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Abstract

To process contexts with unlimited length using
Large Language Models (LLMs), recent stud-
ies explore hierarchically managing the long
text. Only several text fragments are taken
from the external memory and passed into the
temporary working memory, i.e., LLM’s con-
text window. However, existing approaches iso-
latedly handle the text fragments without con-
sidering their structural connections, thereby
suffering limited capability on texts with inten-
sive inter-relations, e.g., coherent stories and
code repositories. This work attempts to re-
solve this by exploiting the fragment-level rela-
tions in external memory. First, we formulate
the fragment-level relations and present several
instantiations for different text types. Next, we
introduce a relation-aware fragment assessment
criteria upon previous independent fragment
assessment. Finally, we present the fragment-
connected Hierarchical Memory based LLM.
We validate the benefits of involving these rela-
tions on long story understanding, repository-
level code generation, and long-term chatting.

1 Introduction

The limited context window length constrains appli-
cations of Large Language Models (LLMs) in some
practical scenarios, such as answering questions
based on complete books or movie scripts (Kocisky
et al., 2018), writing codes within complete Github
repositories (Zhang et al., 2023a), efc. To resolve
this problem, some works (Ding et al., 2023; Han
etal., 2023; Xiao et al., 2023) attempt to expand the
context length of classical LLM inference frame-
work via continual training or sparse attention
mechanism. However, existing approaches are ei-
ther limited to a finite expansion length (Packer
et al., 2023; Schuurmans, 2023), or prone to perfor-
mance degradation, especially when dealing with
very long contexts (Liu et al., 2023).

Recent studies (Packer et al., 2023; Wang et al.,
2023b; Ram et al., 2023) explore to hierarchically

process the long text. Each time only partial frag-
ments of long text are retrieved from external mem-
ory and fed into LLM’s context window, a.k.a, tem-
porary working memory, thereby eliminating the
context length constraint and alleviating the inferior
influence of substantial irrelevant content. How-
ever, current external memory managers simply
split the complete long context into independent
fragments, assessing their isolated importance dur-
ing retrieval. This constrains the inference capa-
bility of Hierarchical Memory based LLMs, par-
ticularly in scenarios (e.g. understanding coherent
story or code repository) where there are intensive
associations across fragments of long text.

To address this issue, we propose to integrate
these fragment-level relations into the external
memory management by introducing a relation-
aware fragments assessment score during retrieval.
First, we formulate the relations between two frag-
ments as a real number, with higher values cor-
responding to stronger relation strength. The cal-
culation of relation quantity could have different
instantiations for different context types (e.g. nar-
rative stories, code repositories, or historical di-
alog) and different relation types (e.g. semantic
relations or structural relations). Next, based on
the isolated relevance scores used in past exter-
nal memory retrievers, we further calculate every
fragment’s environmental relevance score, which is
defined as a normalized relation-weighted summa-
tion of other fragments’ independent scores. Dur-
ing retrieval, the combination of independent score
and environmental score is employed for assess-
ing every fragment’s importance. An adjustable
coefficient is introduced to control the influence
of environmental score. Finally, in the same as
previous works (Packer et al., 2023; Ram et al.,
2023), we concatenate the retrieved content and the
requested instruction as LLM inference input.

Extensive experiments validate the benefits of
incorporating these fragment-level relations during
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Figure 1: The instantiated fragment-level relations in various text types.

retrieval. The experiments encompass a variety of
base LLMs (LLlama2 (Touvron et al., 2023), Chat-
GPT, ChatGLM (Du et al., 2022), etc. ), different
temporary context lengths (1K, 4K, 8K, 20K, efc. ),
and multiple long context scenarios (Long Story
Understanding (Kocisky et al., 2018), Repository-
level Code Completion (Zhang et al., 2023a), and
Long-term Chatting with Human (Lu et al., 2023)).

2 Related Work

Temporarily Long Context Processing. One
line of works explores how to process long con-
text under the typical LLM inference framework,
in which the complete context is directly stored
in the LLM context window (i.e. temporary mem-
ory). Among them, a series of works (Dai et al.,
2019; Ding et al., 2023; Han et al., 2023; Xiao
et al., 2023; Xiong et al., 2023) study extending the
context length of Transformer-based models via
efficient attention mechanism and recurrent infer-
ence strategic. In addition, some works (Li, 2023;
Jiang et al., 2023a) investigate how to compress the
length of long text content to mitigate the impact
of excessive irrelevant text. Although the long text
processing capability of the large language models
can be enhanced by expanding the context window
or compressing the context content, the context
length that can be handled remains limited.

External Memory augmented LLMs. Another
line of works introduce an additional external mem-
ory, forming a hierarchical memory based infer-
ence framework, thereby processing context of
any length. In this framework, only partial con-
tent fragments are retrieved from external memory
for knowledge updating (Wu et al., 2022; Wang
et al., 2023b) or answering knowledge-intensive
questions (Lewis et al., 2020; Guu et al., 2020;

Borgeaud et al., 2022; Lan et al., 2023; Wang et al.,
2023a; Yang et al., 2024). The most popular re-
trieval method is first calculating the text embed-
ding similarity for isolated fragments of external
context using pre-trained embedding models (Su
et al., 2022; Zhang et al., 2023b), and then retriev-
ing the text fragments with higher similarity to the
requested question or current temporary context.

