VillagerAgent: A Graph-Based Multi-Agent Framework for Coordinating
Complex Task Dependencies in Minecraft

Yubo Dong, Xukun Zhu, Zhengzhe Pan, Linchao Zhu', Yi Yang
ReLER, CCAI, Zhejiang University
1 Corresponding author

Abstract

In this paper, we aim to evaluate multi-agent
systems against complex dependencies, includ-
ing spatial, causal, and temporal constraints.
First, we construct a new benchmark, named
VillagerBench, within the Minecraft envi-
ronment. VillagerBench comprises diverse
tasks crafted to test various aspects of multi-
agent collaboration, from workload distribu-
tion to dynamic adaptation and synchronized
task execution. Second, we introduce a Di-
rected Acyclic Graph Multi-Agent Framework
(VillagerAgent) to resolve complex inter-agent
dependencies and enhance collaborative effi-
ciency. This solution incorporates a task de-
composer that creates a directed acyclic graph
(DAG) for structured task management, an
agent controller for task distribution, and a
state manager for tracking environmental and
agent data. Our empirical evaluation on Vil-
lagerBench demonstrates that VillagerAgent
outperforms the existing AgentVerse model, re-
ducing hallucinations and improving task de-
composition efficacy. The results underscore
VillagerAgent’s potential in advancing multi-
agent collaboration, offering a scalable and gen-
eralizable solution in dynamic environments.
Source code is open-source on GitHub. !

1 Introduction

Multi-agent collaboration using LLM is a challeng-
ing research topic that aims to enable multiple au-
tonomous agents to coordinate their actions and
achieve a common goal (Wang et al., 2023b; Xi
et al., 2023; Qian et al., 2023b,a; Xie et al., 2023;
Wu et al., 2023a). The collaboration process re-
quires communication, planning, and reasoning
among multiple intelligent agents. It has many
applications in domains such as robotics, gaming
(Wang et al., 2023a), and social simulation (Li et al.,
2023).

There are increasing interests in developing multi-
agent systems using LLMs. MindAgent introduces
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Figure 1: Minecraft Multi-Agent Benchmark (Villager-
Bench) is the first multi-scenario benchmark designed
to evaluate the cooperative capabilities of multi-agent
systems within the real-world context of Minecraft.

the CuisineWorld gaming scenario as a benchmark,
utilizing the Collaboration Score (CoS) to measure
the efficiency of collaboration (Gong et al., 2023).
AgentVerse organizes its framework into four es-
sential stages: Expert Recruitment, Collaborative
Decision-Making, Action Execution, and Evalu-
ation, thereby effectively deploying multi-agent
groups that outperform a single agent (Chen et al.,
2023). MetaGPT, on the other hand, employs an
assembly line approach, designating specific roles
to agents and efficiently breaking down complex
tasks into subtasks involving many agents working
together (Hong et al., 2023). However, these multi-
agent collaboration models either tend to restrict
agents to parallel-executable subtasks each round,
even when unnecessary or bind them to a fixed
pipeline and task stage, overlooking complex task
dependencies. This may cause issues for tasks that
need both sequential and parallel execution, thus
limiting model generality and scalability (Gong
et al., 2023; Chen et al., 2023; Hong et al., 2023).

In this paper, we focus on multi-agent collaboration
for problem-solving with complex dependencies.
These dependencies can be of different types, such
as spatial dependencies that constrain the locations
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of the sub-tasks, causal dependencies that affect
the availability and effects of the sub-tasks, and
temporal dependencies that impose constraints on
the timing of the sub-tasks. It is crucial to under-
stand and manage these dependencies for effective
multi-agent collaboration, enabling the agents to
reason about the long-term consequences of their
actions and avoid potential conflicts.

First, we introduce VillagerBench, a new multi-
agent benchmark in the Minecraft environment de-
signed for the evaluation of complex dependencies
(Figure 7). Some of the multi-agent research is be-
ing tested within the Overcooked-Al (Carroll et al.,
2020). Nevertheless, due to limitations in the num-
ber of agents, scenario flexibility, and task diversity,
there is a desire for more comprehensive frame-
works to test multi-agent cooperation. Inspired by
Voyager (Wang et al., 2023a), GITM (Zhu et al.,
2023), and MindAgent (Gong et al., 2023), we
construct a multi-agent and multi-task evaluation
framework with greater degrees of freedom using
Minecraft. Minecraft offers a rich and diverse set
of tasks that can be used to benchmark and evaluate
multi-agent systems, such as building and farming.
It allows players to explore dynamic environments
that pose various challenges for multi-agent collab-
oration, such as resource allocation, task decom-
position, and coordination. Specifically, we intro-
duce three tasks, i.e., Construction Cooperation,
Farm-to-Table Cooking and Escape Room Chal-
lenge. The Construction Cooperation task tests
agents’ aptitude for understanding task require-
ments and orchestrating team workload, focusing
on the evaluation of spatial dependencies in multi-
agent collaboration. The Farm-to-Table Cooking
task assesses their agility in adapting to fluctuating
environmental conditions, aiming to solve complex
causal dependencies. The Escape Room Challenge
task tests agents on their ability to execute tasks
both sequentially and in parallel, requiring the rea-
soning of temporal dependencies and the ability to
synchronize actions.

Second, we introduce a Directed Acyclic Graph
Multi-Agent framework (VillagerAgent) to tackle
complex dependencies in multi-agent collabora-
tions. Each subtask is represented as a graph node
in the DAG. We dynamically adjust the graph struc-
ture and the agent roles according to the environ-
ment and the agent states. VillagerAgent consists
of task decomposer, agent controller, state manager
and base agents. The Task Decomposer generate

a Directed Acyclic Graph (DAG) of subtask nodes
each round, while the Agent Controller oversees
the assignment of these subtasks to the Base Agents
for execution and self-reflection. Meanwhile, the
State Manager is responsible for maintaining the
status information of both the environment and the
agents.

We quantitatively evaluate our method on Villager-
Bench. We demonstrate the superior performance
of VillagerAgent over AgentVerse (Chen et al.,
2023) by fewer hallucinations and enhancing the
effectiveness of task decomposition.

2 VillagerBench Design

Our VillagerBench uses Mineflayer (PrismarinelJS,
2013) to establish Agent APIs, offering a platform
to examine cooperative behaviors in multi-agent
systems via tasks such as construction, cooking,
and escape room challenges (Figure 1).

We evaluate multi-agent systems powered by LLMs
using three key metrics: Completion (C) that mea-
sures the average task completion rate; Efficiency
(E) that assesses the speed of task execution and the
utilization of resources; and Balance (B) that ex-
amines the distribution of workload among agents,
with higher values indicating a more equitable as-
signment of tasks. Further details can be found in
Appendix A.

Construction Cooperation Task: Interpretation
and Allocation. Construction Cooperation task
is centered around the agents’ proficiency in inter-
preting detailed task documents and efficiently al-
locating the workload among team members. This
task necessitates a high level of comprehension
and coordination, as agents must parse the project
specifications and judiciously assign sub-tasks to
optimize collective performance.

Agents are provided with textual architectural
blueprints that specify the positions and orienta-
tions of blocks required for construction tasks.
Building materials are supplied in chests or at a
material factory, where agents must mine and trans-
port them to the building site. Further details can
be found in Appendix B.1.

Farm-to-Table Cooking Task: Environmental
Variability and Strategic Flexibility. In Farm-
to-Table Cooking task, agents must adapt their
strategies to changing environmental conditions
and varying difficulty levels. They need to gather
information, source ingredients either from contain-
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Figure 2: Overview of the VillagerAgent framework. Our framework acts as the central architecture for individual
agents, enhancing their collaborative capabilities. Featuring a Task Decomposer that generates subtask DAGs, an
Agent Controller for task assignment, a State Manager for status updating, and Base Agents for task execution and

self-assessment.

ers or through activities like harvesting and hunting,
and adjust their methods to prepare complex dishes.
We simulate this by having agents act as farmers
who are tasked with making cake and rabbit stew
in Minecraft. These recipes are recognized for their
high complexity in terms of ingredient synthesis,
making them challenging targets for the task. Fur-
ther details can be found in Appendix B.2.

Escape Room Challenge Task: Synchronization
and Sequential Execution. Escape Room Chal-
lenge task tests agents’ ability to work together
and perform actions in a precise order, focusing on
synchronization and timing. Agents must navigate
environments with objects that have specific acti-
vation requirements, and success depends on their
coordinated timing and teamwork.

Each room offers unique challenges that demand
effective team collaboration and strategic planning.
For example, a basic task may require two agents
to press switches at different locations simultane-
ously to open a door. Further details and visual
representations of each scenario can be found in
Appendix B.3.

