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Abstract

Multi-hop logical reasoning on knowledge
graphs is a pivotal task in natural language
processing, with numerous approaches aim-
ing to answer First-Order Logic (FOL) queries.
Recent geometry (e.g., box, cone) and prob-
ability (e.g., beta distribution)-based method-
ologies have effectively addressed complex
FOL queries. However, a common challenge
across these methods lies in determining ac-
curate geometric bounds or probability param-
eters for these queries. The challenge arises
because existing methods rely on linear se-
quential operations within their computation
graphs, overlooking the logical structure of
the query and the relation-induced information
that can be gleaned from the relations of the
query, which we call the context of the query.
To address the problem, we propose a model-
agnostic methodology that enhances the effec-
tiveness of existing multi-hop logical reason-
ing approaches by fully integrating the con-
text of the FOL query graph. Our approach
distinctively discerns (1) the structural con-
text inherent to the query structure and (2) the
relation-induced context unique to each node
in the query graph as delineated in the corre-
sponding knowledge graph. This dual-context
paradigm helps nodes within a query graph at-
tain refined internal representations throughout
the multi-hop reasoning steps. Through experi-
ments on two datasets, our method consistently
enhances the three multi-hop reasoning founda-
tion models, achieving performance improve-
ments of up to 19.5%. Our code is available at
https://github.com/kjh9503/caqr.

1 Introduction

Multi-hop logical reasoning on Knowledge Graphs
(KGs) is a crucial task in natural language pro-
cessing. KGs, which map real-world knowledge
as interconnected entities and relationships (Sinha
et al., 2015; Vrandecic and Krötzsch, 2014), help

*Corresponding Author

Figure 1: The existing methods may include wrong an-
swers such as, Sprint, Marathon, Triathlon, and Figure
because the candidates held by the variable node (V) in
the inference process are only influenced by the 1980
Olympic and FeaturedAt−1. However, our approach
uses structural and relation-induced contexts to find a
more accurate embedding of V, which helps us to pre-
dict answers that are close to the ground truth.

answer complex questions expressed as First-Order
Logic (FOL) queries. A FOL query can be con-
verted into a computation graph, using variables,
conjunctions, and existential quantification opera-
tors to represent a natural language question. For
example, the computation graph of the query repre-
senting “What are the names of the teams playing
the team sports featured in the 1980 Olympics?”
can be constructed with two conjunction relations:
1) finding the sports featured in the 1980 Olympics,
and 2) finding the sports teams that play that sports
(see Figure 1 for illustration).

Recent advancements in multi-hop reasoning
leverage the power of embedding-based models
such as Q2B (Ren et al., 2020), BetaE (Ren and
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Leskovec, 2020), and ConE (Zhang et al., 2021).
These models embed both a given query and enti-
ties (answer candidates) in a KG into a latent space.
In this space, entities relevant to the query are po-
sitioned closer to the query’s embedding. This
allows the model to predict the answer to the query
by identifying these nearby entities.

Despite their success, these embedding-based
models still face a major hurdle: learning more
accurate geometric bounds or probability param-
eters for complex queries. Prior models handle
all queries in the same way, building the embed-
ding for each relationship (e.g., FeaturedAt−1

or TeamsP lay−1 in Figure 1) one after another.
This approach overlooks the structural context
and relation-induced context within each question.
Therefore, entities like Sprint, Marathon, Triathlon,
and Figure are treated as answers by the existing
models (Ren et al., 2020; Ren and Leskovec, 2020;
Zhang et al., 2021) based on the given query in
Figure 1.

To address this limitation, we propose a
novel query embedding technique, named CaQR
(Context-aware Query Representation learning),
that incorporates both structural context and
relation-induced context. The structural context
encodes the positional or role-like information of
a node within the query computation graph. For
example, in Figure 1, the structural context of node
V could include the number of incoming and out-
going edges, the canonical position of V within
the query graph, and the length of the query graph
containing node V. Based on this, Figure can be
excluded as a V candidate because it is unlikely
to be derived through the one-hop reasoning from
the 1980 Olympics in KG. The relation-induced
context, on the other hand, leverages KG entities
linked to each node’s relations. For instance, in
the query graph shown in Figure 1, the relation-
induced context—acquired by identifying nodes in
the KG associated with TeamsP lay−1—suggests
that Sprint, Marathon, and Triathlon are not suit-
able candidates for V by accentuating the entities
which linked to the TeamsP lay−1 relations (Soc-
cer, Volleyball, and Basketball). By incorporating
structural and relation-induced contexts into the
existing query embedding methods, our approach
mitigates the cascading errors that can arise from
the step-by-step computation characteristic of these
methods.