Benefiting from the zero-shot generalization ca-
pability of LLMs, the retrieved fragments can be
directly concatenated with instructions as model
input (Ram et al., 2023), eliminating the need for
additional training. This further facilitates more
flexible external memory augmented LLM infer-
ence frameworks. Some studies explore the col-
laborative use of retrieval and generation (Gao
et al., 2022; Yan et al., 2024), as well as fur-
ther multi-round retrieval-generation interleaving
framework (Trivedi et al., 2022; Jiang et al.,
2023b; Asai et al., 2023; Shao et al., 2023; Feng
et al.,, 2023). Saad-Falcon et al. (2023) uti-
lizes explicit prompts about the structure of ex-
ternal context for enhanced retrieval. Additionally,
MemGPT (Packer et al., 2023) automatically reads
and writes the external memory, enabling more
flexible external memory reasoning.

3 Methodology

3.1 Preliminary

3.1.1 Temporary Memory based LLM

Formulation. Traditional language models re-
ceive input x and generate the output y by:

y = LLM(z). (1)

The input x is straightly passed into the con-
text window of LLM. Notably, the instructed
LLMs (Ouyang et al., 2022) could take various
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is calculated as the combination of the independent score and the normalized relation-

weighted summation of other fragments’ independent score. Finally, the fragments with top K relation-aware scores

are retrieved for LLM inference.

user instructions x and produce the correspond-
ing responses y. Inspired by human cognition,
the LLM context window could be viewed as the
working memory which temporarily stores informa-
tion (Packer et al., 2023; Li et al., 2022). For clarity,
we refer to this traditional LLM reasoning frame-
work shown in Equation. 1 as Temporary Memory
based LLM (TempMem-LLM).

Long Text Processing. In many practical tasks,
the input content includes not only user instructions
x, but also an additional long context 7, such as an-
swering questions based on complete storybooks or
movie scripts (Kocisky et al., 2018), writing codes
in long Github repository (Zhang et al., 2023a), and
constructing agents capable of engaging in long-
term conversations (Lu et al., 2023; Zhong et al.,
2023). In these scenarios, TempMem-LLM simply
concatenates and processes the long context 7~ and
instruction z in its working memory:

y=LLM(z® T), 2)

where & represents the concatenation operation.
When the text length of 7 exceeds the context
window limitations of LLM, we could cut its addi-
tional content of 7 for executing inference. In next
section, we present another framework for effec-
tively processing the lengthy context 7 via storing

it in external memory and retrieving relevant frag-
ments for inference every time.

3.1.2 Hierarchical Memory based LLM

Unlike TempMem-LLM which handles all context
in its temporary working memory, the Hierarchical
Memory based LLM (HieraMem-LLM) integrates
an additional non-parametric external memory for
managing the long context 7 .

Formulation. Instead of directly being concate-
nated with the user instruction x, the context 7
is independently processed in HieraMem-LLM.
Therefore, it consists of two decoupled modules,
i.e., the external memory management module pro-
cessing the long context 7, as well as the LLM
forward inference module containing the tempo-
rary working memory. Formally, we have:

T = Mem-MGR (z, T),

3
y=LLM(x @ T"). ©)
Mem-MGR is the external memory manager,
which takes the requested instruction = as input
and returns relevant fragments from 7.

External Memory Manager. The typical exter-
nal memory manager consists of three steps, i.e.,
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fragment splitting, independent score calculation,
and fragment selection.

1. Fragment Splitting. Tt splits the long text 7 into
N short fragments c,.

2. Independent Score Calculation. It calculates
the independent score 5"? (or scorei™®) for every
fragment ¢; based on user input z, i.e.,

ind

Si

= Similarity(z, ¢;). 4)
The similarity function is often instantiated as the
cosine similarity between embedding vectors of
x and ¢;, which could be calculated using pre-
trained text embedding models, e.g. the Contriever
model (Izacard et al., 2021).
3. Retrieved Context Picking. With fragment scores
sind we select related fragments with top K scores
and feed them into the temporary memory of LLM.
Although HieraMem-LLM effectively manages
the long context 7 by utilizing external memory,
the context is decomposed into unrelated segments,

disrupting the structural integrity of the context.

TempMem vs. HieraMem. TempMem-LLM
straightly handles the complete long text 7 in its
working memory, integrating token-level correla-
tions during inference. The simple concatenation
approach in Equation 2 suffers the following is-
sues: (1) When T exceeds the model’s context
length constraint, the LLM is unable to do pre-
diction. (2) The information irrelevant to instruc-
tion x can interfere with the model’s processing,
leading to performance decline (Liu et al., 2023).
(3) Reprocessing the lengthy context 7 each time
consumes excessive computational resources. To
address the issues of TempMem-LLM, HieraMem-
LLM incorporates the external memory to manage
the prolix context 7. Only a few related fragments
are extracted for LLM inference.

However, existing external memory managers
select fragments based on only isolated fragment
content, overlooking intensive relations between
fragments. While in TempMem-LLM, the long-
term correlations could be employed via the atten-
tion mechanism over the complete text, enabling
comprehensive context modeling.

