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Abstract

Image retrieval from contextual descriptions
(IRCD) aims to identify an image within a set
of minimally contrastive candidates based on
linguistically complex text. Despite the suc-
cess of VLMs, they still significantly lag be-
hind human performance in IRCD. The main
challenges lie in aligning key contextual cues in
two modalities, where these subtle cues are con-
cealed in tiny areas of multiple contrastive im-
ages and within the complex linguistics of tex-
tual descriptions. This motivates us to propose
ContextBLIP, a simple yet effective method
that relies on a doubly contextual alignment
scheme for challenging IRCD. Specifically, 1)
our model comprises a multi-scale adapter, a
matching loss, and a text-guided masking loss.
The adapter learns to capture fine-grained vi-
sual cues. The two losses enable iterative super-
vision for the adapter, gradually highlighting
the focal patches of a single image to the key
textual cues. We term such a way as intra-
contextual alignment. 2) Then, ContextBLIP
further employs an inter-context encoder to
learn dependencies among candidates, facili-
tating alignment between the text to multiple
images. We term this step as inter-contextual
alignment. Consequently, the nuanced cues
concealed in each modality can be effectively
aligned. Experiments on two benchmarks show
the superiority of our method. We observe
that ContextBLIP can yield comparable results
with GPT-4V, despite involving about 7,500
times fewer parameters. Our code is available
at https://github.com/LHL3341/ContextBLIP.

1 Introduction

Text-to-image retrieval is a fundamental cross-
modal task that aims to search images for tex-
tual queries. Early studies relied on convolutional

∗Equal Contribution.
†Corresponding author.

Figure 1: An instance selected from a public benchmark
of IRCD, which involves six very similar contrastive
image candidates, and the query “Middle girl’s hand is
blurry and shoulder level, her eyes are almost shut, the
girl on the right is looking at the middle girl’s hand”.
The target image is the 4-th one in red rectangular box.

neural networks (CNN) (Lecun et al., 1998) and
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) to learn to extract im-
age and text features and then proceeded to align
the representations of two modalities for retrieval.
Recent proliferated large vision-language models
(VLMs), such as vision Transformers (ViTs) (Doso-
vitskiy et al., 2020), UNITER (Chen et al., 2020)
and CLIP (Radford et al., 2021), which are trained
on large-scale short text-image corpus, have made
remarkable progress for retrieving images from
sentences with few objects and simple linguistic.

However, in the real world, natural languages are
highly contextual (Fodor, 2001; Krojer et al., 2022)
with long utterances. Context, including perceptual
and temporal cues, plays a pivotal role in grounding
the implication of a linguistically complex text (Li
et al., 2023b). Figure 1 demonstrates such a case
that identifies an image from six very similar can-
didates with a grammatically complicated descrip-
tion. Two major challenges of the retrieval are: 1)
A model needs to understand nuanced textual cues,
such as “hand is blurry”, “eyes are almost shut”,
and “looking at...” across three grammatically com-
plex sentences and align them with various context
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cues in each image. 2) Long-range dependencies
among candidate images need to be captured to
perform cross-modal reasoning for further align-
ment. The above interesting and challenging task is
known as image retrieval from contextual descrip-
tions (IRCD) (Krojer et al., 2022).

Despite the great success of VLMs, they can
hardly tackle the above two challenges, and sig-
nificantly lag behind human performance. Exist-
ing VLMs applied to text-image retrieval mainly
include contrastive-based ones such as CLIP (Rad-
ford et al., 2021) and ALIGN (Jia et al., 2021),
randomly mask-based ones such as M3AE (Geng
et al., 2022) and MaskVLM (Kwon et al., 2022),
and attention-based ones such as ALBEF (Li et al.,
2021) and BLIP (Li et al., 2022). These mod-
els have some limitations. 1) The former two fo-
cus more on high-level semantic alignment, while
the fine-grained contextual cues may be largely
ignored. 2) Existing mask-based ones randomly re-
move image patches, without specifically learning
to concentrate on the key objects associated with
text tokens, e.g., “hand” and “eyes” in Figure 1. 3)
Dependencies among images are not specifically
considered.

Previous state-of-the-art NDCR (Li et al., 2023b)
proposed for IRCD divided the complex alignment
into multiple simple ones and then combined them
for final retrieval. However, the performance is
highly dependent on the candidate’s distributions
and is poor for fine-grained alignment on static im-
ages with a large variance. We observe that NDCR
can hardly capture the key contextual cues in gram-
matically complex long sentences. Further, it also
lacks zero-shot capability. Consequently, NDCR
still suffers from the two challenges of IRCD. De-
tails are discussed in Table 1 of Experiments.

To this end, we introduce ContextBLIP, a novel
doubly contextual alignment scheme for the chal-
lenging IRCD task based on BLIP (Li et al., 2022).
1) Specifically, our ContextBLIP comprises a multi-
scale adapter, a matching loss, and a text-guided
masking loss. The learnable adapter, which is in-
serted into frozen BLIP, aims to capture higher-
level and lower-level visual features of the candi-
date images. The two losses enable iterative super-
vision during the training stage, gradually allow-
ing the adapter to highlight the focal patches of a
single image to the linguistically complex textual
cues. Such a way is termed as intra-contextual
alignment that aims to tackle the first challenge is-
sue of the IRCD task. 2) Then, we further fine-tune

ContextBLIP with a temporal Transformer to learn
dependencies among candidate images, facilitating
alignment between text to multiple images. This
step is termed as inter-contextual alignment that
aims to address the second challenge issue of IRCD.
Experiments on a public benchmark show the effec-
tiveness of the proposed ContextBLIP. The main
contributions of this paper are listed as follows.

• We propose ContextBLIP, a simple yet effec-
tive method that relies on a doubly contextual
alignment scheme for IRCD. It consists of a
multi-scale adapter, a matching loss, and a
text-guided masking loss, to learn to align the
nuanced visual and textual cues, thus effec-
tively tackling the first challenge of IRCD.

• We apply ContextBLIP for the zero-shot
IRCD, and further fine-tune ContextBLIP
with a temporal Transformer to learn the de-
pendencies among different candidates, thus
properly addressing the second challenge of
IRCD.

• We conduct extensive experiments under var-
ious settings to show the superiority of our
method. Our ContextBLIP can achieve com-
parable performance with proliferated GPT-
4V (Yang et al., 2023) under various prompts.
We also evaluate our ContextBLIP on a very
recent benchmark MMVP-VLM and the re-
sults further confirm the effectiveness of the
proposed method.

2 Related Work

Vision-language models (VLMs): VLMs (Rad-
ford et al., 2021; Li et al., 2021; Wang et al., 2022;
Li et al., 2022, 2023a; Zhai et al., 2023; Fang et al.,
2023; Xu et al., 2023; Sun et al., 2023) have shown
great potential on image-text retrieval (Lin et al.,
2014; Krishna et al., 2017; Plummer et al., 2015).
However, tuning these models for new tasks is
expensive. Adapters (Houlsby et al., 2019; Gao
et al., 2021; Zhang et al., 2021; Chen et al., 2022;
Lu et al., 2023), which can be inserted into a pre-
trained VLM model, facilitate efficient adaptation
to new tasks. The key difference between our
adapter and previous ones: ours comprises mul-
tiple down-projection adapter layer (DPAL) that
connect to the same up-projection adapter layer
(UPAL). Each DPAL is inserted into distinct VLM
layers, while the UPAL resides outside of the VLM.
Such a design can effectively capture multi-level
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Figure 2: (a) Architecture of our ContextBLIP, including a BLIP-based intra-context encoder, a scorer for image-
text matching (ITM, Litm), and a Transformer-based decoder for text-guided masked image modeling (TMIM,
Ltmim). (b) The multi-scale adapter in the encoder is co-supervised by Litm and Ltmim on COCO&VG datasets,
while BLIP is frozen. (c) The learnable text-guided mask is iteratively updated under the co-supervision. (d)
Zero-shot ContextBLIP on the IRCD task. (e) Fine-tuning ContextBLIP for IRCD with the inter-context encoder.

subtle cues. While previous ones include multiple
pairs of DPAL and UPAL inserted in VLM.
Masked Image Modeling (MIM): MIM, such as
ViBERT (Lu et al., 2019) and MAE (He et al.,
2022), refers to predicting the missing pixels in an
image by using the surrounding pixels as context.
MIM has been applied for various tasks, such as ro-
bust learning (Wang et al., 2023) and generation tar-
get (Bao et al., 2021, 2022). Recent studies, such as
MaskVLM (Kwon et al., 2022), M3AE (Geng et al.,
2022), VL-BEiT (Bao et al., 2022) extend MIM
for both image and language masking. The key
difference between ours and existing ones is: we
employ a text-guided masking scheme that learns
to generate masks under iterative supervision with
two losses, thus gradually highlighting the focal
patches of a single image to the key textual cues.
While the previous ones randomly remove image
patches, without specifically learning to focus the
key visual objects associated with text tokens.