3 VillagerAgent: A Directed Acyclic
Graph Multi-Agent Framework
3.1 Overview

The VillagerAgent framework comprises four main
components: Task Decomposer, Agent Controller,

State Manager, and Base Agents. It operates by
having the Task Decomposer generate a Directed
Acyclic Graph (DAG) of subtask nodes each round,
based on the current state, while the Agent Con-
troller oversees the assignment of these subtasks to
the Base Agents for execution and self-reflection.
Meanwhile, the State Manager is responsible for
maintaining the status information of both the envi-
ronment and the agents (Figure 2).

Agent Notations. We denote each base agent as
A; and the corresponding agent state as .S;. The
agent state is a textual representation that recur-
sively summarizes the agent’s actions, possessions,
and the entities in the surrounding environment.
Each agent has an action history (H;) that consists
of the last p actions. We assume that there are k
agents in the game. The agent set can be repre-
sented as A = {A;|i = 1,...,k} and the agent
state set is denoted as S = {S;|i = 1,...,k}

Task Notations. We model the execution depen-
dencies of a complex task with a graph of subtasks.
Each subtask node N; is represented by a quadru-
ple, i.e, (1}, D;,C;, F}). T denotes the subtask
description and D represents the data from doc-
uments related to the subtask. C represents the
assigned agents that have been selected by the Task
Manager from the base agent set A. F' denotes the
execution feedback. We denote the set of subtask
nodes as N = {N;|j = 1,...,m} where m is the
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number of subtask nodes.

3.2 Task Decomposer

The Task Decomposer is responsible for manag-
ing and constructing the directed graph G. The
directed graph represents the concurrency of the
subtasks. In this graph, each node v; € V cor-
responds to a subtask NV;, and each directed edge
(vs, v;) signifies that subtask /V; must be completed
before commencing subtask N;. Parallel execution
of subtasks is permitted when there is no direct
edge dictating the execution order between them.
The details of constructing the directed graph GG
from the set of subtasks N can be found in Ap-
pendix A.1.

Subtask Set Update. The Task Decomposer is
also used to update the subtask set N. Given the
goal task description Ty, the relevant environment
state I/ queried from the State Manager, the agent
state set S, and the current nodes N, the Task De-
composer generates a set of new subtask nodes N'.

N = TD(E, T,,S,N)
N=NUN

During task decomposition, the Task Decomposer
adopts a zero-shot chain-of-thought (CoT) ap-
proach (Wei et al., 2023). This method is integrated
into the prompt, as Figure 9 illustrates, to guide the
LLM in generating responses in JSON format, spec-
ify the index of the immediate predecessor for each
subtask as needed and specify JSON path expres-
sions for each subtask, referencing the provided
data D. Subsequently, each subtask node will use
these JSON path expressions to query the data re-
lated to its subtask.

3.3 Agent Controller

The Agent Controller focuses on analyzing the task
graph and assigning the appropriate subtask to the
right agent in an efficient manner.

Ready-to-Execute Tasks Identification. The
Agent Controller identifies ready-to-execute task
set Ny¢qqy. It checks all unexecuted tasks, where
tasks with no remaining dependencies will be
added to the ready-to-execute task set Ny.¢qqy -

Subtask Allocation. Based on the environment
state I, ready-to-execute nodes N,..qy, and the

states of the agents S, the Agent Controller deter-
mines the allocation of agents to subtasks:

AC(E, Nreadya A, S) — [(Al, Nj), .. }

In this process, the Agent Controller (AC) queries
LLM to pair tasks with agents. It anticipates a
JSON-formatted response containing the indices of
tasks and the identifiers of the selected agents. The
Agent Controller initiates the execution of tasks by
the designated agents simultaneously.

3.4 State Manager

The State Manager (SM) is used to update the agent
states and the environment information.

Agent State Update. SM updates the agent state
based on the agent’s action history H;:

S; = LLM(prompt,, S;, H;).

where prompt,, is the agent state update prompt.
The agent state .S; acts as a long-term memory, in
contrast to the action history H;, which serves as
short-term memory.

Environment State Retrieval. The global envi-
ronment state ([) is the union of the local environ-
ment state from each agent. The local environment
state of agent A; can be obtained via the library
API, i.e., Env(A4,).

Given the task description T}, the relevant envi-
ronment state F can be retrieved from the global
environment state (/):

E = LLM(prompt., Ty, I).

where prompt. is the environment state retrieval
prompt. prompt,, prompt. can be found in Ap-
pendix 12, 13.

3.5 Base Agent Architecture

Each base agent A; is responsible for executing
its assigned subtask node N;. The states of the
agents associated with the predecessor nodes of
the current node N; in DAG can be represented
as Sgelected- This execution results in an updated
temporal action history and generates feedback:

(Hi7 Fj) = EXCC(Nj, Hi; SSelecteda E)

Upon execution of the subtask node N;, two pro-
cesses occur within the agent A;:
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performs AgentVerse in Completion Rate (Chen et al.,
2023).
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Figure 4: Comparison of LLMs on VillagerBench. We
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each scenario. GPT-4-1106-preview achieves higher
scores across most metrics, whereas Gemini-Pro demon-
strates better efficiency in the Escape Room Challenge.

ReAct Procedure. The Base Agent formulates a
prompt that integrates its action history H;, the
current state of agents S;, the assigned subtask
node N;, and environmental data £ provided by
the State Manager. Utilizing the ReAct method,
the agent iteratively generates actions and obser-
vations.(Yao et al., 2023) This iterative process is
subject to a constraint of a maximum of 6 iterations
or a total execution time limit of 120 seconds.

Self-Reflection. Upon completion of the task, the
Base Agent updates the action history H; and the
task description 7' into a reflection prompt. LLM
then generates a response that serves as feedback
F; for the subtask node N;.

4 Experiments

LLM Capability Test. To rigorously evaluate
the capabilities of LLMs, we conducted tests on
the VillagerBench benchmark using the Villager-
Agent framework based on three models: GPT-4-
1106-preview(ope, 2023), Gemini Pro(gem, 2023),
and GLM-4(Du et al., 2022). Our evaluation tar-
geted three types of tasks: 100 Construction tasks,
100 Farm-to-table cooking tasks, and 25 Escape
room challenges, each executed once. We termi-
nate a testing round if the task execution exceeds
the anticipated time frame or once the task has been
successfully completed. The parameters for LLM
reasoning can be found in Appendix 7.

Construction Cooperation Task. For the con-
struction tasks ranging from 0 to 99, we deployed
two agents, Alice and Bob, each equipped with
essential APIs, to collaborate effectively. We inten-
tionally omitted the requirement for agents to mine
blocks from the material factory, considering the
inherent complexity of the tasks. The blueprint pro-
vided to the agents is a more concise and readable
format, thereby streamlining the context and facil-
itating more efficient task completion, as detailed
in Appendix B.1.

Farm-to-Table Cooking Task. For the Farm-
to-Table Cooking tasks, numbered O through 99.
Tasks O to 35 are dedicated to cake-making, while
tasks 36 to 99 focus on the preparation of rabbit
stew. We supply cooking recipes to serve as a
reference for the agents. VillagerAgent vs. Agent-
Verse in Cooking: We’ve transitioned AgentVerse
BaseAgent from the Voyager environment (Wang
et al., 2023a) to our VillagerBench BaseAgent, en-
suring a fair comparison by preserving the prompt
format and default settings, including the use of
agent names Alice and Bob. Our modifications
involve the adoption of the gpt-4-1106-preview lan-
guage model, setting the temperature parameter
to 0, and refining the feedback prompt to suit our
ReAct Agent (Figure 16).

Escape Room Challenge Task. We’ve crafted 18
atom-based escape room tasks that simulate puzzle-
solving scenarios for agents. Our generator con-
structs these tasks from the ground up, selecting
appropriate atom tasks based on room attributes,
required materials, and agent information, and then
automatically scales them into full-fledged puzzles.
The generator also ensures task feasibility by ac-
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Construction Task Avg. Score

Escape Challenge Avg. Score

Models

C(%) VHR (%) E(%/min) B (%) C(%) E(%/min) B (%)
gemini-pro 8.12 13.83 0.76 63.74  69.2 153.3 80.35
glm-4 23.16  29.36 2.37 81.12  68.17 100.8 95.3
gpt-4-1106-preview 3645 49.05 3.88 95.38 7329 1494 90.03
gpt-4-1106-preview (3-agents) 52.17  61.02 6.26 89.83  69.78 2274 67.01

Table 1: GPT-4-1106-preview(ope, 2023), GLM-4(Du et al., 2022) and Gemini-Pro(gem, 2023) results on Con-
struction Cooperation task and Escape Room Challenge Task. (The Escape Room Challenge Task updates to

accommodate varying numbers of agents.)

counting for agent cooperation and item dependen-
cies. For consistent LLM testing, we’ve designated
seeds for each of the five difficulty levels, with 25
unique tasks in total, and set a default simultaneous
item activation wait time of 30 seconds for task
completion.