3.2 Fragment Relations
3.2.1 Definition

We formulate the relations between every pair of
fragments (c;, c;) as follows:

wi; = Fciye), 1<i,j <N, (5

where w; ; is a real numbers measuring the relation
strength between fragment ¢; and fragment c;. The
larger value of w; ; indicates the stronger correla-
tion between ¢; and c¢;. Next, we present several
specific implementations for F7¢.

3.2.2 Fragment Relation Instantiations

This section introduces several instantiations of
fragment-level relations and discusses the impor-
tance of considering these relations.

Semantic Relation. Semantic association is the
most common type of connection between text seg-
ments. The semantic correlation between text frag-
ments can be measured by the cosine similarity
between the latent embeddings of fragments,

elwej

Frél(eie) =1 — ——9_
B lleillllesll”

(6)
where e; and e; represent the latent embeddings
of fragments ¢; and c; respectively. They could be
obtained with the pre-trained embedding models,
e.g. the Contriever model (Izacard et al., 2021).

Context Structure Relation. In consecutive
books or long-term dialog, there are significant
content correlations between the contiguous pre-
ceding and following fragments. The fragments
with closer positions in the context have stronger
relevance. This contextual relationship strength
can be defined as:

Fréh(esep) = w7 g € 0,1, ()
where loc; refers the absolute position of fragment
¢; in the external context 7. w,..; can be adjusted
to control the relation strength between fragments.
When w,.; = 0, it represents there is no relation
between fragments, and our method degrades to
previous fragment-independent external memory.

Code Structure Relation. Compared to natural
language, code repository fragments have more
complex interrelations. We construct the structure
graph G for a complete code repository. The code
graph G consists of all code parsing nodes (includ-
ing function definition, function body, assignment
expression, efc. ). The code parsing nodes are con-
nected by edges based on the parsing tree, function
calling relation, and the files directory structure.
The edge weights take values in [0, 1] and are set
based on the edge types. In section. A we present
more details about the construction of the code
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graph G. Based on the code graph G, we formulate
the code structure relation as follows:

NG _ NS _ . . v

¢ €j ,Cj : ¢ G
PIAD D k.l -Dis(gy’, 9,”)
NCGq, NCGJ Ci,Cj ’
Dokt 2= k,l

CiCj ci cj
KkJ = leny' - len;”,

Frel(civej) =

8)
where N, g represents the number of non-
overlapping graph nodes in the ¢-th repository frag-
ment, g;' is the k-th graph node in the i-th repos-
itory fragment, len;’ represents the text length of
the k-th paring node in fragment ¢;. Dis(gy’, gzj )
is the shortest path distance between node g;* and
gzj on the code graph G. Section. A shows more
details on the calculation of Dis(gj, g,”).

More Relations. More relations could be de-
signed for specific text properties and practical
needs. For example, we can gauge the correla-
tion strength between academic papers based on
citation relationships and author associations.

Importance of Fragments Relations. The
fragments-level relations are significant for:

1. Ubiquitous existence. These fragments-level
relations ubiquitously appear in a variety of long
texts. For example, in narrative books or movie
scripts, the storyline progresses coherently from
beginning to end, with each fragment c, intricately
connected to its preceding and following fragments
¢«. In code repository, structural correlations exist
among different code lines, and function calling or
variable passing relationships exist between differ-
ent code files and functions. Therefore, the content
of different code fragments c, are densely related.
2. Assisting long text understanding. Unlike
TempMem-LLM latently utilizes long-term rela-
tions, we posit that involving explicit inter-relations
plays its role in external memory management by
forming a more comprehensive assessment crite-
ria for fragment selection. Specifically, when ne-
glecting the fragments relations, the external mem-
ory retriever greedily supposes only the fragments
with high direct similarity to the input x is helpful
(Previous). The consideration of fragment relations
allows a more comprehensive fragments assess-
ment criteria: i.e. the fragments with both higher
direct similarity and contextual similarity to x is
important (Ours). The contextual similarity of frag-
ment ¢; refers to the similarity between the ¢;’s
related fragments and the input z. The new as-
sessment criteria retrieve not only directly similar

fragments but also take account of: (a) fragments
within a relevant environment, (b) contextual frag-
ments of relevant fragments, which could help un-
derstand the directly relevant fragment, (c) indi-
rectly relevant fragments.

3.3 Fragment-connected Memory Retrieval

This section introduces the integration of fragment
relations by calculating the relation-aware assess-
ment scores, and presents the overall framework of
Fragment-connected HieraMem-LLM.

3.3.1 Relation-aware Fragment Assessment

Different from vanilla retriever which considers
the independent importance of every fragment us-
ing independent score sgnd, we instead propose to
calculate a Relation-aware Score for more com-
prehensively considering the importance of every

fragment.

Definition. For the ¢-th fragment, the relation-
aware score is composed of two parts: its indepen-
dent score s%”d and its environment score s{". The
independent score measures its direct relevance de-
gree with question x, defined in Equation 4. The en-
vironment score s;"*V assesses its related fragments’
relevance with question x. We formulate s{"* (or
score;™") as the normalized weighted summation

over independent scores s¢"*" of related fragments:

J

o _ Sy
> Wi

where wj ; is the fragment relation defined in Equa-
tion 5. The normalization operation is introduced
to ensure the consistent numerical scale of s{™"
with st
Combining sﬁ”d and sV, we define Relation-
aware Score st (or scorel®) of the i-th fragment
as follows:

rel __
i =

ind env

s B R (10)

where « is an adjustable coefficient, employed to
control the influence of environment score.