3 Our ContextBLIP

3.1 Overall Architecture

Figure 2(a) presents the overall architecture of the
proposed ContextBLIP for the challenging IRCD
task, which consists of an intra-context encoder
based on frozen BLIP, a multilayer perceptron
(MLP) module, and an image decoder. The over-
all procedure can be described in three steps. (1)
Pretraining: We first pre-train the proposed Con-
textBLIP on the large-scale COCO (Lin et al.,

2014) and VG (Krishna et al., 2017) datasets.
Aiming at tackling the first challenge of IRCD,
ContextBLIP includes three key ingredients, i.e.,
a multi-scale adapter (Figure 2(b)), and two co-
supervision losses including image-text matching
(ITM, Litm) loss and text-guided masked image
modeling (TMIM, Ltmim) loss. (2) Intra-context
Alignment: We directly apply pre-trained Con-
textBLIP for zero-shot IRCD (Figure 2(d)) on
the public benchmark (e.g., IMAGECODE), ef-
fectively aligning the nuanced visual and textual
cues. (3) Intra- and Inter-context Alignment:
Then, we further fine-tune ContextBLIP (Figure
2(e)) on an IRCD benchmark with an inter-context
encoder to learn long-range dependencies among
image candidates, thus effectively addressing the
second challenge of IRCD. Next, we detail four key
components of our method, including the multi-
scale adapter, Litm, Ltmim and the inter-context
encoder.

3.2 Multi-Scale Adapter

Our multi-scale adapter, which resides in the intra-
context encoder of ContextBLIP, aims to learn to
align nuanced visual and textual cues from tiny
areas of an image and within linguistically com-
plex descriptions, respectively. Figure 2 (b) illus-
trates the architecture of the proposed adapter. It
comprises multiple down-projection adapter layer
(DPAL) and a up-projection adapter layer (UPAL).
DPALs are inserted into different ViT layers of
frozen vanilla BLIP, while the UPAL resides out-
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side of ViT layers. All DPALs connect to the same
UPAL, such that both higher-level and lower-level
features of candidate images can be effectively cap-
tured. We give the detailed formulation as follows.

For a pair of image-text (I, T ), I ∈ Rh×w×c,
T ∈ R1×t, where h,w, c are height, width and the
number of channels of the image, t is the number
of tokens in sentence T . We split an image into
p × p patches and then augment them with posi-
tional encoding. We feed these image patches into
the m-layer ViT. The intermediate visual represen-
tations generated at the l-th layer of the ViT can
be denoted as X l = [xl1, · · · , xli, · · · , xlp2 ], where
l ∈ [1,m], i ∈ [1, p2] and xli ∈ Rd. Here d indi-
cates the representation dimension of the ViT at the
l-th layer. We feed X l into a down-project adapter
layer (DPAL) for mapping to lower-dimensional
space. The output of DPAL can be expressed as
follows,

X̃ l = DPAL(X l), (1)

where DPAL is an MLP network and X̃ l ∈ Rp2×d̃.
Here d̃ = d/δ, where δ is the downsampling rate
of DPAL in our adapter. We use the same rate for
all DPALs and obtain the output representations
from other DPALs. We aggregate these representa-
tions by simply concatenating or adding. Then, the
aggregated representations X̃ will be fed into the
proposed up-projection adapter layer (UPAL) for
up-projection mapping. The output of the UPAL
can be expressed as follows,

Y = UPAL(X̃), (2)

where Y ∈ Rp2×d and UPAL is an MLP network.
Finally, we add the output of ViT to Y to obtain

the final representations of the image for cross-
modal matching. The textual query is encoded by
frozen BERT (Devlin et al., 2019) of vanilla BLIP
and then is fed into the fusion layer. We feed the
representations of the fusion layer’s output to the
scorer of the intra-context encoder to get a match-
ing score e. By doing so, our multi-scale adapter
can facilitate fine-grained interactions between sub-
tle visual regions and linguistic concepts.

3.3 Co-supervision under Litm and Ltmim

We train the proposed adapter with two losses, i,e.,
Litm and Ltmim, that offer collaborative supervi-
sion to highlight key contextual cues in two modal-
ities. Our ContextBLIP performs two separate for-
ward computations to calculate Litm and Ltmim.
We detail them as follows.

Step 1: Computing Litm: We sequentially feed
a pair of image-text into the intra-context encoder
and the MLP-based scorer, and obtain the matching
score for the pair. The matching loss Litm can be
expressed as follows.

Litm =
1

3N

3N∑

i=1

CrossEntropy(ei, qi), (3)

where ei ∈ R2, i ∈ [1, 3N ], indicates the matching
score of the i-th image-text pair, and qi ∈ R2, i ∈
[1, 3N ], refers to the groundtruth label that consists
of 0 and 1. Here N is the training batch size. In-
spired by vanilla BLIP, we additionally generate
2N pairs of negative samples based on cosine dis-
tances to N pairs. By distinguishing much more
similar image candidates, our ContextBLIP can
learn to align the nuanced textual and visual con-
text concealed in tiny areas and within complex
descriptions.
Step 2: Generating masks and computing
Ltmim: We rely on cross-attentions outputted by
the fusion layer to generate the text-guided image
masking matrix. Figure 2 (c) demonstrates the
generation procedure. Specifically, we manually
define a mask ratio π,π ∈ [0, 1], to determine the
number of patches to be masked. Top π patches
with the highest attention scores will be masked
and then we can get the masking matrix. We re-
move the patches according to the mask matrix,
feed the masked image to the intra-context encoder,
and then use a Transformer-based decoder to re-
construct the image. The pixel-level reconstruction
loss Ltmim based on mean squared error (MSE)
for a N -size training batch can be expressed as
follows.

Ltmim =
1

N

1

µ

N∑

i=1

µ∑

j=1

S∑

s=1

MSE(yijs, ŷijs), (4)

where µ is the number of masked patches and S
is the number of pixels in each patch. Here ŷijs
and yijs refer to the original and corresponding
reconstructed pixel respectively for the s-th pixel of
the j-th masked patch in i-th instance of a training
batch.
Step 3: Iterative refinement: The total loss of our
ContextBLIP can be formulated as:

L = Litm + Ltmim. (5)

Details are available in Appendix A.3.
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We iteratively perform the above steps supervised
by the two losses to learn to update the parame-
ters of the multi-scale adapter, and refine the text-
guided matrix, allowing the proposed ContextBLIP
to gradually concentrate on the focal visual contex-
tual keys associated with the textual cues.

3.4 Inter-context Encoder
The task of image retrieval from contextual descrip-
tions (IRCD) requires understanding long-range
contextual dependencies among candidate images.
Keeping this in mind, we introduce a simple yet
effective inter-context encoder, which aims to cap-
ture rich interactions between candidate images,
as well as contextual alignment between a textual
query to multiple images. We employ a two-layer
Transformer that stacks on top of the intra-context
encoder. The underlying design principle is gen-
eral, and more advanced encoders can be used here
for inter-context alignment. Thus, we can effec-
tively tackle the second challenging issue of IRCD.

4 Experiments

4.1 Experimental Settings
We conduct experiments on four datasets, includ-
ing large-scale COCO (Lin et al., 2014) and Vi-
sual Genome (VG) (Krishna et al., 2017) for pre-
training, IMAGECODE (Krojer et al., 2022) for
zero-shot and fine-turning, and MMVP-VLM(Tong
et al., 2024) for evaluating our fine-tuned Con-
textBLIP. We pre-train ContextBLIP on 4 × A100
GPU cards, and other experiments on a RTX3090
GPU card. During the pre-training stage, we con-
figure adapter downsampling rate δ as 2, the mask
ratio π as 0.25. We use vanilla BLIP-129M check-
point as our backbone, which involves 223M pa-
rameters. We implement our model on the PyTorch
platform.

