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Abstract

The natural language processing field has been
evolving around language models for the past
few years, from the usage of n-gram language
models for re-ranking, to transfer learning with
encoder-only (BERT-like) language models,
and finally to large language models (LLMs)
as general solvers. LLMs are dominated by
the decoder-only type, and they are popular for
their efficacy in numerous tasks. LLMs are
regarded as having strong comprehension abili-
ties and strong capabilities to solve new unseen
tasks. As such, people may quickly assume
that decoder-only LLMs always perform better
than the encoder-only ones, especially for un-
derstanding word meaning. In this paper, we
demonstrate that decoder-only LLMs perform
worse on word meaning comprehension than
an encoder-only language model that has vastly
fewer parameters.

1 Introduction

Large language models (LLMs) are highly effective
tools for solving different kinds of problems in natu-
ral language processing (Qorib and Ng, 2023; Zhou
et al., 2023), computer vision (Liu et al., 2023a),
robotics (Zeng et al., 2023), and more. Due to
their fascinating abilities to solve a myriad of tasks,
large language models, which are dominated by
the decoder-only type, are often considered general
problem solvers (Mirchandani et al., 2023; Yao
et al., 2023). Moreover, large language models are
able to perform tasks outside of what they were
trained on with few to no examples, a phenomenon
referred to as emergent abilities (Wei et al., 2022).

Large language models have been shown to have
strong comprehension abilities (Liu et al., 2023b).
As such, it is natural to think that they are the best
for lexical semantics. However, Zhu et al. (2024)
reported that decoder-only language models strug-
gle with understanding more nuanced contextual
features. This motivates us to investigate the seman-

Figure 1: Illustration of the word sense disambiguation
and word-in-context tasks.

tic understanding of decoder-only language models
compared to the encoder-only ones.

We evaluate the semantic understanding capa-
bility of language models through the word sense
disambiguation (WSD) and word-in-context (WiC)
tasks. Word sense disambiguation is the task to
determine which sense of a word is meant in a par-
ticular context, while the word-in-context task is to
identify whether the word senses of the same word
in two sentences are the same or not (Figure 1). We
investigate both open-source decoder-only models,
Mistral (Jiang et al., 2023) and Llama 2 (Touvron
et al., 2023), and a closed-source model, GPT-41

(OpenAI, 2023). We compare the results against
a strong encoder-only model, DeBERTa-V3-Large
(He et al., 2023).

2 Methods

2.1 Encoder-Only Models

We use encoder-only language models as a binary
classifier for the word sense disambiguation and
word-in-context tasks. For the WSD task, we fol-
low the ESR (Song et al., 2021) method. The input
to the model is the concatenation of the sentence
s with the enhanced sense representation (ESR) of

1The architecture of GPT-4 is not transparent, but the
model is trained with the next token prediction task. In addi-
tion, previous GPT versions are decoder-only models.
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one candidate sense c ∈ Cw for the target word w.
The model then calculates the probability p(c) of
the candidate sense c to be the correct sense, by
projecting the hidden representation of the target
word w to the binary classes. Lastly, we choose
the sense c with the highest probability. With LM
representing an encoder LLM, σ representing the
softmax function, and the square bracket represent-
ing concatenation, the method can be written as
follows:

p(c,¬c) = σ(W × LM([s; ESR(c)])w + b) (1)

ŷ = arg max
c∈Cw

p(c) (2)

p(c,¬c) is a 2-dimensional vector denoting the
probabilities that w belongs to sense c or not. The
predicted sense ŷ is the sense with the highest prob-
ability among all senses of w.

For the WiC task, the input to the model is
the concatenation of the two sentences s1 and s2,
prepended with a [CLS] pseudo-token. The an-
swer is computed from the projection of the [CLS]
pseudo-token to the binary classes.

p(yes, no) = σ(W × LM([s1; s2])CLS + b) (3)

ŷ = arg max
c∈{yes,no}

p(c) (4)

2.2 Decoder-Only Models

We perform WSD and WiC prediction by provid-
ing a natural prompt x as input to the decoder-
only model and choosing the option y ∈ Y which
is the most probable continuation of the prompt
as the selected answer. For WSD, the prompt is
in a multiple-choice question style with the op-
tion number Y = {1, 2, ..., k} as the expected an-
swer. For the WiC task, the prompt is a question
about whether the target word in the two sentences
has the same sense and the answer options are
Y = {yes, no}. The prompt examples are given in
Figure 2.