Relation Distance and Complexity. The utiliza-
tion of explicit fragment-level relations shown in
Equation. 9 is irrelevant with fragments distance,
while TempMem-LLM extracts relations within
ranges limited by the context window length. Ad-
ditionally, some complex relations (e.g. code struc-
ture relations) are challenged to automatically learn
while they could be employed explicitly.
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3.3.2 Fragment-connected HieraMem-LLM

Based on the proposed relation-aware score, we
introduce the overall framework of Fragment-
connected HieraMem-LLM, shown in Figure. 2.

We first split the long text 7 into fragments
and acquire their independent scores. Next, con-
sidering the extracted relations, we calculate the
relation-aware score s for every fragment using
Equation 10. Based on these fragments along with
relation-aware scores, we select relevant fragments
as retrieved context:

l
Tl =y @ Cry @ oo D Crpes an

rel
]

1,72, ....,7k = argTopK; s
where @ represents operation of concatenating two
text fragments, r, is the indexes of retrieved frag-
ments. The final response is generated y with LLM
as follows:

§ = LLM (z, 7.

ret

(12)

3.3.3 Discussion

This section provides an intuitive explanation of
the influence of contextual similarity (or named
environmental similarity score s;"").

1. The fragments with high contextual similarity
are mostly beneficial for LLM inference. Suppose
fragment c; has a high contextual similarity s,
which refers to that ¢; is situated around a "high
score fragment" or within a "high score environ-
ment". The "high score fragment" is the fragment
with a large direct similarity to the input x. The
"high score environment" is a lot of related frag-
ments with relatively large direct similarity to the
input . Therefore, the fragment ¢; with high con-
textual similarity could always help understand the
"high score fragment" or "high score environment".
2. For LLMs, precisely understanding the "high
score fragment" or "high score environment" is par-
ticularly important to generate correct results. The
"high score fragment"” or "high score environment"
is the fragment with large direct similarity to the
input z. If they contain beneficial information for
LLM inference, the precise understanding enables
LLMs to exploit this information. If they are use-
less for LLM inference, the precise understanding
prevents LLMs from being disturbed by them.

3. Additionally, the fragments with high contextual
similarity potentially contain important informa-
tion for LLM inference, although they may not be
directly similar to current input . Some impor-
tant information is not contained in the "high score

fragment" with large direct similarity to the input
x, but situated in its surrounding fragments. These
surrounding fragments could be retrieved through
a high contextual similarity. This phenomenon is
particularly prevalent in code repository fragments
retrieval, where some important information (eg.
function parameters, function return type) is con-
tained in the indirectly relevant fragments contain-
ing the "function definition".

Therefore, the performance is enhanced through
retrieving the fragments with both higher direct
similarity and contextual similarity to the input x.

4 Experiment

We evaluate the proposed Fragment-connected
HieraMem-LLM on three long text understand-
ing tasks: long story understanding (Section. 4.1),
repository-level code generation (Section. 4.2), and
memory-enhanced chatting agent (Section. 4.3).

4.1 Long Story Understanding
4.1.1 Setup

Dataset. NarrativeQA (Kocisky et al., 2018) is a
challenging story comprehension benchmark, con-
sisting of human-written question-answer paris
based on long (average 18K words) story books
or movie scrips. LLMs are required to understand
the long-term relations in the lengthy stories to an-
swer these questions. We employ the 200 extracted
testing samples in LongBench (Bai et al., 2023).

Metrics. Following LongBench (Bai et al., 2023),
we assess the generated response with the F1 Score,
a widely used metric in question-answering tasks.

Baselines. We classify baselines into 2 cate-
gories: Temporary Memory based LLMs (Temp-
Mem LLMs) and Hierarchical Memory based
LLMs (HieraMem LLMs). (a) TempMem-LLMs:
We directly compare the results shown in Long-
Bench (Bai et al., 2023), covering LLMs with ex-
tensive parameter amount and context length (in-
cluding the context length expanded LLMs). When
the input text exceeds LLM’s context length, the
content in the middle position of the text is trun-
cated. (b) HieraMem-LLMs: We experiment with
different context limitations (1K, 2K, ..., 20K, 28K
words), and different fragments lengths (500 and
800 words per fragment). The embeddings are cal-
culated with Contriever (Izacard et al., 2021), a
popular pre-trained model for text retrieval. The
base LLMs includes Llama2-7B-4K (Touvron et al.,
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Figure 3: Performance comparison on NarrativeQA (Kocisky et al., 2018). The horizontal lines and columnas
represent Temporary Memory based LLMs and Hierarchical Memory based LLMs respectively. The Hierarchical
Memory based LLMs contain 3 categories: no relation incorporation, semantic relation incorporation and context
structure relation incorporation, denoted as "No-FragRel-*", "A-FragRel-*", and "B-FragRel-*" respectively.

2023), ChatGLM3-6B-32K (Du et al., 2022) and
GPT-3.5-Turbo-16K.