We select eight strong baselines including
CLIP (Radford et al., 2021), UNITER (Chen et al.,
2020), ViBERT (Lu et al., 2019), OFA (Wang et al.,
2022), ALBEF (Li et al., 2021), BLIP (Li et al.,
2022), BLIP-2 (Li et al., 2023a), and NDCR (Li
et al., 2023b). Note that NDCR is the previous
state-of-the-art method on IMAGECODE. We fol-
low the previous work (Krojer et al., 2022) to use
accuracy as the evaluation metric. The IMAGE-
CODE dataset involves three categorizations in the
test set, including “Video” which indicates the can-
didate images are collected from video frames, “Im-

More hyperparameters are available in Appendix A.1

Zero-shot Fine-tuned

Method Params All Video Image All Video Image

CLIP 473M 22.4 15.6 47.8 29.9 22.0 59.8
UNITER - 19.8 13.6 42.9 25.7 19.1 50.5
ViLBERT - 19.3 13.5 40.8 24.5 18.0 49.3
OFA† - - - - 27.2 21.0 52.1
ALBEF† - 27.7 15.7 73.3 - - -
BLIP† 223M 28.1 15.9 74.4 34.1 22.7 77.4
BLIP-2† 1.2B 29.4 16.3 79.2 - - -
NDCR 440M - - - 34.1 26.1 64.3

Ours 240M 31.0 18.8 77.1 35.7 24.4 78.5

Human 90.8

Table 1: Comparisons on IMAGECODE. Our model
achieves state-of-the-art accuracy, with only 2.4M more
parameters on vanilla BLIP. Baselines marked with †

indicate that we reproduced the scores as no results are
publicly available. The best and second-best results are
highlighted with bold and underline, respectively.

age” which represents the ones that are constructed
based on static images, and “All” is the hybrid of
the above two datasets.

4.2 Main Results

Zero-shot on IMAGECODE: We per-train the
proposed ContextBLIP on COCO and VG. Table
1 reports the comparisons between ours and the
baselines for zero-shot ContextBLIP on the IM-
AGECODE dataset. Equipped with our multi-scale
adapter that only involves 2.4M parameters, our
ContextBLIP achieves state-of-the-art performance
on all test instances and video frames. Compared
to the existing CLIP that uses global information
in text and images for alignment, our ContextBLIP
obtains 8.6% higher accuracy. Our method also
outperforms existing UNITER and VILBERT by
10.2% and 10.7%, respectively. The two methods
employ random masks for cross-modal alignment.
We attribute the improvement to intra-context align-
ment based on multi-scale adapter and text-guided
masking. The former learns both higher- and lower-
level visual features, and their rich interactions at
each level. The latter enables our ContextBLIP
to concentrate on focal contextual cues. We also
observe that existing BLIP-2 performs better than
ours by 2.1 points on static images, and this is not a
surprise as BLIP-2 is 50 larger than ContextBLIP.
Fine-tuned on IMAGECODE: The right side of
Table 1 reports the comparisons of our fine-tuned
ContextBLIP to baselines. Our ContextBLIP can
achieve state-of-the-art accuracy on test sets of
“All” and “Image” and this further confirms the
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Context Quantities Spatial Negation Occlusion Nuances Co-reference Meta Properties

CLIP (Zero-shot) 13.3 23.7 20.6 11.7 14.1 9.9 25.3 29.2
BLIP (Zero-shot) 15.4 30.9 27.7 11.4 16.7 11.4 28.9 12.5
Ours (Zero-shot) 17.3 39.2 36.9 19.0 19.1 11.0 37.4 25.0

CLIP (Fine-tuned) 19.2 30.9 30.5 17.3 18.6 14.8 32.5 33.3
NDCR (Fine-tuned) 21.9 30.9 31.9 25.1 23.3 18.9 30.1 37.5
Ours (Fine-tuned) 25.1 39.2 31.9 25.2 23.7 19.7 36.1 37.5

Table 2: Comparison of challenging samples in the IMAGECODE benchmark under zero-shot and fine-tuned
settings. The samples involve challenging contextual alignment such as “Context”, “Nuances” and “Co-reference”.

Image
Size Params

Questionnaire

Progress:

6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-

13

Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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MMVP
Average
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SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
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EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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MMVP-VLM Benchmark

Figure 5. Examples from MMVP-VLM. MMVP-VLM consists of image pairs across nine visual patterns. The examples in the figure are
from EVA01 ViT-g-14 model [54], one of the largest CLIP models that also fails to choose the right image given the text description.

emerged from CLIP-blind pairs (Section 3.1), (ii) whether
these visual patterns pose challenges for CLIP-based mod-
els with massive scaling up (Section 3.2), and (iii) the cor-
relation between failure patterns in CLIP models and those
in MLLMs (Section 3.3).

3.1. Visual Patterns in CLIP-blind Pairs

Having identified the CLIP-blind pairs, we summarize sys-
tematic visual patterns that the CLIP vision encoders might
consistently misinterpret. It is too abstract to directly cap-
ture systematic visual patterns in the CLIP-blind pairs.
Therefore, we turn to the questions and options from the
MMVP benchmark. With these questions, we transform ab-
stract visual patterns in images into clearer, language-based
descriptors that are easier to categorize.

In this work, we use GPT-4 [41] to categorize general
patterns by prompting it with the following:

User
I am analyzing an image embedding model. Can you go
through the questions and options, trying to figure out
some general patterns that the embedding model strug-
gles with? Please focus on the visual features and gener-
alize patterns that are important to vision models
[MMVP Questions and Options]

We identify 9 visual patterns:
☼ Orientation and Direction
Û Presence of Specific Features
L State and Condition
� Quantity and Count
, Positional and Relational Context
h Color and Appearance
Ô Structural and Physical Characteristics
k Text
� Viewpoint and Perspective

These visual patterns suggest that CLIP vision encoders

overly focus on high-level semantic understanding, over-
looking intricate details of the visual world. Full descrip-
tions of the visual patterns can be found in Appendix D.

3.2. The MMVP-VLM Benchmark

CLIP-based models have developed rapidly since the intro-
duction in the first paper [43]. We want to test whether these
visual patterns still impose challenges to the more recent
CLIP models [10, 54, 62, 66], which significantly scale up
in terms of training data and model size. In doing so, we in-
troduce a new benchmark: MMVP-VLM to systematically
study if CLIP models handle this visual pattern well.

We distill a subset of questions from the MMVP bench-
mark into simpler language descriptions and categorize
them into visual patterns. To maintain a balanced number
of questions for each visual pattern, we add a few questions,
if needed, to ensure that each visual pattern is represented
by 15 text-image pairs. Examples of pairs are shown in Fig-
ure 5. A pair is deemed correctly answered if the model can
accurately match both image-text combinations.

We evaluate MMVP-VLM on a variety of CLIP mod-
els [10, 43, 54, 62, 66]. These models vary in aspects like
size, training data, and methodology. As evidenced in Ta-
ble 1, increasing network size and training data only aids
in identifying two visual patterns – “color and appearance”
and “state and condition”. The rest of the visual patterns
continue to challenge all CLIP-based models. We also find
that the ImageNet-1k zero-shot accuracy is not a definitive
indicator of a model’s performance regarding visual pat-
terns. This underscores the necessity for additional evalua-
tion metrics, such as MMVP-VLM, to accurately assess the
model’s capabilities in areas beyond image classification.

3.3. How CLIP’s Errors Affect MLLMs

After analyzing the visual patterns that CLIP models strug-
gle with, we pose the following question: Is there a correla-
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6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.