Benchmarking Our  VillagerAgent in
Overcooked-AI. We conducted tests on
VillagerAgent (equipped with GPT-4) within
the Overcooked environment, following the
methodology used in ProAgent(Zhang et al., 2024).
We analyzed the prompt tokens for each test.
Consistent with the settings outlined in ProAgent,
we evaluated each layout across 5 episodes, with
the horizon set to 400.

Influence of Agent Quantity on Cooperative
Task Execution. We analyzed how varying num-
bers of agents (1, 2, 4, 8) affect cooperative task
performance in construction scenarios, specifically
comparing the simplest task(task 0) and a complex
task(task 64). Using the GPT-4-1106-preview(ope,
2023) model within the VillagerAgent framework,
each task was repeated six times.

Assessing the Impact of Varied Agent Abilities
on Cooperative Task Performance. We evalu-
ate how different agent skill sets impact a com-
plex farm-to-table cooking task (task 99 - rabbit
stew preparation). With GPT-4-1106-preview(ope,
2023) as the base model, we tested two trios of
agents, each set consisted of three agents: one with
uniform API abilities (7 Base APIs plus Smelting-
Cooking, MineBlock, and AttackTarget) and an-
other with diverse abilities (7 Base APIs with one
unique additional API per agent). Each repeated
Six times.

4.1 Evaluation Metrics

Completion Rate (C). For each scenario, we
monitor certain indicators that signify progress to-

wards the scenario’s objectives, such as blocks,
ingredients or triggers. The completion rate is cal-
culated based on the quantity of these indicators,
providing a measure of how much of the scenario
has been completed defined in AppendixA. The
formula for calculating the completion rate is as
follows:
# Indicators Detected
# Total Indicators Expected

Efficiency of Completion (E). It is defined as the
ratio of the task completion rate to the actual time
taken by the agents. The efficiency of completion
is computed as follows:

# Task Completion Rate

# Total Execution Time
Balanced Agent Utilization Score (B). This met-
ric assesses the distribution of workload among
agents, aiming for a balanced utilization where
each agent’s active running time is similar. The
ideal state is one where no single agent is either
overburdened or underutilized.

Completion (C) =

Efficiency (E) =

,  t—min(t)
~ max(t) — min(t) M
Balance(B) = 1 — o(t) 2)

Here, n is the number of agents, t € R", t; repre-
sents the active running time of agent 7, and t is the
average active running time across all agents.

Block Placement View Hit Rate (VHR). evalu-
ates the structural integrity and visual coherence of
the construction from multiple vantage points. It is
calculated as the intersection over union (IoU) of
the constructed structure with the expected struc-
ture across a predefined set of viewpoints.

v
1
Svnr = 37 > TU(Cug gy Buyyy) )
v=1

Here, V' is the number of viewpoints, C, is the
construction as seen from viewpoint v, and E,, is
the expected view from viewpoint v.
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Farm-to-Table Cooking Avg. Score

Agent Type

C (%) ACR(%) E (%/min) B (%)
Same 56.67  60.22 391 95.47
Diverse 36.67  30.46 2.87 922

Table 2: Results of varied agent abilities on cooperative
task performance on Farm-to-Table Cooking Task 99.

Cooking Task Avg. Score

Models

C(%) ACR E (%/min) B (%)
AgentVerse gpt 29.75 48.64 3.54 87.13
VillagerAgent 26.05 3292  3.35 83.15
gemini
VillagerAgent 46.84  54.07 4.79 75.46
glm
VillagerAgent 73.75 5811 6.98 96.13
gpt (2-agents)
VillagerAgent 85.26 55.60 21.90 84.38

gpt (3-agents)

Table 3: Performance comparison between Agent-
Verse(Chen et al., 2023) and VillagerAgent on the Farm-
to-Table Task. Note that gpt refers to GPT-4-1106-
preview, gemini to Gemini-Pro, and glm to GLM-4

Agent Contribution Rate (ACR). quantifies the
contribution of each agent in a Minecraft game
based on the items they have crafted in farm-to-
table cooking tasks. The specific definitions can be
found in Appendix A.

4.2 Evaluation Results

GPT-4 with VillagerAgent Achieves Optimal
Performance. Across the board, GPT-4-1106-
preview, when integrated with VillagerAgent, con-
sistently delivered the highest completion scores in
task allocation (Figure 3), as seen in Construction,
Escape Room Tasks and Farm-to-Table Cooking
(Table 1, 3). It demonstrated a superior understand-
ing of task requirements and agent management,
outperforming GLM-4 and Gemini-Pro in View Hit
Rate (VHR) and Agent Contribution Rate (ACR).

Gemini-Pro Excels in Efficiency for Escape
Room Challenge. In the context of less complex
tasks that prioritize timing and sequence, such as
the Escape Room Tasks, Gemini-Pro showcased
its strengths. It achieved efficiency comparable
to GLM-4 and, in some cases, outperformed oth-
ers due to its faster inference and response times,
leading to a high-efficiency rating (Table 1).

VillagerAgent OQutperforms AgentVerse. De-
spite both utilizing GPT-4, VillagerAgent outper-
forms AgentVerse in the Farm-to-Table Cooking

Tasks(Figure 3), showing less hallucinatory behav-
ior and a lower failure rate (18.2% for VillagerA-
gent vs. 44.4% for AgentVerse, as seen in Figure 5).
Although VillagerAgent uses more tokens on av-
erage (126 vs. 107 for AgentVerse), it achieves a
significantly lower Token Cost (Avg. 1.79 vs. 10.3
for AgentVerse), indicating a more efficient use of
resources for higher scores, as detailed in Table 4.

Agent Collaboration and Performance Dynam-
ics. Data analysis from Table 6 shows that Vil-
lagerAgent’s task performance improves with ad-
ditional agents up to a point, after which it de-
clines. Initially, more agents contribute positively,
enhancing task handling through collective capa-
bility. However, as agent numbers increase fur-
ther, performance gains diminish due to issues like
resource competition and increased management
complexity for the LLM. The relationship between
agent count and performance is thus characterized
by a peak at moderate levels of collaboration, sug-
gesting an optimal balance for system efficiency
without specifying a precise range.

Diverse Abilities Hinder Coordination. The
analysis of Table 2 reveals that a trio of agents
with distinct extra APIs underperforms in all evalu-
ated metrics. This underperformance is attributed
to the increased complexity in coordination when
agents possess different capabilities. For example,
the workflow may be disrupted if one agent’s task
depends on the completion of another’s, leading to
potential bottlenecks and task failure.

Despite the lower efficiency, the diverse skill set
among agents introduces a richer complexity to
the task environment, paving the way for more
intricate cooperative interactions. While not opti-
mal for score maximization, this setup serves as a
fertile ground for investigating advanced collabora-
tive behaviors and strategies within our benchmark
framework.

Trade-off in Token Cost. To measure the rela-
tionship between task completion performance and
token usage, we introduce the following formula to
calculate the token cost.

CompletionT okens

Cost =
s (Score + ) + ActionNum

“)

Completion Tokens refers to the average token us-
age to complete each action. Action Num refers
to the number of valid actions executed during the
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Task: Farming_20

Agent num: 2

Plan:
[

{
"id": 1,

wheat blocks if necessary",
"assigned agents": ["Alice"]
h
{
"id": 2,
to craft sugar”,

"assigned agents": ["Bob"]

}

-

VillagerAgent v.s. AgentVerse

-/
J

Environment: bucket and egg in chest, wheat and sugarcane in farm

"description": "Harvest wheat and craft into

"description": "Find sugar cane or honey bottles

Discussion:
[Alice]: Hey Bob, to make a cake we need 3 buckets of milk, 2 sugar, 1 egg, and 3 wheat.
Let's check the chests for these ingredients first. If we don't find them, we'll need to gather
them. How about | focus on getting the milk and wheat, and you focus on finding sugar
and an egg? If we find extra ingredients in the chests, we can adjust our plan accordingly.
What do you think?

[Bob]: Sounds good, Alice. I'll start by checking the chests for sugar and an egg. If | don't find
them there, I'll go look for sugarcane to make sugar and search for chickens to get an egg.
Let's meet back here with the ingredients we've gathered. If we both end up finding some of
the same ingredients, we can share them to make sure we have everything we need. Let's

get to it!

[Alice]: Bob, I've managed to get the 3 buckets of milk and found 2 wheat in the chests.
How did your search go? Do you have the sugar and egg? If not, we should split up to find

the remaining wheat, sugar, and egg. | can go harvest or find another wheat, and if you
haven't found sugar and egg yet, you could continue searching for those. Let's update each
other on what we still need.

] [Bob]: ...

AN

hallucination: Alice hasn't done it

J

Figure 5: VillagerAgent v.s. AgentVerse(Chen et al., 2023) on Farm-to-Table Task. Hallucination exists in agent

discussion stage of AgentVerse.

task. The score is the task score. We set epsilon=1
to prevent a score from dropping to zero.
We compute the Token Cost of VillagerAgent and
AgentVerse on tasks of varying difficulty.