Our contributions are threefold: (1) We pro-
pose a novel query representation learning method

that leverages two types of context within a query
computation graph: structural context and relation-
induced context, which are often overlooked in
previous methods. (2) Our proposed technique
is applicable to any existing query embedding-
based method, as it utilizes structural and relation-
induced context acquired from the input query
graph, irrespective of the models. (3) Our experi-
ments show that our method leads to performance
improvements for various models (Q2B (Ren et al.,
2020), BetaE (Ren and Leskovec, 2020), and
ConE (Zhang et al., 2021)), which have received
considerable attention in various FOL tasks as
foundation models. Specifically, our experiments
on two benchmark datasets demonstrate that our
method consistently improves these models, achiev-
ing up to a 19.5% enhancement in query reasoning
tasks compared to their baselines.

2 Related Work

Geometry-based. These approaches represent
each query as a geometric shape in the embedding
space. They then identify entities located close to
that shape as answers to the query. For instance,
GQE (Hamilton et al., 2018) maps entities to points
and employs neural networks to model logical oper-
ators. Q2B (Ren et al., 2020) and its extension (Liu
et al., 2021) use hyper-rectangles, or boxes, to rep-
resent queries. These boxes are defined by a center
and offset, and entities positioned closer to them
are considered potential answers. ConE (Zhang
et al., 2021) represents queries using multiple two-
dimensional cones characterized by their axis and
aperture angle. Similar to Q2B, entities lying closer
to the cone representing the query are considered
potential answers. However, these geometry-based
models fail to harness both structural and relation-
induced context information.

Probability-based. In contrast to geometry-
based approaches, probability-based methods rep-
resent queries as probability distributions. For ex-
ample, BetaE (Ren and Leskovec, 2020) uses mul-
tiple beta distributions to represent a query, en-
tities, and relations. Similar approaches include
GammaE (Yang et al., 2022) with gamma distri-
butions and PERM (Choudhary et al., 2021) with
multivariate Gaussian distributions. These methods
measure the distance between the query embed-
ding and candidate entities using KL-divergence.
FuzzQE (Chen et al., 2022b) takes a different ap-
proach, mapping queries and entities to a fuzzy
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space. It represents the answer set as a fuzzy vec-
tor and calculates the probability of an entity be-
ing an answer using a score function. Similarly,
GNN-QE (Zhu et al., 2022) adopts fuzzy logic to
represent queries and entities but uses graph neural
networks for projection in an incomplete KG. On
the other hand, WFRE (Wang et al., 2023a) mod-
els queries and entities as discretized mass vectors
that satisfy fuzzy logic. It models logical oper-
ators through t-norm or t-conorm functions and
measures the distance between mass vectors us-
ing the optimal transport theory (Peyré and Cuturi,
2019). While each method has its advantages and
disadvantages and is selectively utilized in various
FOL-based applications (Tang et al., 2023; Liang
et al., 2023; Xiong et al., 2023), the potential of
query-based context encoding to enhance multiple
multi-hop reasoning approaches and yield robust
performance improvements has not received suffi-
cient attention.

Query Encoder-based. There are auxiliary trans-
formation encoders for representing the FOL
queries for multi-hop reasoning. These include
Q2T (Xu et al., 2023) and LMPNN (Wang et al.,
2023b), which take distinct approaches to tack-
ling complex queries. Q2T transforms the com-
plex query into a single virtual triple of head, re-
lation, and tail components. It computes the score
of this virtual triple with a pre-trained KG em-
bedding model to predict the answer to the query.
LMPNN (Wang et al., 2023b), on the other hand,
decomposes the complex multi-hop query into mul-
tiple simpler triples. It generates a message using
the entity embedding to maximize the score for
each triple, utilizing a pre-trained KG embedding
model. However, these approaches require initial
KG embeddings from extensive pre-training and
are not applicable to various multi-hop reasoning
approaches.

3 Preliminaries

Given an entity set V and a relation set R, the KG
G = (h, r, t) ⊂ V ×R×V represents a collection
of triples that encapsulate factual information in
the real world. Here, h, t ∈ V , and r ∈ R. When
considering each relation as a binary function, such
as r(h, t), following the structure of predicate logic,
the triples observed from the KG hold a value of
True.

3.1 First-Order Logic (FOL) Queries
The First-Order Logic (FOL) queries take predi-
cate logic, allowing the use of quantified variables.
A FOL query is composed of a non-variable an-
chor entity set Va ⊆ V , an existential quantified
set {V1, ...Vk} of size k, and a target variable V?,
which is an answer to a certain query. For example,
in Figure 1, Va is {1980 Olmypic}, the existential
quantified set is {V }, and the target variable is A.
Generally, FOL queries include four logical opera-
tors: the existential quantifier(∃), conjunction(∧),
disjunction(∨), and negation(¬). We can formulate
a FOL query q as follows:

q = V?. ∃V1, ..., Vk : c1 ∨ c2 ∨ ... ∨ cn. (1)

ci = ai1 ∧ ai2 ∧ ... ∧ aim . (2)

Each atomic formula aij is in the form of predicate
logic which has the form of r(va, V ) or ¬r(va, V )
or r(V ′, V ) or ¬r(V ′, V ) consisting a conjunc-
tion ci of m predicates. va is an element of Va.
V and V ′ are elements of {V?, V1, ..., Vk} and
{V1, ..., Vk}, respectively (V ′ ̸= V ). Note that
we call this atomic formula aij a branch of a query
graph.