ŷ = argmax
y∈Y

p(y|x) (5)

3 Experiments

We evaluate the models’ performance in the zero-
shot, few-shot (in-context learning), and fine-tuned
settings. All experiments of decoder-only models
use natural language prompts. For the few-shot
setting, we prepend the prompt with four examples
from the training set.

Figure 2: Example prompts for the decoder-only models.
The bolded text is the model’s expected output.

3.1 Dataset

For WSD, we utilize SemCor (Miller et al., 1994)
as the training dataset. SemCor was manually an-
notated with WordNet senses and predominantly
used in the literature for training supervised WSD
systems (Zhong and Ng, 2010; Hadiwinoto et al.,
2019; Song et al., 2021). The evaluation framework
proposed by Raganato et al. (2017) incorporates
five evaluation datasets from the Senseval/SemEval
series: Senseval-2 (SE2) (Edmonds and Cotton,
2001), Senseval-3 task 1 (SE3) (Snyder and Palmer,
2004), SemEval-07 task 17 (SE07) (Pradhan et al.,
2007), SemEval-13 task 12 (SE13) (Navigli et al.,
2013), and SemEval-15 task 13 (SE15) (Moro and
Navigli, 2015). We evaluate the models by calcu-
lating the F1 score on the concatenation of the five
test sets (ALL) standardized to the same format
and sense inventory of WordNet 3.0 (Table 1).

WiC (Pilehvar and Camacho-Collados, 2019) is
a dataset to evaluate a model’s capability in dif-
ferentiating word senses in a binary fashion. The
input is two sentences that contain the same target
word, and the label is yes if the word sense in the
two sentences is the same, and no otherwise. We
evaluate the accuracy of the models’ prediction on
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Dataset #Doc #Sent #Tok #Ann
SemCor 352 37,176 802,443 226,036
Senseval-2 3 242 5,766 2,282
Senseval-3 3 352 5,541 1,850
SemEval-07 3 135 3,201 455
SemEval-13 13 306 8,391 1,644
SemEval-15 4 138 2,604 1,022
ALL 26 1,173 25,503 7,253

Table 1: Statistics of the WSD datasets (after standard-
ization). #Doc, #Sent, #Tok, and #Ann refer to the num-
ber of documents, sentences, tokens, and annotations
respectively.

Split Instances Nouns Verbs #Word
Training 5,428 49% 51% 1,256
Dev 638 62% 38% 599
Test 1,400 59% 41% 1,184

Table 2: Statistics of different splits of the WiC dataset.
#Word denotes the number of unique words.

the standard test split (Table 2).

3.2 Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) (Liu et al.,
2022) is a set of techniques where only a small sub-
set of added or selected parameters are trained to
allow for efficient fine-tuning of LLMs. For all the
fine-tuning experiments, we use LoRA (Hu et al.,
2022), one of the most widely used PEFT meth-
ods. We use the HuggingFace (Wolf et al., 2020)
framework to fine-tune the models with LoRA. Ad-
ditionally, we utilize 4-bit quantization to optimize
memory usage and speed up inference.

3.3 Evaluation

With regard to our in-context learning experiments,
we randomly select four examples from the training
dataset. This set of four examples is subsequently
fixed to ensure the consistency of the experimental
settings, mitigating any possible influence on the
scores that may arise from variations in the quality
of in-context learning examples.

Since decoder-based models are predominantly
utilized to generate text (Fu et al., 2023), it is im-
perative to constrain their output in order to render
them suitable for classification tasks. In this re-
gard, we employ the Language Model Evaluation
Harness (Gao et al., 2023) framework to develop a
methodology for calculating the generation proba-
bility to predict each class as the subsequent token
based on the given prompt. Consequently, the class

with the highest generation probability is chosen as
the predicted response.

4 Results

On the WiC task, the zero-shot scores of Mistral
and Llama are close to random chance, probably
because the models do not understand the expected
output without any example (Table 3). On the
WSD task, Llama zero-shot performance is rel-
atively better even though the task seems harder
(multiple possible answers instead of binary). Hu
and Levy (2023) raised concerns that the zero-shot
performance of language models on metalinguistic
prompts, such as in our tasks, may not be repre-
sentative of the model’s capability. Therefore, it
is more important to focus on the few-shot and
fine-tuned results.