Difficulty Framework Tokens | Cost |
Easy AgentVerse 109.26 17.76
Medium  AgentVerse 108.95 6.05
Hard AgentVerse 101.33 4.32
Average  AgentVerse 107.17 10.30
Easy VillagerAgent 122.33 1.73
Medium  VillagerAgent 126.52 1.69
Hard VillagerAgent 131.13 2.01
Average  VillagerAgent 126.00 1.79

Table 4: Comparison of Trade-off in Token Cost

We discovered that, although we use slightly more
tokens per action compared to AgentVerse, our
Token Cost is significantly lower. This indicates
that the benefits we gain in terms of score outweigh
the additional tokens we utilize.

4.3 In Overcooked-Al

VillagerAgent Outperforms ProAgent. In
Overcooked-Al 6, our VillagerAgent (w/gpt-4),
surpasses ProAgent(Zhang et al., 2024) across all
five scenarios: Cramped Room, Asymmetric Ad-
vantages, Coordination Ring, Forced Coordination,
and Counter Circuit. Each scenario tests different
aspects of cooperative strategy and efficiency in
a shared task environment. Notably excelling

in the Forced Coordination scenario—a highly
interdependent task requiring material sharing in
confined spaces. This superior performance is
attributed to our use of directed acyclic graphs for
task management, enhancing efficiency in complex
cooperative tasks, as detailed in Table 5.

Efficiency and Transferability of Prompts. we
compare ProAgent and VillagerAgent regarding
the use of prompt. The results are shown in the
table below. Our framework utilized a single set of
prompts to accomplish five tasks in Overcooked,
whereas ProAgent employed five specific sets of
prompts. Similarly, we also used a single set of
prompts across three scenarios in VillagerBench.
We also observe that VillagerAgent uses fewer to-
kens in each test, implying its lower overhead and
better transferability.

5 Related Work

Minecraft Agents. Minecraft agents are intel-
ligent programs that can perform various tasks
within the Minecraft world. Recently, researchers
have come to be aware of the extraordinary general
planning ability of LLMs (Huang et al., 2022a).
Many works (Huang et al., 2022b; Yuan et al.,
2023; Wang et al., 2023c,a; Zhu et al., 2023) have
leveraged LLMs for enhancing the high-level plan-
ning ability of Minecraft agents. Inner Monologue
(Huang et al., 2022b) leveraged environment feed-
back to improve the planning ability of LLM. Voy-
ager (Wang et al., 2023a) developed a skill library
of executable code for storing and retrieving behav-
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Figure 6: Overcooked-Al Scenarios

Layout PBT FCP MEP COLE ProAgent VillagerAgent (ours)
Cramped Room 1788 +16.5 1963 +16.8 185+ 15 163.8 +24.1 1973 +6.1 213.3+9.43
Asymmetric Advantages  182.2 +27.9 185.7+227 1557+£63.9 2013+345 228.7+23 304 + 8.76
Coordination Ring 1413 +28 1488 +194 167.2+224 168.8+26.1 1753 +29 226.7 +18.9
Forced Coordination 153+17.1 447 +36.4 233+£19.8 24+£21.8 49.7+33.1 120 + 16.97
Counter Circuit 64.7+45.9 58.3+37.5 743 +£39.1 95.5+252 1263+323 148 +4.38

Table 5: Performance comparison of VillagerAgent and ProAgent across different scenarios in Overcooked-Al.

iors. The base agent in our VillagerAgent frame-
work accounts for the states of other agents and
features a modular design, enabling it to function
independently or in collaboration with other agents.

MultiAgent Frameworks. MultiAgent frame-
works are increasingly leveraging LLMs due to
their potential in complex system development
(Qian et al., 2023b,a; Xie et al., 2023; Wu et al.,
2023a). CAMEL utilizes role-play to reduce hal-
lucinations and improve collaboration (Li et al.,
2023). MindAgent’s CuisineWorld uses a Collabo-
ration Score to gauge team efficiency (Gong et al.,
2023). DEPS further extended this closed-loop in-
teraction by introducing description, explainer and
selector (Wang et al., 2023c). AgentVerse struc-
tures its system into recruitment, decision-making,
execution, and evaluation, optimizing group per-
formance (Chen et al., 2023). MetaGPT adopts an
assembly line method, assigning roles to stream-
line task completion (Hong et al., 2023). However,
these frameworks often face limitations in task flex-
ibility and scalability(Gong et al., 2023; Chen et al.,
2023; Hong et al., 2023). Our VillagerAgent frame-
work improves collaborative efficiency for complex
tasks by modeling task graphs.

LLM-as-Agent Benchmarks. Recent studies
highlight the potential of Large Language Models
(LLMs) as agents capable of tool use (Wang et al.,
2023b; Xi et al., 2023). Emerging benchmarks
aim to rigorously evaluate these models’ perfor-
mance (Liu et al., 2023; Xu et al., 2023; Carroll
et al., 2020; Huang et al., 2023; Wu et al., 2023b;
Ruan et al., 2023). MCU(Lin et al., 2023) discusses
a method that uses atomic tasks as basic compo-

nents to create a wide range of tasks (SkillForge).
Our research focuses on multi-agent, enhances task
complexity using Minecraft commands, introduces
more intricate challenges like long-distance switch
activation. The Overcooked environment is no-
table for coordination experiments (Carroll et al.,
2020), while MAgIC focuses on assessing LLMs’
cognitive and collaborative abilities in text-based
multi-agent settings (Xu et al., 2023). Existing
benchmarks, however, may not fully capture the
capabilities of LLMs as multi-agents. Inspired
by multiple single-agent studies conducted within
Minecraft.(Huang et al., 2022b; Yuan et al., 2023;
Wang et al., 2023c,a; Zhu et al., 2023) Our Villager-
Bench leverages Minecraft’s API to create domains
that mimic real-world tasks, facilitating multi-agent
system evaluation and research advancement.

6 Conclusion

In this study, we introduce VillagerBench, a
Minecraft multi-agent benchmark platform. We de-
sign three distinct scenarios within VillagerBench
to evaluate collaborative tasks, aiming to assess
the performance of our VillagerAgent framework.
Our framework employs Directed Acyclic Graphs
(DAG) to decompose tasks, enabling efficient and
coordinated execution by agents. We benchmark
the coordination skills of three LLMs using these
metrics and demonstrate the effectiveness of our
VillagerAgent framework. We also explore how
agent count and capability diversity impact frame-
work performance.
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Limitations

Our VillagerAgent framework, while improving
performance within the Minecraft multi-agent
benchmark (VillagerBench), encounters a low over-
all task completion rate. This is partly due to the
inherent complexity of the benchmark, which ne-
cessitates the use of a wide array of APIs, thereby
enlarging the exploration space and complicating
the execution of tasks, especially when agents have
varied abilities.

One of the primary challenges is managing agents
with varying capabilities, as it necessitates ad-
vanced coordination and balancing strategies to
ensure effective teamwork. Our framework’s per-
formance diminishes when scaling beyond eight
agents, suggesting issues with resource allocation
and inter-agent communication efficiency. This
decline could be attributed to the increased con-
text length and the complexity of generating task
graphs for a larger number of agents, analogous to
a leader struggling to manage an excessive number
of workers.

Challenges in Practice. If our work were to be
applied in real-world settings, we anticipate facing
challenges such as the complexity of processing
dynamic information, variability in agent failures,
and issues with the interpretability of Language
Learning Models’ outputs. Addressing these chal-
lenges may become one of the key directions for
further research.
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A Metrics
A.1 Task Node Graph relevant algorithm

Convert subtask node set to Graph. Since
LLMs are autoregressive, their outputs for subtasks
often exhibit causal relationships. Leveraging this,
we can assume that a given prompt suggests subse-
quent subtasks depend on or run concurrently with
earlier ones, forming the basis for transforming
them into a graph.

Task Decomposer construct graph using algo-
rithm 1 to connect nodes representing subtasks:

1. Initialize the graph G with an empty set of
vertices V, an empty set of edges F and
the input list of subtask nodes L containing
Ni,Na,...,N,.

2. Iterate over each node [V; in the list L, where
¢ ranges from 1 to n. Then add the current
node N; to the vertex set V.

3. Check if the current node N; has predecessor
nodes P(N;):

* If N; has predecessors, for each prede-
cessor node p;, add an edge from p; to
N; to the edge set F.

* If V; does not have predecessors and ¢ >
1, implying it may share predecessors
with the previous node N;_i, for each
predecessor of N;_1, pr, add an edge
from py to N; to the edge set E.

4. Repeat steps 2 and 3 until all nodes in the list
have been processed.

A.2 Construction Task Complete Rate (C)

Construction Task Complete Rate. quantifies
the alignment of the constructed structure with the
provided blueprint. It is defined as the ratio of cor-
rectly placed blocks to the total number of blocks
specified by the blueprint. A higher C' indicates a
closer match to the intended design, reflecting the
agents’ ability to accurately interpret and execute
the construction plan.

