not be accounted for by the exact match
score. To compute the fuzzy span match, we check
if either of the extracted span and the true span
are a substring of the other, and that they differ by
no more than 10 words. These preliminary results
show that decision extraction might be challenging
for LLMs compared to fine-tuned models.

The low performance of the IFT models can be
attributed to the lower efficacy of LLMs in process-
ing long contexts (An et al., 2023). Moreover, the
output of LLMs is in free form, which can result in
correct responses that do not precisely match the
content of medical decisions in notes. For example,
a documented decision can be “the patient has high
blood pressure,” whereas the generated decision
can be “the patient is experiencing elevated blood
pressure.” While semantically correct and relevant,
such responses make accurate evaluation of LLM
responses a challenging task.

5 Related Work

5.1 BioNLP Datasets

Nye et al. (2018) developed a dataset of 5K ab-
stracts annotated with {population, interventions,
compared, outcomes} (PICO), to inform personal-
ize patient care. Lehman et al. (2019) developed a
dataset of intervention, comparator, and outcome
labels of more than 10K randomized controlled
trial articles. Patel et al. (2018) developed the clini-
cal entity recognition (CER) corpus, which consists
of 5.1K clinical notes annotated by experts with en-
tities such as anatomical structures, body functions,
lab devices and medical problems. , and findings.
The extracted concepts correspond to a selected
group of UMLS semantic types. CLIP (Mullen-
bach et al., 2021) is a dataset of 718 discharge
summaries from MIMIC-III, annotated with seven
types of action items: {Appointment, Lab, Proce-
dure, Medication, Imaging, Patient Instructions,



Other} at sentence level. covering more than 107K
sentences. Stupp et al. (2022) introduced a dataset
of 579 admission and progress notes from MIMIC-
III, annotated with diseases, assessments, and cat-
egories of action items. PHEE (Sun et al., 2022)
consists of 5K events from case reports and liter-
ature, annotated for pharmacovigilance {Subject,
Drug, Effect} for drug safety monitoring. Recently,
Cheng et al. (2023) developed MDACE, a dataset
of clinical notes annotated with ICD codes and
their rationales for computer-assisted coding.

5.2 NER and Span Detection
Existing NER and span detection approaches
can be divided into sequence labeling-based (tag-
ging) approaches and span-based approaches. Se-
quence labelling approaches (Aarsen, 2023; Tjong
Kim Sang, 2002; Gu et al., 2022) classify every to-
ken in the sequence to their corresponding class(es).
This formulation is challenged by nested entities.
Span-based approaches (Sohrab and Miwa, 2018;
Luan et al., 2019; Zheng et al., 2019; Tan et al.,
2020; Shen et al., 2021), however, identify and
classify spans. First, the spans are either extracted
through enumeration or boundary identification and
then classified to their corresponding classes.

Du et al. (2019) developed the relational span-
attribute tagging (R-SAT) model for extracting
clinical entities, their properties, and relations. It
employed a method similar to ours, however, the
tasks are different as we tackle medical decisions.
Ouchi et al. (2020) formulated the NER task as an
instance-based learning task, where the NER model
was trained to learn the similarity between spans of
the same class. DyLex (Wang et al., 2021) retrieved
lexicon knowledge for input sequence, applied a
denoising module to remove noisy matches, and
encoded and fused the lexicon knowledge into the
sequence embeddings with column-wise attention
for NER.

Abaho et al. (2021) jointly detected and clas-
sified spans of health outcomes in clinical notes.
Most prior methods decoupled the detection and
classification phases. Sent2Span (Liu et al., 2021)
was developed for the extraction of PICO informa-
tion from clinical trial reports. It is designed to
work with non-expert sentence-level annotations
on the presence of PICO information, without the
need of expert span-level annotations and is able
to achieve higher recall than comparable methods.
PIQN (Shen et al., 2022) developed entity pointer
for localization and entity classifier for classifica-

tion. A dynamic label assignment objective was
proposed to extract different types of entities simul-
taneously.