0

10

20

30

40

50

60

70

A
cc

ur
ac

y

CLIP InstructBLIP LLaVA 1.5 Gemini GPT­4

Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them

6

MMVP
Average

DFN ViT-H-14
(Fang et al., 2023) 2242 986.1M 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3

MetaCLIP ViT-H-14
(Xu et al., 2023) 2242 986.1M 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2

EVA02 ViT-bigE-14+
(Sun et al., 2023) 2242 5044.9M 13.3 20.0 66.7 13.3 26.7 66.7 26.7 20.0 33.3 33.3

BLIP (Li et al., 2022) 2242 223M 13.3 6.7 40.0 20.0 26.7 66.7 46.7 20.0 46.7 31.9
NDCR (Li et al., 2023b) 2242 440M 26.7 40.0 60.0 26.7 13.3 86.7 33.3 20.0 26.7 37.0
ContextBLIP (Ours) 2242 240M 26.7 46.7 60.0 40.0 46.7 93.3 40.0 20.0 53.3 47.4

Table 3: Comparisons on challenging visual patterns on the MMVP-VLM benchmark. We follow the previous
work (Tong et al., 2024) to use the symbols, such as

Questionnaire

Progress:

6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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and
Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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, to indicate 9 challenging visual patterns. More
details can be found in Appendix B. The best and second-best results are marked in bold and underline.

superiority of our method. ContextBLIP outper-
forms exiting CLIP and OFA by 18.7 and 26.4
points on static images, showing the effectiveness
of both intra-context and inter-context alignment.
We also observe that the proposed ContextBLIP
performs slightly worse than the previous state-
of-the-art NDCR by 1.7 points on video frames.
However, NDCR pays more attention to the cross-
modal alignment of video frames and complex text,
while the ability of static images is largely underex-
plored. We observe that ours is better than NDCR
by 14.2 points on “Image”, with nearly half fewer
parameters. We also attribute this to the model’s
capability to handle distributions of the candidate
image, where static ones present a large variance.
Comaprison of challenging samples of IMAGE-
CODE: We compare our method with the existing
CLIP and BLIP on the 200 challenging samples
highlighted in IMAGECODE. These samples are
manually labeled with high-quality annotations. Ta-
ble 2 shows that our ContextBLIP consistently per-
forms best under the fine-tuned setting on various
scenarios, and performs best on most scenarios un-
der the zero-shot setting. These results further con-
firm the superiority of our ContextBLIP in tackling
the two challenges of the IRCD task.
Comparisons on MMVP-VLM Benchmark: We
compare our ContextBLIP with a very recent

benchmark MMVP-VLM (Tong et al., 2024),
which aims to evaluate how well a VLM model
handles various challenging visual patterns. These
manually defined patterns such as specific features,
and positional and relational context, require a
model to capture contextual details of visual cues
or perform cross-modal reasoning. Table 3 shows
that our ContextBLIP, which is fine-tuned on the
IMAGECODE dataset, achieves the best accuracy
on most of the patterns. Further, the proposed Con-
textBLIP involves much fewer parameters, e.g, the
number of parameters in MetaCLIP ViT-H-14 (Xu
et al., 2023) is nearly 25 times more than Con-
textBLIP, while average accuracy is lower than
ours by 22.2 points.

Zero-shot Fine-tuned

w/o Multi-scale Adapter 15.9 22.7
w/o Ltmim 18.2 23.0
w/o Inter-context Encoder - 23.4
ContextBLIP (Ours) 18.8 24.4

Table 4: Ablation study on the IMAGECODE dataset.

4.3 Ablation Study

We conduct an ablation study on IMAGECODE
to measure the contribution of each component to
IRCD. Table 4 reports the results. Under both zero-
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shot and fine-tuned settings, we observe that the
removal of the multi-scale adapter leads to a signif-
icant performance decrease, i.e., 2.9 points and 1.7
points, indicating the effectiveness of the adapter.
Under the fine-tuned setting, it shows that the re-
moval of the inter-context encoder leads to a 1 point
performance drop, suggesting the effectiveness of
long-range dependencies for the retrieval.

4.4 Sensitivity Analysis

We conduct experiments for sensitivity analysis on
IMAGECODE under the zero-shot setting.
Masking ratio: To evaluate how mask ratio π
affect the retrieval, we configure π as 0.25, 0.50
and 0.75, respectively. Table 5 shows lower mask-
ing can increase the accuracy, e.g., from 75.4% to
79.5%. This interesting finding on the IRCD task
does not align with previous studies that advocated
for higher masking ratios (He et al., 2022; Geng
et al., 2022; Bao et al., 2022; Kwon et al., 2022).
One possible underlying reason is the challenging
alignment in ICRD require more dense visual cues
among similar candidates.

Mask Ratio All Video Image

0.25 31.1 19.9 79.5
0.50 31.0 20.6 76.3
0.75 29.8 19.4 75.4

Table 5: Sensitivity analysis of the mask ratio π.

Position of adapter inserted: We analyze the
impact of adapters inserted into different layers
on the retrieval. We include three cases, i.e., in-
serting both down- and up-projection layers in
the top layer of BLIP, inserting down-projection
layers in 3-th, 6-th, 9-th, 12-th layers, and insert-
ing down-projection layers in each layer. Table
6 shows inserting adapters at multiple layers of
BCLIP achieved the highest overall accuracy. This
suggests there exists a tradeoff for the number of
layers to be inserted.
Downsampling rate δ: We evaluate how δ affects
the retrieval. We configure δ as 1, 2, 4, and 8,
respectively. Table 7 shows that our ContextBLIP

Layer All Video Image Params

[12] 30.4 19.4 78.1 223.6M
[3,6,9,12] 31.1 19.9 79.5 225.4M
[1-12] 30.5 19.8 77.0 230.1M

Table 6: Sensitivity analysis of the position of adapter.

Type 1 2 4 8

All 30.2 31.1 30.8 30.1
Video 19.6 19.9 20.1 19.3
Static 76.5 79.5 77.2 77.0

Table 7: Sensitivity analysis of downsampling rate δ.

achieves the best performance when δ is set as 2.
The results present a large variance, e.g., 77.0 for
δ = 8 and 79.5 for δ = 2. This suggests that a
small rate δ leads to better performance.

4.5 Case Study

Query : Two girls in the frame. The one with black hair has her hand 
covering her face.

Key contextual cue : Two girls in the frame.
PBLIP’ [0.100, 0.099, 0.100, 0.099, 0.099, 0.099, 0.101, 0.101, 0.101, 0.100] (×)
POurs’ [0.092, 0.066, 0.102, 0.058, 0.063, 0.063, 0.151, 0.152, 0.106, 0.148] (✓)

PBLIP [0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100] (×)
POurs [0.090, 0.072, 0.131, 0.070, 0.074, 0.073, 0.103, 0.108, 0.106, 0.172] (✓)

Query : There is a person in white on the left side of the image who 
is just about to serve the ball with one hand.

Key contextual cue: There is a person who is just about to serve the 
ball with one hand.
PBLIP’ [0.171, 0.120, 0.033, 0.182, 0.062, 0.106, 0.036, 0.150, 0.086, 0.054] (×)
POurs’ [0.304, 0.085, 0.012, 0.069, 0.048, 0.088, 0.020, 0.136, 0.145, 0.092] (✓)

PBLIP [0.122, 0.120, 0.044, 0.161, 0.089, 0.133, 0.059, 0.115, 0.083, 0.075] (×)
POurs [0.206, 0.106, 0.026, 0.090, 0.079, 0.104, 0.036, 0.106, 0.127, 0.121] (✓)

(a)

(b)

Figure 3: (a) Zero-shot: PBLIP and POurs are two match-
ing scores of BLIP and ours, and PBLIP’, POurs’ are scores
for the key contextual cue. (b) Fine-tuned: PBLIP and
POurs are two matching scores of BLIP and ours, and
PBLIP’, POurs’ are scores for the key contextual cue.

Figure 3 two cases to visually show why our Con-
textBLIP performs better for the challenging IRCD
task. Both the zero-shot case and fine-tuned case
demonstrate that our ContextBLIP not only yields
the highest matching score for the golden candi-
date image. More importantly, it is also capable
of aligning the key context cues in two modalities.
For example, our method can understand textual
cues “two girls in the frame” in the long query,
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and yield more accurate alignment to the 7-th, 8-th,
and 10-th candidate images with higher matching
scores. Equipped with the proposed inter-context
encoder, our ContextBLIP can accurately identify
the 1-st candidate with the highest score.

4.6 Comparisons with GPT-4V

Video Static

1 2 3 1 2 3

GPT-4V 22% 20% 22% 46% 54% 44%
ContextBLIP (Ours) 20% 24% 26% 82% 80% 78%

Table 8: Comparison with GPT-4V on random samples.

We compare our ContextBLIP with the OpenAI
multi-modal large language model (MLLM) GPT-
4V (Yang et al., 2023). We randomly sample 50
instances three times from the test set of IMAGE-
CODE, and use a prompt in the form of “Which
image fits the text description best, please output
the serial number of the image:< text_query >"
to identify the image. Table 8 shows that our model
can achieve comparable results to GPT-4V, despite
involving about 7,500 times fewer parameters. This
also aligns with some existing studies (Tong et al.,
2024) that GPT-4V may fail to understand sub-
tle cues. Figure 4 demonstrates how we prompt
GPT-4V for the challenging IRCD task. Table 9
reports the matching scores of three instances se-
lected from the test set of IMAGECODE. For the
challenging “ID 8129”, we observe that GTP-4V
performs poorly.