Relation Integration Details. We calculate the
fragment relations using semantic relation (Equa-
tion. 6) and context structure relation (Equation. 7),
denoted as "A-FragRel" and "B-FragRel" respec-
tively. Except for specific statements, we set
Wye; = 0.3 and o = 0.5.

4.1.2 Result

We present the experimental results in Figure. 3
and Figure. 4. The corresponding score value is
reported in Table. 4 and Table. 5, respectively.

TempMem vs. HieraMem. According to Fig-
ure. 3, the Hierarchical Memory based LLMs (the
columns) could outperform Temporary Memory
based LLMs (the horizontal lines), especially on
large context windows (more than 8K tokens). This
is consistent with the conclusion that retrieval aug-
mentation could help improve long context LLM
in the previous work (Xu et al., 2023).

Benefits of Fragment-level Relations. As
shown in Figure. 3, across all base LLMs and
context length, the structural relation augmented
HieraMem-LLMs (noted as B-FragRel-*) con-
sistently outperforms the counterpart HieraMem-
LLMs (noted as No-FragRel-*). The performance
enhancement is especially noticeable under enough
long context length. This indicates that the integra-
tion of fragment-level relations effectively allevi-
ates the deficiencies of HieraMem-LLM in terms
of external memory management.

Semantic Relation vs. Structure Relation. Fig-
ure. 3 compares semantic relation ("A-FragRel-*")
and context structure relation ("B-FragRel-*") on
fragment length 500. The semantic relation offers
a slight enhancement under enough long context,
while the context structure relation provides con-
sistent and significant improvement across various
context lengths. We posit this is due to that the em-
bedding based retrieval has implicitly considered
the semantic association between segments.

Different Relation Parameters. Figure. 4
presents the performance with varied relation pa-
rameters w,..; and « on different context lengths
and fragment lengths. Although the optimal values
of relations parameters (w,..; and «) for different se-
tups (including fragment length, context types, and
context length constraint etc. ) are difficult to ascer-
tain, most empirical values (« € [0.2,0.5], wy.¢; €
[0.1,0.7]) can lead to performance enhancement.

4.2 Repository-level Code Generation

Dataset. We conduct the code generation ex-
periment on RepoEval (Zhang et al., 2023a), a
benchmark constructed using the latest repositories
source from GitHub. Specifically, two code com-
pletion tasks are considered: (a) Line Completion:
completing random code lines, (b) Api Invocation
Completion: completing random code lines that
invoke in-repository apis. Both tasks contain 1600
test samples across 8 repositories.

Metrics. Following previous works (Zhang et al.,
2023a; Lu et al., 2021, 2022), we evaluate the code
generation performance using two metrics: Exact

16354



321 B No-FragRel O B-FragRel (We=0.3)01 B-FragRel (W,e/=0.6)C1 B-FragRel (W,e/=0.8)
[ B-FragRel (Wye/=0.1)E] B-FragRel (W;e=0.4)[] B-FragRel (W;e=0.7)] B-FragRel (W;e/=0.9)
[ B-FragRel (Wre=0.2)01 B-FragRel (Wrer=0.5)

30

28

F1 Score

26

24

12K-C800 20K-C800

Different Context Length

(a) Varied w"!

7.5K-C500

F1 Score

321 H No-FragRel @ B-FragRel (@=0.3) [0 B-FragRel (@=0.6) [ B-FragRel (@=0.8)

I B-FragRel (@=0.1) [ B-FragRel (@=0.4) [ B-FragRel (@=0.7) [J B-FragRel (@=0.9)
[ B-FragRel (@=0.2) [ B-FragRel (@=0.5)

30

28

26

24

7.5K-C500 12K-C800

Different Context Length
(b) Varied o

20K-C800

Figure 4: Performance improvement using different edge weight w"¢' and relation weight a.

Match (EM Score) and Edit Similarity (ES Score).
EM score evaluates how many completions are
exactly the same to real code. ES score represents
the similarity score between the generated and real
code lines.

Baselines. We employ Codellama-34b (Roziere
et al., 2023) with 4K context length as the base
LLMs, and the same prompt formats as Re-
poCoder (Zhang et al., 2023a). To extensively eval-
uate the integrated relations, we consider not only
the single step Vanilla Retriever but also the iter-
ative retrieval method RepoCoder (Zhang et al.,
2023a). Noted that we report the result of oracle
iterative retrieval, i.e. the upper bound of perfor-
mance during the iterative retrieval procedure. Sec-
tion. B.2 presents more implementation detail.

Relation Integration Details. In this experiment,
we use the code structure relation shown in Equa-
tion. 8 , and we set relation weight o = 0.5.

Performance Comparison. Table 1, 2 present
the results of the line completion task and api in-
vocation completion task, respectively. On the two
tasks, the integrated relation consistently improves
the performance of both the single step retrieval
inference framework and the iterative retrieval in-
ference framework. This empirically demonstrates
that fragment-level relations are greatly helpful in
long code scenarios.