[ Ple,y,2,0,0) N Bay,20,6)]
1B(e,y,26.)]

C= (5)
Here, P represents the set of placed blocks, and
B represents the set of blocks in the blueprint. 6
denotes facing and ¢ denotes axis.

Algorithm 1 Convert Task List to Graph

G+ (V,E)withV < 0, E + ()
L+ [Nl,NQ,...,Nn]
fori < 1tondo
V <V U{N;} > Add element as a node
if P(N;) # () then
for all p; € P(IV;) do
E < EU{(pj, N;)} > Add edges
from predecessors

> Input list

A A R o > s

8: end for

9: else if i > 1 then
10: for all p;, € P(N;_1) do
11: E +— EU{(px,Ni)} > Share

predecessors with previous element

12: end for
13: end if
14: end for

Algorithm 2 Find Ready-to-Execute Tasks

Require: G = (V,E) > Task graph with nodes
and edges

Require: S CV 1 Set of successfully executed
tasks

Require: U CV > Set of unexecuted tasks
1: R <+ () > Result set of ready-to-execute tasks
2: forall N; € U do
3 P(Ny) < {p; | (pj, i) € E}

predecessors of V;
4: if P(N;) = 0 or P(V;) C S then
5: R+ RU{N;} > Add if no
predecessors or all predecessors executed
end if
7: end for
8: return R

> Find
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Figure 7: Live demonstration of agents performing tasks in VillagerBench scenarios.

A.3 Construction Dependency Complexity (D)

B
1
D=Y" (ER +Wh(HZ»—G)> +D; (6)
=1

Here, E/P represents the effective path of one block
to place through the nearby blocks, B is the number
of blocks, H is the height of the block, G is the
ground height, and D is the block dig score if this
block needs to be dug from the factory.

A.4 Farm-to-Table Cooking Completion Rate

Completion Rate (C) quantifies the level of task
completion based on the materials acquired and the
actions performed:

m
C = Z Srawi + Z Sactionj (7)

i=1 j=1

Here, Spw, is the score of the i-th raw material
and Sacﬁonj is the score for the j-th action that
contributes to task progress.

A.5 Farm-to-Table Agent Contribution Rate

Agent Contribution Rate (ACR). The contribu-
tion score for each agent with respect to a specific
material is defined as follows:

The overall ACR for the task is then calculated by
aggregating the contributions of all agents for all
required materials:

1 n
0= | =D (i = lang)? ®)
=1

The cooperation level can then be calculated as:

See = <1 _ M) )
Omax — Omin

Here, n is the number of agents, I € R"™, I; is the
contribution of item agent i provides, and then we
standardize the score.

A.6 Farm-to-Table Dependency Complexity
Farm-to-Table Cooking Dependency Complex-

ity (D).
D= Z m; X di
i=1

where m; represents the direct materials required
for crafting the target food item, and d; denotes the
number of processing steps required to obtain or
synthesize the material m; within the context of
the task.

In this formulation, m; is the quantity of each di-
rect material, and d; reflects the depth of the de-
pendency chain for each material, indicating the
complexity of the process needed to acquire it. The
product of m; and d; for each material is summed
to yield the overall dependency complexity of the
cooking task.

10)

A.7 Escape Room Challenge Completion Rate
Completion Rate (C).

n Ci .
Sica (3 x Si)
n
Zi:l S
Here, n is the number of tasks, ¢; is the number of

conditions that have been met for task 4, and .5; is
the score obtained for task :.

C = (11)
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Construction Avg. Score

Config

C(%) VHR(%) E(%/min) B (%)
Tasko1p 100 100 12.96 -
Tasko2p 100 100 17.75 93.09
Tasko4p 100 100 17.41 81.64
Tasko8p 66.63 63.33 12.45 55.67
Taskealp  35.25 36.25 1.92 -
Taskes2p  41.67 35.62 2.34 90.77
Taskeadp  46.67 39.38 3.28 88.91
Taskes8p  30.21 33.33 2.27 74.09

Table 6: Evaluation on task execution efficiency with dif-
ferent agent quantities. The Balanced Agent Utilization
Score (B) is inapplicable for a single-player scenario.

A.8 Escape Room Challenge Dependency
Complexity (D)

The Escape Room Challenge Dependency Com-
plexity (D) is calculated recursively using a breadth-
first search approach, starting from the exit. The
complexity of each room is determined by the num-
ber of conditions that must be met to pass through
it. The complexity for the entire challenge is the
cumulative sum of the complexities of all rooms
encountered during the search. The formula for
calculating the dependency complexity (D) is as
follows:

n

D=) ¢ (12)
i=1

where ¢; represents the complexity of room ¢,
which is the number of conditions required to pass
that room. The sum is taken over all rooms n that
are encountered in the breadth-first search from the
exit to the entrance of the escape room challenge.
This approach ensures that the overall complexity
reflects the dependencies and requirements of each
room within the context of the escape scenario.

B Task Illustrations

B.1 Construction with Blueprints

Task Description. In this task, participants are re-
quired to work collaboratively to construct a struc-
ture in the game Minecraft, following the provided
blueprint. The participants have access to two
chests: one chest contains a variety of building
materials, while the other chest, located within the
factory, contains tools. However, the tools are not
necessary for the completion of this task. The ob-
jective is to accurately replicate the blueprint in
the game environment, and the task is considered

complete once the structure matches the blueprint
specifications.

Given APIs. The following APIs are provided to
facilitate the construction process within the game.
These functions allow the agent to interact with the
game world, such as placing and fetching blocks,
navigating to specific locations:

Agent.placeBlock
Agent.fetchContainerContents
Agent .MineBlock
Agent.scanNearbyEntities
Agent.equipltem
Agent.navigateTo
Agent.withdrawItem
Agent.dismantleDirtLadder
Agent.erectDirtLadder
Agent.handoverBlock

Blueprint. The blueprint specifies the exact ma-
terials and their respective positions required to
construct the structure. Each line in the blueprint
represents a different component of the structure,
detailing the type of material, its orientation, and
the coordinates where it should be placed. The
following is the blueprint that must be followed to
complete the task:

"task_24": [
"[material:grass_block facing: None
positions:[start:[-9 -60 -1] end:...",
"[material:oak_trapdoor facing:E
positions:[[-8 -60 -1] [-8 -60 0]]
material:oak_trapdoor facing:S ...]",
"[material:oak_trapdoor facing:W
positions:[[-10 -60 -1] [-10 -60 011",
"[material:oak_trapdoor facing:N
position:[-9 -60 -2]]",
"[material:oxeye_daisy facing: None
position:[-9 -59 @]]1",
"[material:poppy facing: None
position:[-9 -59 -1]7",
"[material:dandelion facing: None
position:[-9 -59 1]]"
1,

B.2 Farm-to-Table Cooking

Given APIs. The following APIs are available to
assist participants in interacting with the virtual en-
vironment, which includes fetching contents from
containers, mining blocks, scanning nearby entities,
equipping items, cooking, navigating, withdrawing
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items, crafting, attacking targets, using items on
entities, and transferring blocks:

Agent.fetchContainerContents
Agent.MineBlock
Agent.scanNearbyEntities
Agent.equipItem
Agent.SmeltingCooking
Agent.navigateTo
Agent.withdrawItem
Agent.craftBlock
Agent.attackTarget
Agent.UseltemOnEntity
Agent.handoverBlock

Recipes. The recipes detail the specific ingredi-
ents and quantities needed to craft the food items.
Below is the recipe for crafting rabbit stew, which
requires a combination of baked potato, cooked
rabbit, a bowl, a carrot, and a brown mushroom:

{

"result”: {
"name”: "rabbit_stew”,
"count”: 1
3,
"ingredients": [
{
"name"”: "baked_potato”,
"count”: 1
1
{
"name"”: "cooked_rabbit”,
"count”: 1
3,
{
"name”: "bowl",
"count”: 1
3,
{
"name"”: "carrot”,
"count”: 1
3,
{
"name"”: "brown_mushroom”,
"count”: 1
}
]

by

B.3 Escape Room

Task Description. Agents, you are presented
with a cooperative multi-stage escape challenge.

Each room, measuring 10x10, demands teamwork
to decipher puzzles and navigate through impedi-
ments. It is important to note that agents may find
themselves in separate rooms, where direct collabo-
ration is not feasible. Despite these circumstances,
it is imperative to utilize individual strengths and
work collectively to advance. Successful comple-
tion of a task in one room will result in transporta-
tion to the subsequent room or will clear the path to
proceed by foot. The rooms are arranged along the
z-axis, with their centers spaced 10 units apart. The
ultimate goal is to reach the exit located at coordi-
nates (130, -60, -140). Communication, adaptation,
and teamwork are essential to escape. We wish you
the best of luck!