Our’s result & the groundtruth

Q:  Which image fits the text description best? Please output the serial number of 

the image :The SUV is right along side of the yellow and red truck.  You can still barely 

see the cab of the truck.

Image 4 matches the description best. The SUV is right alongside the yellow and red 

truck, and you can still barely see the cab of the truck.

ChatGPT

GPT4

Figure 4: Case illustration of how we prompt GPT-
4V for IRCD. The red boxes represent the GPT-4V’s
response and the yellow one indicates our prediction.

4.7 More discussion
We also compare our ContextBLIP with the previ-
ous state-of-the-art NDCR (Li et al., 2023b) model

More cases are provided in Appendix D.2

Instance ID Wrong Matching Right Matching All Results

7407 0 20 20
7836 1 19 20
8129 11 9 20

Table 9: Statistics of retrieval performance of GPT-4V
under 20 different prompts. “Instance ID” indicates the
instance number in the IMAGECODE test set.

on the IRCD task. We follow the existing NDCR
to divide the linguistic complex descriptions into
multiple segments with different lengths. We are
interested in such a setting and evaluate how well
the proposed ContextBLIP performs over sentences
that are split from the same long description. Fig-
ure 10 illustrates that the proposed ContextBLIP
consistently outperforms the existing NDCR under
various sentence lengths.

Nums of props 1 2 3 4 5 6

All 72 899 1215 99 14 3
NDCR 29 327 384 28 2 0
ContextBLIP 36 391 416 37 3 1

Improvement (%) 9.7 7.1 2.6 9.1 7.1 33.3

Table 10: Comparisons of ContextBLIP with NDCR
over various lengths of textual propositions, where 2 in-
dicates the number of segments split from a long query.

5 Conclusion

This paper presents ContextBLIP, a simple yet ef-
fective doubly contextual alignment scheme for the
challenging IRCD. Our model comprises a multi-
scale adapter, a matching loss, and a text-guided
masking loss. The adapter learns to capture fine-
grained visual cues. The two losses enable iterative
supervision for the adapter, gradually highlighting
the focal patches of a single image to the key tex-
tual cues. Then, ContextBLIP further employs an
inter-context encoder to learn dependencies among
candidates, facilitating accurate alignment between
text to multiple images. Consequently, the nuanced
cues concealed in textual and visual modalities can
be effectively aligned. Experiments on two bench-
marks show the effectiveness of our method. We
observe that our ContextBLIP can yield compara-
ble results with GPT-4V, despite involving about
7,500 times fewer parameters. In the future, we
plan to extend our method to text-to-video retrieval.
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6 Limitation

The adaptive mask ratio is worth considering in
the future, as a fixed masking ratio in our paper
may not dynamically adapt to different cross-modal
interactions. The proposed method may also have
limitations for fine-grained retrieval for long videos,
as pre-training on long videos is time-expensive
and requires very large GPUs.
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A Implementation details

A.1 Training Hyper-parameters
Pre-training. We conducted pre-training on 4
Nvidia A100 GPUs for about 10 hours, randomly
sampling 2242 patches from images and using Ran-
dAugment for data augmentation.

Hyperparameters

max epoch 20
batch size 256
vit Vit-B/16
input resolution 2242

augmentation RandAug
optimizer AdamW
base learning rate 3e-4
warmup learning rate 1e-6
minimize learning rate 1e-6
momentum (0.9, 0.999)
warmup steps 3000
weight decay 1e-4
mask ratio 0.25
reduction 2
random seed 42

Table 11: Pretraining setting on IMAGECODE

Fine-tuning. Compared to Krojer et al.’s multi-
step approach involving +Context Batch, +Context
Module, and +Temporal Embeddings, we stream-
line Krojer et al.’s procedure by directly fine-tuning
our model on IMAGECODE and then separately
training a contextual modeling module between
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the backbone and the prediction head to enable
contextual comparison and reasoning.

During the first stage, we conduct full fine-tuning
for 20 epochs. After that, we add a two-layer trans-
former as a context/temporal module, which is iden-
tical to Krojer et al.. To optimize the module while
keeping other parameters fixed, we freeze all parts
of the model except the inserted module and train
it alone for 5 epochs.

We set the batch size to 360 images (36 batches
of 10-image-set) and use the Adam (Kingma and
Ba, 2014) optimizer with learning rate of 2e-6 and
weight decay of 0.01. We conduct the experiment
on one NVIDIA Geforce 3090 for about one day.
All other baselines also adopted the same settings.

Hyperparameters

max epoch 25
batch size 36
input resolution 2242

augmentation RandAug
optimizer Adam
backbone learning rate 2e-6
head learning rate 1e-4
momentum (0.9, 0.999)
learning rate scheduler ExponentialLR(0.95)
weight decay 1e-2
random seed 10

Table 12: Fine-tuning setting on IMAGECODE

A.2 Dataset Details

Table 13 provides statistics for the datasets used
in pre-training and fine-tuning. It includes three
datasets: COCO, VG (Visual Genome), and IM-
AGECODE. The number of images (#image) and
texts (#text) for each dataset are listed.

COCO VG IMAGECODE

#image 113K 100K 94020
#text 567K 769K 21202

Table 13: Details of datasets.

A.3 Model Details

In section 3.2, the scorer is a 1x768 linear layer.
In section 3.3 (Step 2), the decoder is a four-layer
transformer, with each layer having twelve atten-
tion heads and a feature dimension of 768.

In section 4.2, for CLIP, ViLBERT, and
UNITER, we utilized the models with added con-
text modules and temporal embeddings as proposed
by Krojer et al. Our-Context model incorporated

a context module in the same manner, while other
models did not have such a module added. For
ALBEF, due to its pretraining on images with a
resolution of 256x256, we conducted experiments
using a slightly higher resolution (224x224) com-
pared to other models.

B Validation Performance

Comparison with state-of-the-art methods on the
valid set of IMAGECODE is shown on Table 15.

C Additional Case Studies

For tasks involving high image similarity and de-
tailed textual descriptions, such as contrastive im-
age retrieval, the challenge is considerable. We will
demonstrate the superior performance of our MIM
adaption method in more scenarios and provide the
following examples to further illustrate the doubly
contextual alignment capabilities of our model.

Figure 5 presents examples of two zero-shot ex-
periments. In the left image, when two men are
facing each other, our model assigns significantly
higher matching scores compared to other images.
In the right image, despite the difficulty in estimat-
ing the proportion of the man’s right eye visible,
our model assigns obviously higher scores to the
first two images showing the right eye. In contrast,
BLIP assigns similar scores to all ten images in
both samples, indicating its difficulty in attending
to the textual cues used to align the intra-contexual
information.

Figure 6 showcases examples of fine-tuning ex-
periments. The left image in Figure 6 illustrates an
example of the Quantity phenomenon, with the sub-
heading "Two thumbs on the egg." We observe that
our model infers significantly higher confidence
scores for images 2 and 3 (matching the descrip-
tion of thumb quantity) and infers higher BLIP
confidence scores for images 0, 2, and 3 (where
the description of thumb quantity does not match).
Thus, we demonstrate that our model indeed per-
forms better in dual-contexual alignment.

The right image in Figure 6 demonstrates an
example of the Meta-property phenomenon, with
the subheading "The man’s face is blurry." We find
that our model infers higher confidence scores for
images 2, 3, 7, and 8 (all relatively matching the
description) while BLIP infers higher confidence
scores for images 1, 2, 3, and 8 (where image 1 is
clear but does not match the description). Hence, it
indicates that our model indeed performs better in
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Zero-shot Fine-tune

Method Params All Video Image All Video Image

CLIP (Radford et al., 2021) 473M 22.4 15.6 47.8 29.9 22.0 59.8
UNITER (Chen et al., 2020) - 19.8 13.6 42.9 25.7 19.1 50.5
ViLBERT (Lu et al., 2019) - 19.3 13.5 40.8 24.5 18.0 49.3
OFA (Wang et al., 2022) - - - - 27.2 21.0 52.1
ALBEF (Li et al., 2021) - 27.7 15.7 73.3 - - -
M3AE (Geng et al., 2022) - - - - - - -
BLIP (Li et al., 2022) 223M 28.1 15.9 74.4 34.1 22.7 77.4
BLIP-2 (Li et al., 2023a) 1.2B 29.4 16.3 79.2 - - -
NDCR (Li et al., 2023b) 440M - - - 34.1 26.1 64.3

ContextBLIP (Ours) 240M 31.0 18.8 77.1 35.7 24.4 78.5

Human Performance 90.8

Table 14: Comparison with state-of-the-art methods on IMAGECODE task. Our model achieve highest zero-shot
and fine-tune performance while requiring a relatively fewer number of parameters. The best and second-best results
are marked in bold and underline.