4.3 Memory-enhanced Chatbot

Dataset. We perform the long-term chatting ex-
periment on MTBench+ (Lu et al., 2023). Every
chatting stream consists of 12 ~ 15 turns dialogs,
covering topics such as "STEM exams", and "liter-
ary writing". At the end of every dialog, a challeng-
ing question is added by the experts. The questions
could be classified into 3 categories: (a) "Retro-
spection” requires the model to respond content

Method EM Score ES Score
Single Step Retrieval
Vanilla Retriever 46.31 66.26
Vanilla Retriever + FragRel 48.25 67.05
Iterative Retrieval
RepoCoder (Zhang et al., 2023a) 49.13 68.39
RepoCoder + FragRel 50.44 68.50

Table 1: Performance evaluation on line completion task
of RepoEval (Zhang et al., 2023a) using Codellama-
34b (Roziere et al., 2023).

Method EM Score ES Score
Single Step Retrieval
Vanilla Retriever 40.00 66.32
Vanilla Retriever + FragRel 40.94 66.39
Iterative Retrieval
RepoCoder (Zhang et al., 2023a) 41.81 68.31
RepoCoder + FragRel 43.00 69.07

Table 2: Performance evaluation on api invocation com-
pletion task of RepoEval (Zhang et al., 2023a) using
Codellama-34b (Roziere et al., 2023).

mentioned previously, (b) "Continuation" requires
the model to finish a further task about talked top-
ics, (¢) "Conjunction” requires answering questions
involving multiple topics existing in the dialog.
There are 54 test samples, 18 for every type.

Metrics. Following the origin benchmark (Lu
et al., 2023), we assess the generated response us-
ing LLM-as-a-judge method (Zheng et al., 2023),
where GPT4 is instructed to check the faithfulness
of the model response and produces a 1 ~ 100 inte-
ger score. We utilize exactly the same testing setup
(including prompt format, GPT4 version, hyperpa-
rameters, etc. ) as (Lu et al., 2023).

Baselines. We consider the ChatGPT-based base-
lines reported in MemoChat (Lu et al., 2023), in-
cluding various external memory enhanced frame-
works (Zhong et al., 2023; Lee et al., 2023). In ad-
dition, we introduce a dense retrieval augmentation
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Auto-rated Score by GPT4-4K (1-100)

Method

Retrospection Continuation Conjunction Average
ChatGPT-2K 52.11 55.33 48.22 51.89
MPC-ChatGPT (Lee et al., 2023) 53.00 61.22 49.33 54.52
MemoryBank-ChatGPT (Zhong et al., 2023) 23.39 55.28 48.67 42.44
MemoChat-ChatGPT (Lu et al., 2023) 66.28 73.50 72.50 70.76
MemRetrieval-ChatGPT 81.17 74.56 69.39 75.04
MemRetrieval-ChatGPT + FragRel 81.56 77.89 82.17 80.54

Table 3: Performance comparison on MTBench+ (Lu et al., 2023).

baseline, named MemRetrieval-ChatGPT. Follow-
ing previous work (Lu et al., 2023), we constraint
the temporary context length as 2K tokens. Sec-
tion. B.3 presents more implementation detail.

Relation Integration Details. Based on
MemRetrieval-ChatGPT, we integrate the context
structure relations defined in Equation. 7. We set
wyre; = 0.8 and a = 0.5 in our experiments.

Inference Expense Comparison. Approxi-
mately, MemoChat (Lu et al., 2023) consumes
about 1M input tokens and 170K output tokens.
MemRetrieval (+FragRel) costs about 680K input
tokens and 65K output tokens. The introduced
dense retrieval framework relatively reduces about
32% input tokens and 62% output tokens cost.

Performance Comparison. Table 3 presents the
experimental results. Utilizing the same 2K tem-
porary context length, the introduced MemRe-
trieval achieves comparable performance to Mem-
oChat (Lu et al., 2023). Our fragment relations
augmented methods consistently outperform all
baselines, validating the effectiveness of using frag-
ments relations on the long-term chatting task.

5 Conclusion

This work focuses on the challenge of isolated frag-
ment processing in existing External Memory aug-
mented Large Language Models (LLMs), propos-
ing and formulating the fragment-level relations
informed by intricate relations found within di-
verse long contexts. And we propose an effica-
cious method to integrate these fragment-level rela-
tions across distinct types of texts. Comprehensive
experiments conducted over a range of long text
processing tasks attest that the utilization of such
fragment-level relations indeed enhances the per-
formance of LLMs in various scenarios. We hope
our findings will inspire further investigations into
External Memory enhanced LLMs.

Limitation

Despite notable enhancement on external memory
augmented LLMs through integrating fragment-
level relations, the current implementation still suf-
fers the following limitations:

1. Manual relation definitions and empirical param-
eter selection: The relation definitions as outlined
in Equations 6, 7, 8 are empirically defined, which
limits their generalizability. Additionally, the op-
timal values for relation parameters (w,¢; and «)
vary based on text types, fragment lengths, and rela-
tion categories. We are, thus, limited to empirically
selecting parameters that are good but not entirely
optimal. This problem may be resolved through au-
tomatic relations definition based on LLM-driven
optimization strategies.

2. Inapplicability to arbitrary retrieval methods:
The relation incorporation method introduced in
Section 3.3 only applies to retrieval methods that
rely on fragment scores, thus neglecting other meth-
ods, such as generative retrieval. This limitation is
worth further investigation in future work.