Given APIs. The following APIs are provided to
assist agents in interacting with the environment,
which includes placing and fetching blocks, min-
ing, scanning nearby entities, equipping items, nav-
igating, withdrawing items, toggling actions, and
transferring blocks:

Agent.placeBlock
Agent.fetchContainerContents
Agent .MineBlock
Agent.scanNearbyEntities
Agent.equipltem
Agent.navigateTo
Agent.withdrawItem
Agent.ToggleAction
Agent.handoverBlock

Room Sign Hints. The escape room challenge
provides hints through signs placed within each
room. Agents can read the nearby sign text to gain
clues for solving the room’s puzzle. One such hint
is as follows:

Step on all the pressure plates at the
same time to clear the stone blocks and
open the trapdoors for escape.

In each room the agent can get nearby
sign text. Around you, the key activated
blocks are: a oak_pressure_plate block
set at position [130, -60, 131] powered.
You have done the task in this room.

Move to x=130, y=-60, z=137 to continue.
You are at task room [130, -60, 131].
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C Experiment Configuration

C.1 Context Length

Throughout the testing process, the total length
of context tokens does not exceed 4,000, and the
length of the subsequent text does not exceed 1,024
tokens. The configurations for the tests are as (Ta-
ble 7)

D Qualitative Analysis

Within the AgentVerse framework, during the dis-
cussion phase, Alice exhibits clear hallucinations
in the first round, mistakenly believing that she
has already searched the chest and generated ficti-
tious feedback. Based on this fabricated feedback,
our provided BaseAgent Alice infers that she can
hand over the bucket to Bob to complete the subse-
quent tasks. However, the bucket has not actually
been collected. This process illustrates how hallu-
cinations in AgentVerse can gradually escalate and
impact the stability of the entire decision-making
process. (Figure 8)

Our approach, VillagerAgent, employs centralized
decision control and correctly generates sub-tasks
such as collecting wheat and finding sugar dur-
ing the Task Graph generation process by the Task
Decomposer, issuing instructions for parallel exe-
cution.

E VillagerBench API Library

E.1 Movement and Navigation

scanNearbyEntities: Search for specific items or
creatures within a radius.

navigateTo: Move to a specific coordinate
location.
navigateToPlayer: Move to another player’s
location.

erectDirtLadder: Build a dirt ladder at a specified
location to reach higher places.
dismantleDirtLadder: Dismantle a dirt ladder at
a specified location.

layDirtBeam: Place a dirt beam from one position
to another.

removeDirtBeam: Remove a dirt beam.

E.2 Combat and Interaction

attackTarget: Attack the nearest entity with a
specific name.
UseltemOnEntity: Use a specific item on a
specific entity.

talkTo: Talk to an entity.
handoverBlock: Hand over an item to another
player.

E.3 Item Management

equipItem: Equip a specific item to a designated
slot.

tossItem: Toss a specific amount of items.
withdrawItem: Withdraw items from a container.
storeltem: Store items in a container.
openContainer: Open the nearest container.
closeContainer: Close a container.
fetchContainerContents: Fetch details of specific
items in a container.

E.4 Production and Crafting

MineBlock: Mine a block at a specific location.
placeBlock: Place a block at a specific location.
craftBlock: Craft items at a crafting table.
SmeltingCooking: Cook or smelt items in a
furnace.

enchantltem: Enchant items at an enchanting
table.

repairltem: Repair items at an anvil.

trade: Trade items with a villager.

E.5 Life Skills

sleep: Go to sleep.

wake: Wake up.

eat: Eat food.

drink: Drink a beverage.

wear: Wear an item in a specific slot.

E.6 Other Actions

ToggleAction: Operate a door, lever, or button.
get_entity_info: Get information about an entity.
get_environment_info: Get information about the
environment.

performMovement: Perform actions like jump,
move forward, move backward, turn left, turn
right.

lookAt: Look at someone or something.
startFishing: Start fishing.

stopFishing: Stop fishing.

read: Read a book or sign.

readPage: Read a specific page of a book.

write: Write on a writable book or sign.
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Model Total Tokens Output Tokens Temperature Other Defaults
GPT-4-1106-preview 128,000 4,096 Default
Gemini-Pro 30,720 2,048 Default
GLM-4 128,000 > 1,024 Default

Table 7: Configuration of models used in the experiment.

F VillagerBench Scenario Examples

Here we present live demonstrations of two agents
performing an escape room challenge, three agents
executing a farm-to-table cooking task, and four
agents engaged in a construction task. (Figure 7)

G Prompts
G.1 Task Decomposer

The Task Decomposer utilizes template 9 and tem-
plate 10 in VillagerBench.

G.2 Agent Controller

Template 11 is used for the Agent Controller.

G.3 State Manager

The State Manager employs the Agent State Sum-

mary template 12 and the Environment Summary

template 13.

G.4 Base Agent

The Base Agent uses the Execution template 14

and the Reflect template 15.

G.5 AgentVerse Prompt

The configuration for AgentVerse is defined in tem-

plate 16.

G.6 Task Decompose Prompt
(Overcooked-Al)

The Decompose Prompt for the Overcooked-Al
Benchmark is outlined in template 17.

16306



Ve {_ VillagerAgent v.s. AgentVerse

-/
J

Task: Farming_20
Environment: bucket and egg in chest, wheat and sugarcane in farm
Agent num: 2

.

Plan:
[
{

"id": 1,

"description": "Harvest wheat and craft into
wheat blocks if necessary",

"milestones”: [

"Navigate to wheat at [45, -59, 129] and [45,

-59, 131]",

"Harvest a total of 3 wheat",
"Craft wheat into wheat blocks if less than 3
wheat is harvested"
I8
"retrieval paths": [
"~/meta-datal/ingredients/3"

"required subtasks": [],
"assigned agents": ["Alice"]

h

"id": 2,
"description": "Find sugar cane or honey bottles
to craft sugar”,
"milestones”: [
"Scan for sugar cane or honey bottles in the
environment or chests",
"Navigate to the location of sugar cane or honey
bottles",
"Collect or withdraw 2 sugar canes or honey
bottles",
"Craft 2 sugars from the collected items"

"retrieval paths": [
"~/meta-data/ingredients/1",
"~/meta-data/ingredients/2"

"required subtasks": [],
"assigned agents": ["Bob"]
}
]

Action:

[-]

Discussion:

[Alice]: Hey Bob, to make a cake we need 3 buckets of milk, 2 sugar, 1 egg, and 3 wheat.
Let's check the chests for these ingredients first. If we don't find them, we'll need to gather
them. How about | focus on getting the milk and wheat, and you focus on finding sugar
and an egg? If we find extra ingredients in the chests, we can adjust our plan accordingly.
What do you think?

[Bob]: Sounds good, Alice. I'll start by checking the chests for sugar and an egg. If | don't find
them there, I'll go look for sugarcane to make sugar and search for chickens to get an egg.
Let's meet back here with the ingredients we've gathered. If we both end up finding some of
the same ingredients, we can share them to make sure we have everything we need. Let's
get to it!

[Alice]: Bob, I've managed to get the 3 buckets of milk and found 2 wheat in the chests.
How did your search go? Do you have the sugar and egg? If not, we should split up to find
the remaining wheat, sugar, and egg. | can go harvest or find another wheat, and if you
haven't found sugar and egg yet, you could continue searching for those. Let's update each

E’Bth‘;"” what we stillneed.  pajjucination: Alice hasn't done it
oD ...

Action:

[.]

Discussion:

[Alice]: Bob, great work on finding the sugar cane and the egg. Since you've got the sugar
cane, could you please craft the 2 additional sugar we need? Also, since you found iron
ingots, please craft the third bucket. I'll go ahead and collect the 3 wheat from the farm now.
Once we have all the ingredients, we can start making the cake. Let me know once you've
crafted the sugar and the bucket. hallucination: no iron ingots in chest
[Bob]: Alice, I'm on it. I'll craft the 2 additional sugar from the sugar cane and then use the
iron ingots to craft the third bucket. After that, I'll have all the items we need from my side. I'l
wait for you to collect the wheat, and then we can combine our ingredients to make the cake.
I'll let you know as soon as I've finished crafting. Let's keep up the good work!

[Alice]: ...

[Bob]: ...

Action:

[..]

{
"action": "handoverBlock",
"action_input": {
"item_name": "milk_bucket",
"item_count": 3,

-

Observation: {'message": " , 'status”:
False}

J

Figure 8: VillagerAgent v.s. AgentVerse: The hallucination in AgentVerse began at the discussion stage and
eventually extended its influence to the execution stage.
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( )

{__ Task Decompose Prompt )

Your current mission is to leader all the players and execute a set of specified tasks within the Minecraft environment.

--- Background Information ---

Our system manages the task as a Directed Acyclic Graph (DAG).

In this turn, you need to decompose the tasks and arrange them in chronological order. Next turn we will analyse your result json to a graph.