Recently, Zhang et al. (2023) proposed Binder,
which optimized two encoders for NER, one for
tokens and one for token types. For each span
associated with a class, Binder sampled negative
spans based on their loss, and optimized model
parameters using a contrastive learning objective.
Mirror (Zhu et al., 2023) was an information extrac-
tion framework based on graph decoding, where
entities were nodes in the graph and the rela-
tions of interest were edges. Mirror allowed for
extracting all entities and relations in a single
step. DICE (Ma et al., 2023) adapted sequence-
to-sequence models for structured event extrac-
tion from clinical text, using PubMed documents
in MACCROBAT dataset (Caufield et al., 2019).
Raza and Schwartz (2023) introduced a model con-
sisting of BioBERT (Lee et al., 2019), and Bi-
LSTM (Huang et al., 2015) and Conditional Ran-
dom Field (CRF) (Lafferty et al., 2001) layers to
extract clinical (diseases, conditions, symptoms,
and drugs) and non-clinical (social factors) entities
from clinical notes.

6 Conclusion

We developed MedDec for the extraction and clas-
sification of ten types of documented medical de-
cisions in discharge summaries of eleven different
phenotypes (diseases). We demonstrate several
baseline models to tackle this task. Through ex-
tensive experiments and analysis, we find that the
task is challenging, the performance of the best-
performing model significantly varies across phe-
notypes and the spectrum of sample complexity.
The dataset can be useful in studying population
statistics, biases in medical treatment, analysis of
medical decisions for different phenotypes, and
understanding medical decision-making processes.

Limitations

The present work has several limitations, which
form the basis of our future work: the distribu-
tion of the ten classes of medical decisions within
the dataset is considerably imbalanced. Table 2
highlights these data imbalances across protected
variables. Class imbalance may lead to biases in
the model training process and affect the model’s
ability to accurately predict less represented classes.
Addressing these data imbalances can prevent com-



putational models from learning and perpetuating
such biases in the data. In addition, we note that,
these imbalances reflect the challenges of work-
ing with real-world data and can inform future re-
search in healthcare equity and the development
of systems that perform well across all patient
groups. The models have been applied to the notes
in MIMIC-III dataset, and the extent of their gener-
alizability to other datasets has not been evaluated.
While our best classifier is performant, it may fail
to identify and classify certain medical decisions,
such as those pertinent to deferment. This limi-
tation could be partly due to the effect of longer
decisions, which can inversely affect the model’s
performance due to the potentially higher linguis-
tic complexity of longer texts (see relevant results
in Figure 3). Finally, while discharge summaries
contain rich information about patient care, it’s im-
portant to acknowledge their limitations in fully
capturing the breadth of medical decisions made
during a patient’s hospital stay. Nevertheless, com-
mon medical decision-making patterns and clinical
reasoning processes are expected to make mod-
els trained on these summaries generalize to other
types of clinical documents.

Ethic and Broader Impact Statements

This project adheres to ethical considerations and
safeguards to ensure the responsible and ethical
handling of medical data and its implications. All
results have been presented in aggregate, and we
have made and will make every effort to protect hu-
man subject information and minimize the potential
risk of loss of patient privacy and confidentiality
(all authors with access to the data have success-
fully completed a training program in the protection
of human subjects and privacy protection). In addi-
tion, our work is transformational in nature, and its
broader impacts are first and foremost the potential
to improve the well-being of individual patients in
the society and support clinicians in their medical
decision-making efforts.
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Text Context
. . . during that admission, he coded for pulseless vt and was
transferred

The first three words of the "Defining Problem" span are not
detected.

chief complaint: shortness of breath. Model failed to extract "Defining Problem" decision.
. . . were orally administered. The patient demonstrated piece-
meal behavior by dividing up boluses into multiple swallows
regardless of size of consistency of the bolus. There was subse-
quent premature spillover into the valleculae.

The first sentence is correctly classified as "Evaluating test
results". The second sentence is incorrectly classified as
"Defining problem" instead of "Evaluating test results".

Coronary angiography in . . . 90% stenosis after d1. The lcx
was totally occluded . . . via left collaterals. The rca had a 90%
proximal lesion.

Three separate "Evaluating test results" decisions are detected as
one. The decision boundary is incorrectly classified.

He was transferred to [..] and neurosurgery was consulted. The first segment is correctly classified as "Contact related", the
second segment is incorrectly classified as "Contact related"
instead of "Gathering additional information".

Table 6: Examples where the model fails to extract medical decisions.

A Examples of Model Predictions

Table 6 shows examples where the model partially or fully fails to capture the underlying medical decision
from the clinical note.
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