3. Limited validation: Although we have substan-
tiated the advantages of fragment-level relations
through numerous long text processing tasks such
as long story understanding, repository-level code
completion, and memory-enhanced chatbot, we
still recognize the necessity for validation on more
extensive and complex tasks, such as academic
material library understanding with near-infinite
length of context, and multi-agents interactive tasks
with more complex fragment-level relations in the
external memory of LLMs.
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A Code Relation Calculation Details

Code Repository Graph G Construction. The
code repository graph is created with the follow-
ing steps: (1) For a specific code repository, we
first construct the code syntax tree for every code
source file using tree-sitter | (edge weight is set as
0.5). (2) In addition, we construct the file directory
tree where every node corresponds to a file or di-
rectory in the repository (edge weight is set as 0.3).
(3) Next, we connect the root node of every code
syntax tree with its counterpart file node on the file
directory tree (edge weight is set as 1.0), obtain-
ing the code repository parsing tree. (4) Finally,
we create node connections (edge weight is set as
0.8) between every function invoking node and its
corresponding function definition node (including
both in-file invoking and cross-file invoking).

Distance calculation. On code repository graph
g, the edge weight is set according to the edge
types (a connection between files, a connection
between in-file code syntax node, efc. ), and con-
strained in [0, 1].

The length of a path through multiple nodes is
defined as the product of the weights of all edges
on the path, thus a longer path will have a smaller
weight. The relation strength Dis(g;’, g;*) of the
relationship between two nodes is defined as the
weight of maximum weight path between the two
nodes g;" and g;". We calculate Dis(-, -) via the
Dijkstra algorithm in our experiment.

B Framework Implementation Details

B.1 Long Story Understanding Details

Prompt Template. We provide the prompt tem-
plate used in the experiment of long story under-
standing in Prompt. 1.

Retrieval. We take same fragment splitting and
embedding calculation method as LongBench (Bai
et al., 2023). Contriever (Izacard et al., 2021) is
used as the text embedding model. We experiment
different fragment length (500 and 800 words) for
different context length limitations.

LLM Inference. In the experiment, same context
content are provided for different LLMs. The detail
prompt template slightly varies in different LLMs
according to their training template. For example,
the prompt is covered with "[INST]" and "[/INST]"

"https://tree-sitter.github.io

for Llama2. The temperature is set as 1.0 during
inference.

B.2 Code Completion Framework Details

Prompt Template. We provide the prompt tem-
plate used in the experiment of repository-level
code generation in Prompt. 2.

Retrieval. Every fragment consists of exactly S,
lines of code and adjacent fragments have S over-
lapped lines of code. We set .S,, = 20 and S; = 10
same as Zhang et al. (2023a). Following Re-
poCoder (Zhang et al., 2023a), the BM25 (Robert-
son and Zaragoza, 2009) is used for retrieval. The
fragments with top 10 similarity scores to the com-
pleted code context are taken as retrieved results
every time.

LILM Inference. We employ Codellama-
34b (Roziere et al., 2023) with 4K context
length as the base LLMs in our experiment, and
exactly the same prompt template as used in
RepoCoder (Zhang et al., 2023a).

B.3 Memory-enhanced Chatbot Details

Prompt Template. We provide the prompt tem-
plate used in the experiment of chatbot in Prompt.
3 (for inference) and Prompt. 4 (for evaluation).

Retrieval. In MemRetrieval-ChatGPT (+Fra-
gRel), every fragment consists of exactly one turn
of the dialog. The text embedding is calculated
using the text-embedding-ada-002 model. Every
time we load related historical fragments with top
8 similarity scores to the recent dialog (last turn of
dialog and latest user prompt). Additionally, the
retrieved fragments are reordered according to their
chatting time.

LLM Inference. Same as MemoChat (Lu et al.,
2023), we use the GPT-3.5-Turbo as the base LLM
for inference, and the context length is constrained
to 2K tokens. In the initial rounds of conversation,
all historical records are directly inputted into the
model. Once the length of the historical record
exceeds 1K tokens or the conversation rounds sur-
pass 10, the historical chat content will be stored in
external memory. Subsequently, each conversation
will load relevant fragments to the recent chatting
context from the external memory.
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Prompt 1: Prompt template in the experiment of long story understanding.

You are given a story, which can be either a novel or a movie script, and a question
Answer the question asconcisely as you can, using a single phrase if possible.
Do not provide any explanation.

Story: {context}

Now, answer the question based on the story asconcisely as you can, using a single
phrase if possible. Do not provide any explanation.

Question: {input}

Answer :

Prompt 2: Prompt template in the experiment of code generation.

# Here are some relevant code fragments from other files of the repo:

# the below code fragment can be found in:
H oxxx, py

[CURRENT_FILE_CONTENT]

Prompt 3: System prompt used in the experiment of chatbot.

You are an intelligent dialog bot. You will be shown Related Evidences supporting
for User Input, and Recent Dialogs between user and you. Please read, memorize,
and understand given materials, then generate one concise, coherent and helpful
response.

Prompt 4: Prompt template for evaluating the generated results with GPT-4.

You are an impartial judge. You will be shown Related Conversation History, User
Question and Bot Response.