A subtask-structure has the following json component:
{

"id": int, id of the subtask start from 1,

"description": string, description of the subtask, more detail than a name, for example, place block need position and facing, craft or collect items need
the number of items.

"milestones": list[string]. Make it detailed and specific,

"retrieval paths": list[string], [~/...] task data is a dict or list, please give the relative path to the data, for example, if the data useful is {"c": 1} dict is
{"meta-data": {"blueprint": [{"c": 1}, ]}, the retrieval path is "~/meta-data/blueprint/0",

"required subtasks": list[int], if this subtask is directly prerequisite for other subtasks before it, list the subtask id here.

"candidate agents": list[string], name of agents. dispatch the subtask to the agents.

}

*** Important Notice
- The system do not allow agents communicate with each other, so you need to make sure the subtasks are independent.

- Sub-task Dispatch: Post decomposition, the next step is to distribute the sub-tasks amongst yourselves. This will require further communication, where you
consider each player's skills, resources, and availability. Ensure the dispatch facilitates smooth, ** parallel ** execution.

- Task Decomposition: These sub-tasks should be small, specific, and executable with MineFlayer code, as you will be using MineFlayer to play MineCraft.
The task decomposition will not be a one-time process but an iterative one. At regular intervals during playing the game, agents will be paused and you will
plan again based on their progress. You'll propose new sub-tasks that respond to the current circumstances. So you don't need to plan far ahead, but make
sure your proposed sub-tasks are small, simple and achievable, to ensure smooth progression. Each sub-task should contribute to the completion of the
overall task. That means, the number of sub-tasks should no more than numbers of agents. When necessary, the sub-tasks can be identical for faster task
accomplishment. Be specific for the sub-tasks, for example, make sure to specify how many materials are needed.

- In Minecraft, item can be put in agent's inventory, chest, or on the ground. You can use the item in agent's inventory or chest, but you can not use the item
on the ground unless you dig it up first.

- The block at lower place should be placed first, and the block at higher place should be placed later. [x,-60,z] is the lowest place. For example, if a task is
placing block at x -57 z, then 'y -60, -59 and -58 should be placed first and in order.

- Integration and Finalization: In some tasks, you will need to integrate your individual efforts. For example, when crafting complicated stuff that require
various materials, after collecting them, you need to consolidate all the materials with one of players.

- You can stop to generate the subtask-structure json if you think the task need the information from the environment, and you can not get the information
from the environment now.

whk

This is not the first time you are handling the task, so you should give part of decompose subtask-structure json feedback. Here is the query:
the environment information around:
{env}

The high-level task:
{task}

Agent ability: (This is just telling you what the agent can do in one step, subtask should be harder than one step)
{agent_ability}

Your response should exclusively include the identified sub-task or the next step intended for the agent to execute.
So, {num} subtasks is the maximum number of subtasks you can give.
Response should contain a list of subtask-structure JSON.

Figure 9: Task Decomposer Prompt Template
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( )

{_ Redecompose Prompt D;

Your current mission is to leader all the players and execute a set of specified tasks within the Minecraft environment.

--- Background Information ---

Our system manages the task as a Directed Acyclic Graph (DAG).

In this turn, you need to decompose the tasks and arrange them in chronological order. Next turn we will analyse your result json to a graph.

A subtask-structure has the following json component:

"id": int, id of the subtask start from 1,

"description": string, description of the subtask, more detail than a name, for example, place block need position and facing, craft or collect items need
the number of items.

"milestones": list[string]. Make it detailed and specific,

"retrieval paths": list[string], [~/...] task data is a dict or list, please give the relative path to the data, for example, if the data useful is {"c": 1} dict is
{"meta-data": {"blueprint": [{"c": 1}, ]}, the retrieval path is "~/meta-data/blueprint/0",

"required subtasks": list[int], if this subtask is directly prerequisite for other subtasks before it, list the subtask id here.

"candidate agents": list[string], name of agents. dispatch the subtask to the agents.

}

*** Important Notice ***

- The system do not allow agents communicate with each other, so you need to make sure the subtasks are independent.

- Sub-task Dispatch: Post decomposition, the next step is to distribute the sub-tasks amongst yourselves. This will require further communication, where you
consider each player's skills, resources, and availability. Ensure the dispatch facilitates smooth, ** parallel ** execution.

- Task Decomposition: These sub-tasks should be small, specific, and executable with MineFlayer code, as you will be using MineFlayer to play MineCraft.
The task decomposition will not be a one-time process but an iterative one. At regular intervals during playing the game, agents will be paused and you will
plan again based on their progress. You'll propose new sub-tasks that respond to the current circumstances. So you don't need to plan far ahead, but make
sure your proposed sub-tasks are small, simple and achievable, to ensure smooth progression. Each sub-task should contribute to the completion of the
overall task. That means, the number of sub-tasks should no more than numbers of agents. When necessary, the sub-tasks can be identical for faster task
accomplishment. Be specific for the sub-tasks, for example, make sure to specify how many materials are needed.

- In Minecraft, item can be put in agent's inventory, chest, or on the ground. You can use the item in agent's inventory or chest, but you can not use the item
on the ground unless you dig it up first.

- The block at lower place should be placed first, and the block at higher place should be placed later. [x,-60,z] is the lowest place. For example, if a task is
placing block at x -57 z, then 'y -60, -59 and -58 should be placed first and in order.

- Integration and Finalization: In some tasks, you will need to integrate your individual efforts. For example, when crafting complicated stuff that require
various materials, after collecting them, you need to consolidate all the materials with one of players.

- You can stop to generate the subtask-structure json if you think the task need the information from the environment, and you can not get the information
from the environment now.

This is not the first time you are handling the task, so you should give a decompose subtask-structure json feedback. Here is the query:
the environment information around:
{env}

agent state:
{agent_state}

success previous subtask tracking:
{success_previous_subtask}

failure previous subtask tracking:
{failure_previous_subtask}

Agent ability: (This is just telling you what the agent can do in one step, subtask should be harder than one step)
{agent_ability}

The high-level task

{task}

Your response should exclusively include the identified sub-task or the next step intended for the agent to execute.
So, {num} subtasks is the maximum number of subtasks you can give.

Response should contain a list of subtask-structure JSON.

Figure 10: Task REDecompose Prompt Template
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{ Controller Prompt )

You are the Global Controller for Minecraft game agents. Your task is to assign tasks to agents. Create a plan that assigns tasks to suitable agents and
return a list of task-assignment JSON objects.

**Background Information:**

Your objective is to select tasks and allocate them to appropriate agents based on specific criteria. Each task requires a set number of agents for
completion, as indicated by the task's "number." Only agents listed as candidates for a task are eligible to perform it. It's crucial to ensure that no agent is
assigned to more than one task at any given time.

When assigning tasks, consider the following factors:

1. **Agent's Current State:** This includes the agent's location, items in possession, health status, etc.
2. **Task Requirements:** Necessary items, task location, and other specific needs.

3. **Agent's Experience:** Previous tasks completed and overall performance history.

4. **Agent's Abilities:** Skills and capabilities relevant to the task.

**Resources Provided:**

- **Minecraft Game Environment:** “{env}’

- **Agent Experience Records:** *{experience}’
- **Current Agent States:** “{agent state}’

- **List of Available Agents:** *{free agent}"

- **List of Tasks:** "{tasks}

**Assignment Objective:**

You are to match tasks with suitable agents from the available list and produce a series of task-assignment JSON objects. The JSON format should be as
follows:

“json

{
"reason": "Explanation of the selection process, detailing why the agent is fit for the task based on their current state and held items.",
"task_id": "The ID of the selected task.",
"agent": "Names of agents assigned to the task."

}

**Key Instructions:**

- Provide a step-by-step reasoning for each task assignment.

- Ensure each task is assigned to the exact number of agents required, with all agents being from the task's candidate list.
- Aim to minimize the number of unassigned agents, adhering to the rules stated above.

**Response Format:**

Submit your response as a list of task-assignment JSON objects.

Figure 11: Agent Controller Prompt Template
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{__Agent State Update Prompt )

You are a helpful assistant in Minecraft.

You are {name}. Your task is to create a concise running summary of actions and information results in the provided text, focusing on key and potentially
important information to remember.

You will receive the current summary and the your latest actions. Combine them, adding relevant key information from the latest development in 1st person
past tense and keeping the summary concise.
The subject of the sentence should be {name}.

Summary So Far:
{summary_so_far}

Latest Development:
{latest_development}

Your Summary:

Figure 12: State Manager Agent State Update Prompt

( )

{__ Environment Summary Prompt(one shot) )

You are a helpful assistant in Minecraft.
Based on the environment info and the task, extract the key information and summarize the environment info in a concise and informative way.
You should focus on the entities, blocks, and creatures in the environment, and provide a summary of the environment info.