Mistral 7B was reported to outperform Llama 7B
and 13B across a wide range of benchmarks (Jiang
et al., 2023), but we find that Llama performs better
in almost all experimental settings. On the other
hand, GPT-4 in the zero-shot setting outperforms
both Mistral 7B and Llama 13B in their few-shot
settings. GPT-4 performs exceptionally well in the
zero-shot setting of the WSD task but only gains
very slight improvement with in-context learning.
As GPT is a closed-source model, information on
its model training procedure and data is not acces-
sible. We cannot rule out the possibility that GPT
may have been trained on the WSD task or with
WSD training and test data.

On the WiC task, fine-tuned Llama 2 performs
close to DeBERTa-V3-Large. However, the score
difference is still large when compared to the bigger
DeBERTa 1.5B, which achieves an accuracy of
76.4 on the WiC task (He et al., 2021).

5 Analysis

5.1 Importance of Encoders
We hypothesize that an encoder can help language
models understand word meanings better. As such,
we also run the WSD experiment on an encoder-
decoder LLM, Flan-T5-XL (Chung et al., 2022).
The encoder-decoder model is evaluated using the
same method as the decoder-only models (Section
2.2). Since the Flan-T5 model was instruction-
tuned, we compare it with the instruction-tuned
versions of Mistral (Mistral 7B Instruct 0.1)
and Llama 2 (Llama 2 13B Chat).

With much fewer parameters (3B), Flan-T5-XL
outperforms Mistral 7B and even Llama 2 13B by
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Model # param Setting SE07 SE2 SE3 SE13 SE15 ALL WIC

Mistral 7B 7B
Zero-shot 39.1 54.2 46.9 54.2 56.7 51.7 50.1
Few-shot 55.4 66.7 64.3 67.5 72.3 66.3 53.1
Fine-tuned 69.9 78.2 77.9 78.4 80.3 78.0 70.6

Llama 2 13B 13B
Zero-shot 51.6 62.9 64.1 64.4 69.3 63.7 50.0
Few-shot 51.9 66.8 65.4 64.4 67.9 65.1 54.9
Fine-tuned 75.2 79.8 77.7 79.1 81.7 79.1 74.1

GPT-4 N/A
Zero-shot 65.7 77.1 76.4 79.9 83.9 77.8 59.4
Few-shot 66.2 77.6 75.3 80.9 83.5 77.9 71.5

DeBERTa-V3-Large 0.4B Fine-tuned 76.9 81.0 79.8 81.0 84.9 81.0 74.4

Table 3: Experimental results on the WSD and WiC tasks, measured in F1 score and accuracy respectively. #param
denotes the number of model parameters. GPT-4 is a closed-source model with an undisclosed number of parameters.
ALL refers to the concatenation of SE07, SE2, SE3, SE13, and SE15.

substantial margins (Figure 3). Flan-T5-XL also
scores higher than the non-instruction-tuned ver-
sions of Mistral and Llama (Table 4). Raffel et al.
(2020) also previously reported that an encoder-
decoder model performs better than a comparable
decoder-only model on the WiC and other natural
language understanding tasks. This may suggest
that having an encoder architecture helps in under-
standing word meaning.

Another interesting observation is that the
instruction-tuned versions of Mistral and Llama
perform worse than their base versions without in-
struction tuning (Table 3). After being fine-tuned
on the WSD training data, the instruction-tuned
Mistral achieves an F1 score of 65.2 (versus 78.0
without instruction tuning), while the instruction-
tuned Llama achieves an F1 score of 78.1 (versus
79.1 without instruction tuning). We believe this
phenomenon can be explained by the “alignment
tax” law (Ouyang et al., 2022), which states that re-
inforcement learning with human feedback (RLHF)
comes at the cost of lower performance on certain
downstream tasks.

Figure 3: An encoder-decoder language model (Flan-T5-
XL) with fewer parameters performs better than decoder-
only language models.

Setting SE07 SE2 SE3 SE13 SE15 ALL
Zero-shot 58.5 71.1 67.1 75.0 77.1 71.0
Few-shot 58.9 71.0 66.9 74.8 77.6 71.0
Fine-tuned 75.2 80.4 77.7 79.0 82.0 79.3

Table 4: F1 scores of Flan-T5-XL on the WSD task.