Related Conversation History
[RCH_0]

User Question
[uQ_11]

Bot Response
[BR_2]

Please evaluate whether Bot Response is faithful to the content of Related
Conversation History to answer User Question. Begin your evaluation by providing
a short explanation, then you must rate Bot Response on an integer rating of 1
to 100 by strictly following this format: [[rating]].
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Context Length Method F1 Score

Temporary Memory based LLMs

GPT-3.5-Turbo-16k 23.60
ChatGLM3-6B-32k 26.00
LongChat-v1.5-7B-32k 16.90
XGen-7B-8k 18.00
InternLM-7B-8k 12.10
Vicuna-v1.5-7B-16k 19.40
Llama2-7B-chat-4k 18.74
Hierarchical Memory based LLMs
1K No-FragRel-ChatGLM-C500 18.81
1K A-FragRel-ChatGLM-C500 18.32
1K B-FragRel-ChatGLM-C500  19.71 F Ablation on o Ablation on w;.;
ragments
1K No-FragRel-ChatGPT-C500 17.19 F1 Score w,¢;  F1 Score
1K B-FragRel-ChatGPT-C500 17.61 No-FragRel - 2501 j 2501
1K No-FragRel-Llama2-C500 15.75
1K B-FragRel-Llama2-C500 1730 75K-G500 0.1 2645 0.1 2615
7.5K-C500 0.2 27.73 0.2 25.81
2K No-FragRel-ChatGLM-C500  20.47 75K-C500 0.3 27.57 03 26.75
5112 gzgzgﬁgzgﬁzﬁnggg ;gé; 75K-C500 04 2682 04 2652
2K No-FragRel-ChatGPT-C500 20:15 7.5K-G500 05 26.15 0.5 26.67
2K B-FragRel-ChatGPT-C500  20.20 75K-C500 06 2442 06 2678
2K No-FragRel-Llama2-C500  17.44 7.5K-C500 0.7 23.99 0.7 26.38
2K B-FragRel-Llama2-C500 18.02 7.5K-C500 0.8 25.20 0.8 25.24
4K No-FragRel-ChatGLM-C500  22.32 7-5K-C300 09 24.43 09 25.34
4K A-FragRel-ChatGLM-C500 22.90 No-FragRel - 25.78 - 25.78
4K B-FragRel-ChatGLM-C500 24.43 12K-C800 0.1 27.35 0.1 27.25
4K No-FragRel-ChatGLM-C800  26.06 12K-C800 02 2732 02 26.83
4K B-FragRel-ChatGLM-C800 26.26 12K-C800 0.3 28.22 0.3 28.83
4K No—FragRel—ChatGPT—C500 25.07 12K-C800 0.4 27.43 0.4 28.85
4K B-FragRel-ChatGPT-C500 25.11 12K-C800 0.5 275 0.5 29.90
4K No-FragRel-ChatGPT-C800 22.25 12K-C800 0.6 27.00 0.6 28.48
4K B-FragRel-ChatGPT-C800 24.50
4K No-FragRel-Llama2-C500 18.22 12K-C800 0.7 27.4 0.7 27.57
4K B-FragRel-Llama2-C500 2032 I2K-C800 0.8~ 27.04 08— 27.15
12K-C800 0.9 26.35 0.9 27.63
8K No-FragRel-ChatGLM-C500 27.44
8K A-FragRel-ChatGLM-C500  26.21 No-FragRel - 26.99 - 26.99
8K B-FragRel-ChatGLM-C500 28.07 20K-C800 0.1 26.39 0.1 30.05
8K No-FragRel-ChatGLM-C800  27.38 20K-C800 0.2 27.66 0.2 29.46
8K B-FragRel-ChatGLM-C800  28.48 20K-C800 0.3 2824 03 2930
8K No-FragRel-ChatGPT-C500 24.86 20K-C800 0.4 20.46 04 28.30
8K B-FragRel-ChatGPT-C500 28.25 20K-C800 0.5 30.05 05 27.90
8K No-FragRel-ChatGPT-C800 24.06 20K-C800 0.6 28.80 0.6 28.41
8K B-FragRel-ChatGPT-C800 26.04 20K-C800 0.7 26.86 0.7 2771
12K No-FragRel-ChatGLM-C500  28.20 20K-C800 0.8 28.19 08 27.60
12K A-FragRel-ChatGLM-C500 27.56 20K-C800 0.9 27.62 0.9 27.93
12K B-FragRel-ChatGLM-C500 29.55
gi b];OFlj;agiilcch}zgfx _CCS%%O ;g;g Table 5 The qpantity value of ablati.on gtudy results on
NarrativeQA, i.e. the results shown in Figure. 4.
20K No-FragRel-ChatGLM-C500 26.71
20K A-FragRel-ChatGLM-C500 27.08
20K B-FragRel-ChatGLM-C500 28.79
20K No-FragRel-ChatGLM-C800  26.99
20K B-FragRel-ChatGLM-C800 27.93
28K No-FragRel-ChatGLM-C500  27.51
28K A-FragRel-ChatGLM-C500 28.05
28K B-FragRel-ChatGLM-C500 30.41
28K No-FragRel-ChatGLM-C800  27.28
28K B-FragRel-ChatGLM-C800 29.43

Table 4: The quantity value of experimental results on
NarrativeQA, i.e. the results shown in Figure. 3
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