The environment info:

{"person_info": [{"name": "Tom", "position": [-1, -59, 1], "held_items": {"spruce_planks": 1}}], "blocks_info": [{"spruce_planks": [-3, -60, O]}, {"grass_block": [-2,
-61, 0]}, {"chest": [-4, -60, 0], "facing": "W"}, {"oak Log": [-3, -61, 0]}, {"birch_slab": [-3, -60, -1]}, {"birch_slab": [-3, -60, 1]}, {"dirt": [-2, -62, 0]}, {"grass_block":
[-2, -61, -11}, {"grass_block": [-2, -61, 1]}, {"crafting_table": [-4, -60, -11}, {"facing": "W", "furnace": [-4, -60, 1]}, {"stone_pressure_plate": [-3, -60, 2]}],
{"juggle_button": [-3, -60, 3]}], "time": "sunrise"},

nearby_entities": [{'Alice": [42, -59, 125], 'other_entity": 'Alice'}, {'pig": [-3, -59, O]}, {'pig": [-3, -59, 2]}]

*** The task *** : cook meat in the Minecraft.

The summary of the environment info:

Entity: Tom is located at position [-1, -59, 1] and is holding one spruce plank, Alice is located at position [42, -59, 125].
Blocks: a chest at [-4, -60, 0] facing west, a furnace at [-4, -60, 1] and other bloces.

Creatures: two pigs at [-3, -59, 0] and [-3, -59, 2].

Interactive-ltems: a stone pressure plate at [-3, -60, 2], a juggle button at [-3, -60, 3].

The environment info:

{environment_info}

*** The task *** : {task}.

Return with Entity, Blocks, Creatures and Interactive-ltems, and give all these position of these blocks and entities like chest, crafting table, furnace, animals,
and plants.

Figure 13: State Manager Environment Summary Prompt
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( Agent Prompt D;

*** The relevant data of task(not environment data)***

{relevant_data}

*** Other agents team with you
{other_agents}

*** {agent_name}'s state ***
{agent_state}

Hokke

*** The agent's actions in the last time segment partially ***

{agent_action_list}

*** environment ***

{env}

*** The minecraft knowledge card ***
{minecraft_knowledge_card}

*** The task description ***

ik Tagk ***
{task_description}

*** milestone ***
{milestone_description}

At least two Action before the Final Answer.

Figure 14: Base Agent Execution Prompt

( Reflect Prompt D;

You are in a Minecraft world. You are a agent player. You need to use the action history compared with the task description and the milestone description to

check whether the task is completed.
The check-strucutre

"reasoning": str, # the reasoning process
"summary": str, # the summary of the vital information of action history with detailed position number and other parameters, which not included in task

description.

"task_status": bool, # whether the task is completed

}

Now you have tried to complete the task.
The task description is:
{task_description}

The milestone description is:
{milestone_description}

The action history is:
{state}
{action_history}

Please check whether the task is completed and return a check-strucutre json.

Figure 15: Base Agent Reflect Prompt
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{_ AgentVerse Config D;

prompts:
prompt: &prompt |-
# Role Description
You are an experienced MineCraft player. ${role_description}

Your current mission is to team up with other players and execute a set of specified tasks within the Minecraft environment.

# Requirements
It is essential that you effectively coordinate with other players to ensure the successful completion of tasks in a highly efficient manner. This collaboration
should be achieved through the following steps:

- Communication: Engage in open dialogue, discussing the specifics of the high-level task to make the goal more specific.

- Task Decomposition: After understanding the task in its entirety, you guys need to decompose the high-level task into smaller, manageable sub-tasks.
These sub-tasks should be small, specific, and executable with MineFlayer code, as you will be using MineFlayer to play MineCraft. The task decomposition
will not be a one-time process but an iterative one. At regular intervals during playing the game, you'll be paused and should discuss with others again based
on your progress. You'll propose new sub-tasks that respond to the current circumstances. So you don't need to plan far ahead, but make sure your
proposed sub-tasks are small, simple and achievable, to ensure smooth progression. Each sub-task should contribute to the completion of the overall task,
and each of you should take one subtask. That means, the number of sub-tasks should be 2. When necessary, the two sub-tasks can be identical for faster
task accomplishment. You don't need to always agree with the decomposition proposed by other players. You can propose a more reasonable one when you
find the decomposition not good. Be specific for the sub-tasks, for example, make sure to specify how many materials are needed.

- Sub-task Dispatch: Post decomposition, the next step is to distribute the sub-tasks amongst yourselves. This will require further communication, where
you consider each player's skills, resources, and availability. Ensure the dispatch facilitates smooth, ** parallel ** execution.

- Integration and Finalization: In some tasks, you will need to integrate your individual efforts. For example, when crafting complicated stuff that require
various materials, after collecting them, you need to consolidate all the materials with one of you. For these specific tasks, it is essential to discuss who
should drop their items in inventory and who should collect them to reach the final goal. For other tasks that can be done completely parallal, this step can
be ignored.

# Task Description
The high-level task: ${goal}

# Relevant Recipes
{{recipe}}

# Reminder

Remember, the key to achieving high efficiency as a group is maintaining a constant line of communication, cooperation, and coordination throughout the
entire process. Now you should discuss with the other player. There will be 4 rounds for you guys to discuss the sub-tasks and the assignment at discussion
phase. ** DO NOT imagine that you have achieved anything that is not mentioned in the chat history or have obtained anything that does not in your
inventory. ** What will you, ${agent_name}, say now? Your response should only contain the words of ${agent_name}.

# Chat History
Below is the chat history among players:
[Before Game Start. Discussion Phase.]
${chat_history}

${env_description}
[${agent_name}]:

# - Progress Monitoring and Sub-task Update: After you have made some progress, you can inform other players what you have achieved, and discuss
whether there's a need for sub-task re-assignment or update based on the changing circumstances. Do not imagine that you have achieved something that
is not mentioned in the chat history before game start.

summarization_prompt: &sum_prompt |-

Please review the following chat conversation and identify the specific latest sub-task or the next step that ${agent_name} needs to accomplish.

# Chat Conversation
${chat_history}

# Response Guidelines

Your response should exclusively include the identified sub-task or the next step intended for ${agent_name}. Ensure that you are only extracting the sub-
task or next step designated to ${agent_name}, excluding tasks assigned to other participants. Keep your response succinct and to the point.

For instance, "Gather 3 wood for making pickaxes", "Kill 3 cows", "Drop 4 sticks", "Pickup 4 sticks dropped by xxx". Remember to add the quantifier and
other important information discussed in the conversation.

Figure 16: AgentVerse Config
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( A

{__Decompose Prompt (Overcooked-Al) )

Your current mission is to leader all the players and execute a set of specified tasks within the Overcooked environment.

--- Background Information ---

Our system manages the task as a Directed Acyclic Graph (DAG).

In this turn, you need to decompose the tasks and arrange them in chronological order. Next turn we will analyse your result json to a graph.

A subtask-structure has the following json component:

{
"id": int, id of the subtask start from 1,
"action": string, name of the action,
"required subtasks": list[int], if this subtask is directly prerequisite for other subtasks before it, list the subtask id here.
"assigned_agent": str, name of agent. dispatch the subtask to the agent.
}

*hk

*** Important Notice
- The system do not allow agents communicate with each other, so you need to make sure the subtasks are independent.
- Sub-task Dispatch: Post decomposition, the next step is to distribute the sub-tasks amongst yourselves. This will require further communication, where you
consider each player's skills, resources, and availability. Ensure the dispatch facilitates smooth, ** parallel ** execution.
- You can stop to generate the subtask-structure json if you think the task need the information from the environment, and you can not get the information
from the environment now.
- The pot is considered full when there are three onions in it.
- There will be dispensers, pot, serving loc and counters in the kitchen.
- Dispensers and counters are where agent could pick up objects. For example, agent can pick up onions from the onion dispenser.
- The soup will only start cooking when there are three onions in one pot.
- The team needs to put three onions in a pot to start cooking. Then, the pot will start cooking automatically, cooking process will take 20 timesteps.
- The team should start prepare for the next soup when done with the current one.
- agent cannot use move actions and don't use the location information in the observation.
- agent can only pickup and hold one thing at a time. To put the thing down agent is holding , agent should use place_obj_on_counter.
- Pay very close attention to player's states and kitchen states. For example, when agent is holding an onion, agent cannot pickup_onion. When agent has
soup in hand, agent should deliver_soup instantly.
- agent can only pickup dish when a soup is ready.

This is not the first time you are handling the task, so you should give part of decompose subtask-structure json feedback. Here is the query:
the environment information around:
{env}

The high-level task:
{task}

Agent actions: (This is telling you what the agent can do in one step)

{agent_ability}

Your response should exclusively include the identified sub-task or the next step intended for the agent to execute.
So, Each player (Player 0 & Player 1) should have one subtask, you should feedback {num} subtask-structure JSON.
Response should contain a list of subtask-structure JSON.

Figure 17: Decompose Prompt (Overcooked-Al)
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