5.2 Prompt Styles

For the same goal of finding the correct sense of
a word in a given context, there are different ways
of prompting a language model. We investigate
various types of prompts to utilize decoder-based
language models for the WSD task.

Multiple-choice questions (MCQ) – Inspired
by the question answering task, we formulate the
WSD task as choosing the correct sense among the
possible senses for the target word w. The prompt
starts by specifying w and a list of sense definitions
of w, followed by the sentence containing w. One
difference from the usual prompt for the multiple-
choice question answering task is that we list the
options in numbers (e.g., 1, 2, ...) instead of letters
since the number of possible senses can exceed 26.
This is the prompt style used for our main results.

Sentence completion (COMP) – Decoder-based
LLMs are pre-trained with the sentence comple-
tion task, so it is imperative to try formulating the
downstream task as a sentence completion task too.
The COMP prompt asks for the sense definition
of w given the sentence, and expects the model to
give the appropriate sense definition following the
definition from WordNet.

Binary classification (BIN) – Encoder-only lan-
guage models solve WSD by formulating it as a
binary classification, predicting whether each sense
definition of w is appropriate in the given con-
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text. The encoder models are effective in solving
the WSD task with this formulation, so we are
intrigued to investigate whether using this formula-
tion can make the decoder-based models perform
better.

The prompt examples are given in Appendix
A. We run experiments by fine-tuning Mistral and
Llama 2 on a subset of the training data that con-
tains 10,000 target words. Despite the intuitive
motivation, we find that the other prompt styles do
not increase the performance of Mistral or Llama 2
(Figure 4).

Figure 4: Performance of decoder-based models for
different prompt styles.

5.3 Low-Resource Settings
LLMs are known to be good at adapting to a new
task with few to no examples. In this experimental
setting, we investigate whether decoder-based lan-
guage models can outperform encoder-only ones
when the amount of training data is limited. We
fine-tune all models in the WSD task with subsets
of the training data containing 10,000 and 20,000
target words. We found that even with less data, the
encoder-only model still outperforms the decoder-
only models (Figure 5).

Figure 5: Performance of the language models on the
WSD task with less training data.

6 Related Work

Prior work has reported performance comparisons
of decoder-only models with encoder-only models
on different tasks. Li et al. (2023) investigate the
performance of decoder-based LLMs on financial
text analytics tasks and report that GPT-4 with in-
context learning has comparable performance to
fine-tuned encoder-only models on financial senti-
ment analysis and lower performance on financial
headline classification and relation extraction.

Yu et al. (2023) investigate Llama 2 and GPT-
4 on named entity recognition, political ideology
prediction, and misinformation detection. They
also find that GPT-4 can achieve comparable per-
formance on some of the tasks and perform worse
on others. These works support our findings that
LLMs still have limited capabilities on some down-
stream tasks, but they have not investigated LLMs’
capabilities in understanding word meaning.

7 Conclusion and Future Work

In this paper, we demonstrate that decoder-only
LLMs perform worse on word meaning compre-
hension than an encoder-only language model with
vastly fewer parameters. We report the perfor-
mance of Mistral 7B, Llama 2 13B, and GPT-4 on
the WSD and WiC tasks and show that DeBERTa-
V3-Large with vastly fewer parameters outper-
forms all aforementioned decoder-only models on
both tasks. We discuss the importance of the en-
coder in understanding word meaning by running
the same experiment on an encoder-decoder model,
Flan-T5-XL, and find that it also outperforms the
decoder-only models.

This work provides a concrete task on which
encoder-only language models can still outperform
decoder-only language models, but it is not meant
as a study on neural network architecture. Future
research can explore the optimal architecture and
the roles of the encoder and decoder in natural lan-
guage understanding. Additionally, investigating
methods to enhance the capabilities of decoder-
only models in comprehending word meaning is
also a valuable research direction.