Zero-shot Fine-tune

Method Params All Video Image All Video Image

CLIP (Radford et al., 2021) 473M 21.8 14.9 51.6 30.6 22.3 67.0
UNITER (Chen et al., 2020) - 19.8 13.6 42.9 26.0 19.9 52.8
ViLBERT (Lu et al., 2019) - 18.5 14.0 37.9 25.1 19.4 49.5
ALBEF (Li et al., 2021) - 28.2 17.0 77.0 - - -
OFA (Wang et al., 2022) - - - - 27.2 21.0 52.1
BLIP (Li et al., 2022) 223M 28.4 17.0 77.9 36.2 26.3 79.3
ContextBLIP (Ours) 240M 30.6 19.9 77.0 38.5 28.7 81.2

Table 15: Validation Performance on IMAGECODE

understanding intra-contexual alignment.
In conjunction with the main text, we demon-

strate the advantages of our model in two chal-
lenges: better intra-contexual alignment, better
inter-contexual alignment. It can be seen that in
many scenarios, our model exhibits better dual-
contextual alignment capabilities compared to
BLIP.

D More about GPT-4V Experiment

D.1 Sampling Details

Due to GPT-4V’s high computational demands, we
created distinct test datasets from IMAGECODE’s
static and video-shot sections. We randomly chose
50 samples from each, repeating thrice to avoid
bias. Each sample included a ground-truth image
plus nine adjacent ones, since GPT-4V processes
up to ten images simultaneously. We prompted

GPT-4V in form of "Which image fits the text de-
scription best? Please output the serial number of
the image:< text_query >" to select the match-
ing image. We used three random seeds: 1, 10,
100, to explore the datasets with the text length
distribution (in tokens) illustrated in the Figure 7.

In this experiment, using Python scripts with the
API interface of the gpt-4-vision-preview model,
we make a request to GPT-4V. If encounter a refusal
to answer, we use the browser version to ask again
until a result is obtained.

D.2 More Comparison with GPT-4V

This part provides some more examples of GPT4V
prediction errors, where our model predicts cor-
rectly. The first two samples are from video shot
set, and the last two are from static pictures.
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Image
Size Params

Questionnaire

Progress:

6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.

0

10

20

30

40

50

60

70

A
cc

ur
ac

y

CLIP InstructBLIP LLaVA 1.5 Gemini GPT­4

Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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no tulips

State and Condition

butterfly 
with wings 

open

butterfly 
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closed

Quantity and Count
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Positional and Relational Context

glasses on 
the right of 
the slipper

glasses on 
the left of 
the slipper

Color and Appearance

light blue 
sky

dark blue 
sky

Structural Characteristics

some fruits 
cut in half
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“11:54”

“11:59”

Viewpoint and Perspective

flowers 
seen from 

above

flowers 
seen from 
the side

Model chooses the correct 
image based on the text

Model chooses the wrong 
image based on the text

MMVP-VLM Benchmark

Figure 5. Examples from MMVP-VLM. MMVP-VLM consists of image pairs across nine visual patterns. The examples in the figure are
from EVA01 ViT-g-14 model [54], one of the largest CLIP models that also fails to choose the right image given the text description.

emerged from CLIP-blind pairs (Section 3.1), (ii) whether
these visual patterns pose challenges for CLIP-based mod-
els with massive scaling up (Section 3.2), and (iii) the cor-
relation between failure patterns in CLIP models and those
in MLLMs (Section 3.3).

3.1. Visual Patterns in CLIP-blind Pairs

Having identified the CLIP-blind pairs, we summarize sys-
tematic visual patterns that the CLIP vision encoders might
consistently misinterpret. It is too abstract to directly cap-
ture systematic visual patterns in the CLIP-blind pairs.
Therefore, we turn to the questions and options from the
MMVP benchmark. With these questions, we transform ab-
stract visual patterns in images into clearer, language-based
descriptors that are easier to categorize.

In this work, we use GPT-4 [41] to categorize general
patterns by prompting it with the following:

User
I am analyzing an image embedding model. Can you go
through the questions and options, trying to figure out
some general patterns that the embedding model strug-
gles with? Please focus on the visual features and gener-
alize patterns that are important to vision models
[MMVP Questions and Options]

We identify 9 visual patterns:
☼ Orientation and Direction
Û Presence of Specific Features
L State and Condition
� Quantity and Count
, Positional and Relational Context
h Color and Appearance
Ô Structural and Physical Characteristics
k Text
� Viewpoint and Perspective

These visual patterns suggest that CLIP vision encoders

overly focus on high-level semantic understanding, over-
looking intricate details of the visual world. Full descrip-
tions of the visual patterns can be found in Appendix D.

3.2. The MMVP-VLM Benchmark

CLIP-based models have developed rapidly since the intro-
duction in the first paper [43]. We want to test whether these
visual patterns still impose challenges to the more recent
CLIP models [10, 54, 62, 66], which significantly scale up
in terms of training data and model size. In doing so, we in-
troduce a new benchmark: MMVP-VLM to systematically
study if CLIP models handle this visual pattern well.

We distill a subset of questions from the MMVP bench-
mark into simpler language descriptions and categorize
them into visual patterns. To maintain a balanced number
of questions for each visual pattern, we add a few questions,
if needed, to ensure that each visual pattern is represented
by 15 text-image pairs. Examples of pairs are shown in Fig-
ure 5. A pair is deemed correctly answered if the model can
accurately match both image-text combinations.

We evaluate MMVP-VLM on a variety of CLIP mod-
els [10, 43, 54, 62, 66]. These models vary in aspects like
size, training data, and methodology. As evidenced in Ta-
ble 1, increasing network size and training data only aids
in identifying two visual patterns – “color and appearance”
and “state and condition”. The rest of the visual patterns
continue to challenge all CLIP-based models. We also find
that the ImageNet-1k zero-shot accuracy is not a definitive
indicator of a model’s performance regarding visual pat-
terns. This underscores the necessity for additional evalua-
tion metrics, such as MMVP-VLM, to accurately assess the
model’s capabilities in areas beyond image classification.

3.3. How CLIP’s Errors Affect MLLMs

After analyzing the visual patterns that CLIP models strug-
gle with, we pose the following question: Is there a correla-
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Questionnaire

Progress:

6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-

13

Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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MMVP-VLM average. The area of each bubble corresponds to
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shot performance does not necessarily imply superior performance
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in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them

6

MMVP
Average

OpenAI ViT-L-14
(Radford et al., 2021) 2242 427.6M 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3

OpenAI ViT-L-14
(Radford et al., 2021) 3362 427.9M 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0

SigLIP ViT-SO-14
(Zhai et al., 2023) 2242 877.4M 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8

SigLIP ViT-SO-14
(Zhai et al., 2023) 3842 878.0M 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0

DFN ViT-H-14
(Fang et al., 2023) 2242 986.1M 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3

DFN ViT-H-14 3782 986.7M 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14

(Xu et al., 2023) 2242 427.6M 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7

MetaCLIP ViT-H-14
(Xu et al., 2023) 2242 986.1M 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2

EVA01 ViT-g-14
(Sun et al., 2023) 2242 1136.4M 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0

EVA02 ViT-bigE-14+
(Sun et al., 2023) 2242 5044.9M 13.3 20.0 66.7 13.3 26.7 66.7 26.7 20.0 33.3 33.3

BLIP (Li et al., 2022) 2242 223M 13.3 6.7 40.0 20.0 26.7 66.7 46.7 20.0 46.7 31.9
NDCR (Li et al., 2023b) 2242 440M 26.7 40.0 60.0 26.7 13.3 86.7 33.3 20.0 26.7 37.0
ContextBLIP (Ours) 2242 240M 26.7 46.7 60.0 40.0 46.7 93.3 40.0 20.0 53.3 47.4

Table 16: Comparison with various VLMs on different visual patterns in MMVP-VLM benchmark. The best and
second-best results are marked in bold and underline. We identify 9 visual patterns:

Questionnaire

Progress:

6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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: Orientation and Direction,Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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: Presence of Specific Features,
Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.

0

10

20

30

40

50

60

70

A
cc

ur
ac

y

CLIP InstructBLIP LLaVA 1.5 Gemini GPT­4

Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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“11:59”

Viewpoint and Perspective
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seen from 

above
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seen from 
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Model chooses the correct 
image based on the text

Model chooses the wrong 
image based on the text

MMVP-VLM Benchmark

Figure 5. Examples from MMVP-VLM. MMVP-VLM consists of image pairs across nine visual patterns. The examples in the figure are
from EVA01 ViT-g-14 model [54], one of the largest CLIP models that also fails to choose the right image given the text description.

emerged from CLIP-blind pairs (Section 3.1), (ii) whether
these visual patterns pose challenges for CLIP-based mod-
els with massive scaling up (Section 3.2), and (iii) the cor-
relation between failure patterns in CLIP models and those
in MLLMs (Section 3.3).

3.1. Visual Patterns in CLIP-blind Pairs

Having identified the CLIP-blind pairs, we summarize sys-
tematic visual patterns that the CLIP vision encoders might
consistently misinterpret. It is too abstract to directly cap-
ture systematic visual patterns in the CLIP-blind pairs.
Therefore, we turn to the questions and options from the
MMVP benchmark. With these questions, we transform ab-
stract visual patterns in images into clearer, language-based
descriptors that are easier to categorize.

In this work, we use GPT-4 [41] to categorize general
patterns by prompting it with the following:

User
I am analyzing an image embedding model. Can you go
through the questions and options, trying to figure out
some general patterns that the embedding model strug-
gles with? Please focus on the visual features and gener-
alize patterns that are important to vision models
[MMVP Questions and Options]

We identify 9 visual patterns:
☼ Orientation and Direction
Û Presence of Specific Features
L State and Condition
� Quantity and Count
, Positional and Relational Context
h Color and Appearance
Ô Structural and Physical Characteristics
k Text
� Viewpoint and Perspective

These visual patterns suggest that CLIP vision encoders

overly focus on high-level semantic understanding, over-
looking intricate details of the visual world. Full descrip-
tions of the visual patterns can be found in Appendix D.

3.2. The MMVP-VLM Benchmark

CLIP-based models have developed rapidly since the intro-
duction in the first paper [43]. We want to test whether these
visual patterns still impose challenges to the more recent
CLIP models [10, 54, 62, 66], which significantly scale up
in terms of training data and model size. In doing so, we in-
troduce a new benchmark: MMVP-VLM to systematically
study if CLIP models handle this visual pattern well.

We distill a subset of questions from the MMVP bench-
mark into simpler language descriptions and categorize
them into visual patterns. To maintain a balanced number
of questions for each visual pattern, we add a few questions,
if needed, to ensure that each visual pattern is represented
by 15 text-image pairs. Examples of pairs are shown in Fig-
ure 5. A pair is deemed correctly answered if the model can
accurately match both image-text combinations.

We evaluate MMVP-VLM on a variety of CLIP mod-
els [10, 43, 54, 62, 66]. These models vary in aspects like
size, training data, and methodology. As evidenced in Ta-
ble 1, increasing network size and training data only aids
in identifying two visual patterns – “color and appearance”
and “state and condition”. The rest of the visual patterns
continue to challenge all CLIP-based models. We also find
that the ImageNet-1k zero-shot accuracy is not a definitive
indicator of a model’s performance regarding visual pat-
terns. This underscores the necessity for additional evalua-
tion metrics, such as MMVP-VLM, to accurately assess the
model’s capabilities in areas beyond image classification.

3.3. How CLIP’s Errors Affect MLLMs

After analyzing the visual patterns that CLIP models strug-
gle with, we pose the following question: Is there a correla-

5

: Quantity and Count,

Questionnaire

Progress:

6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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: Positional and Relational
Context,

Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them
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Can you see the key "Z" in the image?

 Yes
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 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.

74 76 78 80 82 84 86
IN-1k ZeroShot Performance

20

25

30

35

40

Av
er

ag
e 

Pe
rfo

rm
an

ce
 o

n 
M

M
VP

OpenAI ViT-L-14
OpenAI ViT-L-14

SigLIP ViT-SO-14

SigLIP ViT-SO-14

DFN ViT-H-14

DFN ViT-H-14

MetaCLIP ViT-L-14
MetaCLIP ViT-H-14

EVA01 ViT-g-14

EVA02 ViT-bigE-14+

Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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: Structural and Physical Characteristics,

Questionnaire

Progress:

6/300

Can you see the key "Z" in the image?

 Yes
 No

 This question is not good
 Answers are too ambiguous

Back Next

Figure 8. Example of user study interface. The questions in the user study are randomly shuffled to avoid any potential bias. Users
choose answers for the VQA questions as well as potential concerns for the VQA question.
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Figure 9. Correlation between ImageNet-1k Zero-shot and
MMVP-VLM average. The area of each bubble corresponds to
the model’s number of parameters. A higher ImageNet-1k zero-
shot performance does not necessarily imply superior performance
in MMVP-VLM.

in models with superior ImageNet-1k Zero-shot performance, this
trend does not necessarily hold for MMVP-VLM accuracy. This
distinction accentuates the value of MMVP-VLM as an evaluation
metric, which probes into visual patterns such as orientation – as-
pects that are pivotal for downstream tasks and go beyond what is
captured by ImageNet accuracy alone.

D. Visual Patterns for CLIP
Here, we provide the full description of visual patterns that pose
challenges to all CLIP-based models.

• ☼ Orientation and Direction: Questions about the direction
something is facing or moving, such as the direction the dog or
duck is facing, or the orientation of the school bus.

• Û Presence of Specific Features: Questions that focus on the
existence or non-existence of certain elements or features in the
image.

• L State and Condition: Questions that pertain to the state or
condition of an object, such as whether a flag is blowing in the
wind or if the ground is wet.

• � Quantity and Count: Questions about the number of objects
or features present in the image.

• , Positional and Relational Context: This aspect refers to the
model’s ability to understand the position and relationship of
objects or elements within an image in relation to each other
and their surroundings.

• h Color and Appearance: Questions regarding the color of
certain objects or elements.

• Ô Structural and Physical Characteristics: This category
involves the model’s ability to identify and analyze the physical
attributes and structural features of objects in an image.

• k Text: Questions related to text or symbols present in the
image.

• � Viewpoint and Perspective: Questions concerning the per-
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: Text and
Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [66] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [66] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [10] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [10] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [62] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [62] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [54] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [54] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Models
scaled up in resolution show minimal improvement, whereas a slight advantage is observed when scaling up the network. For each

visual pattern, ImageNet-1k Zero-shot accuracy and MMVP average, we use light gray to highlight the best performance. For most of
the visual patterns, all CLIP-based methods show struggle, as evident from the scores. We use symbols for visual patterns due to space
limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and
Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.
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Figure 6. CLIP and MLLM’s performance on visual patterns.
If CLIP performs poorly on a visual pattern such as “ ☼ orienta-
tion”, MLLMs also underperform on the visual pattern.

tion between the underperformance of CLIP and MLLMs’
visual incapability? To explore this, we categorize ques-
tions from MMVP into these visual patterns summarized
and calculate each MLLM’s performance on these patterns.

In Figure 6, we plot CLIP’s performance and MLLMs’
performance for each visual pattern. When the CLIP vi-
sion encoder underperforms on a certain visual pattern, the
MLLM tends to exhibit similar shortcomings. Open-source
models such as LLaVA 1.5 [30] and InstructBLIP [8] that
explicitly use the CLIP vision encoder display a strong cor-
relation in performance.

Further, we calculate the Pearson Correlation Coeffi-
cient between the CLIP model and MLLM’s performance
on each visual pattern. Results show that LLaVA 1.5 and
InstructBLIP all possess a coefficient score greater than 0.7.
This high score indicates a strong correlation that weak-
nesses in visual pattern recognition in the CLIP model are
transferred to MLLMs. More details on the Pearson Corre-
lation Coefficient can be found in Appendix C.