Limitations

Our research and analysis are focused on the En-
glish language. We only evaluated recent language
models that fitted into our compute budget. Our ex-
periments were carried out using the current state-
of-the-art LLMs in both encoder-only and decoder-
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only architectures with their respective model sizes
and training data as is. As previously stated, the
decoder-only models were trained with quantiza-
tion and parameter-efficient fine-tuning, following
the common practice for decoder-only LLMs in
the literature. Our finding is based on the optimal
prompting method currently known for classifica-
tion tasks for decoder-only models. Given these
limitations, it is possible that a different conclu-
sion can be reached in the future with improved
language models, training methods, or prompting
techniques.
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A Prompt Examples

A.1 MCQ Style for WSD

• Prompt :
Given the following list of definitions of the
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Hyper-
parameter

Mistral 7B Llama 2 13B DeBERTa-V3-
Large

FLAN-T5-XL

Batch Size 32 32 16 32
Learning Rate 1× 10−5 2× 10−4 8.5× 10−6 5× 10−5

Learning Rate
Scheduler

cosine cosine linear cosine

Optimizer Paged AdamW
32bit

Paged AdamW
32bit

AdamW Paged AdamW
32bit

Max Epoch 3 3 3 3
LoRA Alpha 128 128 - 128
LoRA Rank 64 64 - 64
LoRA Dropout 0.1 0.1 - 0.1
LoRA Target
Modules

[q_proj, v_proj] [q_proj, v_proj] - [q, v]

Table 5: Hyper-parameter values for fine-tuning the language models on the WSD task.

word “art”:
1. the products of human creativity; works of
art collectively
2. the creation of beautiful or significant
things
3. a superior skill that you can learn by study
and practice and observation
4. photographs or other visual representations
in a printed publication
Which definition is used by the word “art” in
the bracket in the following sentence?
Sentence: “The (art) of change-ringing is pe-
culiar to the English , and , like most English
peculiarities , unintelligible to the rest of the
world .”
Answer:

• Expected Answer :
3

A.2 COMP Style for WSD

• Prompt :
The definition of [art] in “The [art] of change-
ringing is peculiar to the English , and , like
most English peculiarities , unintelligible to
the rest of the world .” is

• Expected Answer :
“a superior skill that you can learn by study
and practice and observation.”

A.3 BIN Style for WSD

• Prompt :
Is it correct that the definition of the word “art”
in “The (art) of change-ringing is peculiar to

the English , and , like most English peculiar-
ities , unintelligible to the rest of the world .”
is “the products of human creativity; works of
art collectively”?

• Expected Answer :
no

B Compute Budget

All zero-shot and few-shot computations are done
on a single NVIDIA A100 40GB GPU, while
all fine-tuning computations are done on a single
NVIDIA A100 80GB GPU.

Model Time
(HH:MM:SS)

Zero-shot
Mistral 7B 00:13:42
Llama 2 13B 00:25:06
Flan-T5-XL 00:28:38
Few-shot
Mistral 7B 00:59:07
Llama 2 13B 01:47:15
Flan-T5-XL 01:09:34
Fine-tune
Mistral 7B 18:20:31
Llama 2 13B 48:18:06
Flan-T5-XL 06:02:48
DeBERTa 19:34:27

Table 6: Running times.

C Experimental Details

We describe our hyper-parameters’ search intervals
for the decoder-only and encoder-decoder models
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Hyper-parameter Search Interval
Batch Size {32, 64}
Learning Rate {1, 5, 10, 20} ×

10−5

Max Epoch {3, 10}
LoRA Alpha {16, 32, 64, 128}
LoRA Rank {8, 16, 32, 64}
LoRA Target Modules {[q_proj, v_proj],

’all-linear’}

Table 7: Hyper-parameter search intervals.

in Table 7. For the encoder-only model, we fol-
low the final hyper-parameters of ESR (Song et al.,
2021). The hyper-parameter search was done man-
ually, so not all possible hyper-parameter values
were investigated for all models. We describe the
final hyper-parameters of the models in Table 5.
All our results are from single-run experiments.

D Resources

We utilize open source code for our experiments.
For the decoder-only and encoder-decoder models,
our fine-tuning code is based on the Alpaca-Lora
code base2. For the encoder-only model, we use
the ESR code base3. For the evaluation, including
the zero-shot and few-shot settings, we use the
Language Model Evaluation Harness (LM-Eval)
framework4.

2https://github.com/tloen/alpaca-lora
3https://github.com/nusnlp/esr
4https://github.com/EleutherAI/

lm-evaluation-harness/
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