4. Mixture-of-Features (MoF) for MLLM
Based on our exploration in earlier sections, a natural ques-
tion arises: If open-sourced MLLM’s visual shortcomings
come from the CLIP vision encoder, how do we build a
more competent visual encoder? In this section, we take
initial steps to answer the question by studying Mixture-
of-Features (MoF). We start with additive MoF that mixes
CLIP features and vision-only SSL model features. Results
show that each encoder presents unique advantages and lim-
itations when employed as the pretrained model in MLLM
(Section 4.2). We subsequently propose Interleaved MoF
that integrates the features from both CLIP and SSL into
MLLM to enhance visual grounding without compromising
the model’s ability to follow instructions (Section 4.3).

4.1. Experiment Setting

We adopt LLaVA [30, 31] as the framework to study vi-
sual encoders in MLLM. LLaVA uses a pretrained CLIP
encoder and trains an adapter to align visual tokens with
language tokens in the LLM. (See left side of Figure 7). We
use DINOv2 [42] as the vision-only SSL model in our work
because it is currently the most scalable vision-only model.
Our exploration includes the use of two visual encoders:
CLIP-ViT-L-14 [43] and DINOV2-ViT-L-14 [42]. To en-
sure consistent and fair comparisons, we train and finetune
our model with the same experiment setting in LLaVA. We
include the additional experimental details in Appendix A.

4.2. Additive MoF

We add a pretrained DINOv2 encoder into MLLM and mix
the CLIP pretrained encoder with it. We use a coefficient α
to control the portion of CLIP features and 1 − α to con-
trol the amount of DINOv2 features and linearly add them

6

: Viewpoint and
Perspective.

Method Params All Video Image

Qwen-VL-Chat (Bai et al., 2023) 7B 9.1 8.4 11.3
Video-LLaVA (Lin et al., 2023) 7B 11.3 11.8 9.1
ContextBLIP 240M 38.5 28.7 81.2

Table 17: Comparisons with NDCR, QWen-VL-Chat (Bai et al., 2023) and Video-LLaVA (Lin et al., 2023)
on IMAGECODE: We compare our model with the previous NDCR and two recently released MLLMs QWen-
VL-Chat (Bai et al., 2023) and Video-LLaVA (Lin et al., 2023) on the challenging instances of IMAGECODE.
Experimental results show that the proposed ContextBLIP consistently performs best among these baselines.

D.3 Comparison with More MLLMs
See Table 17 and Table 18.
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Query : Two men facing each other.
PBLIP [0.100, 0.101, 0.101, 0.100, 0.100, 0.100, 0.099, 0.100, 0.100, 0.100] (×)
POurs [0.076, 0.089, 0.094, 0.090, 0.084, 0.099, 0.142, 0.121, 0.093, 0.113] (✓)

Query : The man's right eye is 40% visible.
PBLIP [0.100, 0.099, 0.103, 0.099, 0.099, 0.099, 0.099, 0.105, 0.099, 0.099] (×)
POurs [0.145, 0.129, 0.105, 0.086, 0.090, 0.083, 0.084, 0.085, 0.105, 0.089] (✓)

Figure 5: Zero-shot cases from the test set. Our model has advantages over BLIP in both confidence scores.
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Context Quantities Spatial Negation Occlusion Nuances Co-reference Meta Properties Average

Qwen-VL-Chat (Bai et al., 2023) 5.6 3.8 8.7 7.4 8.0 8.0 5.6 9.5 6.16
Video-LLaVA (Lin et al., 2023) 11.6 11.3 10.6 9.5 10.1 9.5 8.4 16.7 11.0
NDCR (Li et al., 2023b) 21.9 30.9 31.9 25.1 23.3 18.9 30.1 37.5 27.5
ContextBLIP 25.1 39.2 32.0 25.2 23.7 19.7 36.1 37.5 29.8

Table 18: Comparison NDCR (Li et al., 2023b) and the existing open-source MLLMs on the 200 challenging
samples highlighted in IMAGECODE.
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Query : Two thumbs on egg, no blur, bottom right blue dial has just started 
to be covered.

Key contextual cue : Two thumbs on egg.

PBLIP’ [0.187, 0.034, 0.196, 0.242, 0.025, 0.045, 0.065, 0.048, 0.025, 0.132] (×)
POurs’ [0.086, 0.036, 0.412, 0.22 , 0.016, 0.031, 0.045, 0.034, 0.025, 0.095] (✓)

PBLIP [0.118, 0.047, 0.104, 0.134, 0.079, 0.131, 0.095, 0.105, 0.075, 0.111] (×)
POurs [0.097, 0.063, 0.137, 0.131, 0.068, 0.107, 0.106, 0.111, 0.087, 0.092] (✓)

Query : The man's face is visible but very blurry.  He is punching downward 
but you can't see any of his elbow because it is blocked by his fist.  His fist is 
visible but blurry. 

Key contextual cue : The man's face is very blurry.

PBLIP’ [0.011, 0.117, 0.141, 0.39 , 0.006, 0.002, 0.046, 0.084, 0.199, 0.003] (×)
POurs’ [0.021, 0.113, 0.194, 0.215, 0.008, 0.001, 0.051, 0.2 , 0.194, 0.003] (✓)

PBLIP [0.063, 0.076, 0.193, 0.262, 0.016, 0.017, 0.063, 0.063, 0.229, 0.019] (×)
POurs [0.087, 0.067, 0.24 , 0.207, 0.014, 0.008, 0.069, 0.126, 0.168, 0.014] (✓)

Figure 6: Two cases from the test set after fine-tuning. Our model outperforms BLIP in confidence scores for both
compound and simple proposition texts.
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Figure 7: Distribution of the number of tokens across contextual descriptions in the subset of IMAGECODE. The
distributions of the three sampling results are similar to the overall distribution described in the IMAGECODE text,
and the average text length is about 20.

Our’s result & the groundtruth

Q:  Which image fits the text description best? Please output the serial number of 

the image :The SUV is right along side of the yellow and red truck.  You can still barely 

see the cab of the truck.

Image 4 matches the description best. The SUV is right alongside the yellow and red 

truck, and you can still barely see the cab of the truck.

ChatGPT

GPT4

Figure 8: A case from the video-shot set. This is an enlarged version of the example in the main text. The yellow
boxes indicate the correct image and our model’s result, while the red boxes represent the model’s output. We will
see our model’s result is correct but the GPT-4V’s output is wrong.
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Q:  Which image fits the text description best? Please output the serial number of 

the image :  No hands are visible and the hanger on the silver ball on the train is pointing 

almost straight down.

After reviewing the provided images, the one that best fits the description "No hands 

are visible and the hanger on the silver ball on the train is pointing almost straight down" 

is : lmage 3 . This image does not show any hands and the hanger on the silver ball is 

oriented almost straight down.

ChatGPT

Our’s result & the groundtruthGPT4

Figure 9: A case from the video-shot set. The yellow boxes indicate the correct image and our model’s result, while
the red boxes represent the model’s output. We will see our model’s result is correct but the GPT-4V’s output is
wrong.

Q:  Which image fits the text description best? Please output the serial number of 

the image :  The girl has her mouth wide open but you can't see any teeth at all.

The image that fits the text description best, where the girl has her mouth wide open 

but no teethare visible at all, is image number 6.

ChatGPT

Our’s result & the groundtruth GPT4

Figure 10: A case from the video-shot set. The yellow boxes indicate the correct image and our model’s result,
while the red boxes represent the model’s output. We will see our model’s result is correct but the GPT-4V’s output
is wrong.
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Q:  Which image fits the text description best? Please output the serial number of 

the image :  There is a single slice of pizza on a white plate with green things on it.

The image that fits the text description best is Serial Number 4.

ChatGPT

Our’s result & the groundtruth GPT4

Figure 11: A case from the static pictures set. The yellow boxes indicate the correct image and our model’s result,
while the red boxes represent the model’s output. We will see our model’s result is correct but the GPT-4V’s output
is wrong.

Q:  Which image fits the text description best? Please output the serial number of 

the image :  Three sheep are in the foreground of an image with many more sheep visible 

in the distance .

The image that best fits the text description is image 1. In this image, three sheep are 

prominent in the foreground, and many more sheep can be seen in the distance. This 

matches the description provided.

ChatGPT

Our’s result & the groundtruth

GPT4

Figure 12: A case from the static pictures set. The yellow boxes indicate the correct image and our model’s result,
while the red boxes represent the model’s output. We will see our model’s result is correct but the GPT-4V’s output
is wrong.
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