3.2 Query Graph
In BetaE (Ren and Leskovec, 2020), FOL query
answering tasks are categorized into pre-defined
multi-hop reasoning tasks using 14 different query
types. Each query type can be represented by a
corresponding query graph and all queries can be
interpreted as corresponding natural language ques-
tions. For instance, a FOL query for “What are
the names of the teams playing the team sports fea-
tured in the 1980 Olympics?” can be represented
by the query graph shown in Figure 1. A query
graph consists of anchor nodes, variable nodes, and
answer nodes. Variable nodes signify entities ful-
filling individual sub-conditions within the query,
while the answer node represents the entity satisfy-
ing the entire query. In Figure 2, you can observe
five types of query graphs, and all query types can
be found in Appendix A.2.

3.3 Computation Graph
The computation graph details the computation pro-
cedure to obtain the embedding of each node in the
query graph. In a computation graph, each node
represents an embedding of an entity (or a set of en-
tities) in the KG, and each edge signifies a logical
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Figure 2: Five types of query graph

transformation (e.g., relational projection, intersec-
tion/union/negation operators) of this distribution.
The computation graph for a FOL query resembles
a tree. The root node of the computation graph rep-
resents the answer (or target) variable, with one or
more anchor nodes provided by the FOL. Embed-
dings of entities and transformation operators are
initialized; embeddings of anchor nodes are then
fed into the neural network of logical operators in a
serial manner to obtain the final embeddings for the
answer variable, thereby creating a query embed-
ding. During training, models ensure the proximity
of query embeddings to the ground truth. In the pre-
diction stage, entities close to the query embedding
are utilized for prediction. Further details on the
logical operators are included in the Appendix B.

4 Methodology

In this section, we explain CaQR, our method that
leverages context information from the query graph
to create more accurate and nuanced entity embed-
dings. By incorporating context, CaQR can make
fine-grained adjustments within the embedding
space, capturing the complexities of real-world
queries.

CaQR concentrates on two key types of context:
structural context and relation-induced context.
The structural context combines positional cues
(where nodes appear in the query) and functional
roles (the specific role a node plays) to comprehend
the overall structure and relationships within the
query. Furthermore, the relation-induced context
focuses on the specific relationships and interac-
tions between entities within the query. CaQR com-
bines these structural and relation-induced contexts
to create a more comprehensive query embedding.

4.1 Learning Structural Context

To capture structural context, we propose using
position embeddings, role embeddings, and type
embeddings for differentiating between different
query types. Note that position, role, and type
embeddings are generated even for query types not
in training data.

4.1.1 Position Embedding
Previous studies (Dwivedi et al., 2022; You et al.,
2019) have shown the advantages of incorporating
canonical positioning information within message-
passing frameworks to present nodes in arbitrary
graphs. Inspired by this, we propose incorporating
the canonical positioning information in the rep-
resentation of each node within the query graph,
aiming to lead to a more expressive and informative
representation.

To capture the relative order of nodes within a
query graph, we introduce the concept of canoni-
cal node positions. These positions represent the
order in which nodes would appear if the graph
were listed from left to right, as illustrated in Fig-
ure 3 (the first number in each tuple). Importantly,
the maximum canonical position number remains
consistent across all queries of the same type and
equals the maximum query length. For example,
consider the 3p query graph in Figure 2. When
listing nodes from left to right (starting with the an-
chor node), the maximum position is 4. Therefore,
we initialize position embeddings for canonical po-
sitions 0 to 3 as follows:

Ppos =
[
p0 p1 p2 p3

]
∈ R4×dpos , (3)

where dpos denotes the dimension of the position
embedding, and pi represents the position embed-
ding of a node at the i-th canonical position on the
query graph. The lookup table Ppos maps each
potential canonical position i to its corresponding
embedding vector pi. Then, pi is integrated into
the embedding of the node located at the i-th po-
sition on the query graph. The integration of this
position embedding aims to compensate for the
lack of explicit structural information arising from
the sequential nature of existing embedding mod-
els.

4.1.2 Role Embedding
Query graphs reveal important structural informa-
tion through distinct node roles. Regardless of the
type of query, anchor nodes never have incoming
edges, as shown in Figure 2. In contrast, variable
nodes are connected to other nodes from both in-
coming and outgoing edges. Finally, answer nodes
serve as leaf nodes, with no outgoing edges. These
distinct node roles, observed across various query
graph types, offer valuable insights into the query’s
structure, enriching the information available for
the embedding model.
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Figure 3: The figure of the structural context and relation-induced context and its application example on ip query.
Each node in the query graph can be assigned a position number and a role number, which is represented as a
tuple in the Structural Context box (green box). The first number of the tuple in each node of the query graph
represents the position number, and the second number indicates the role number. Type embedding is derived
from the query-type table containing the position and role information of the corresponding query graph. The
Relation-induced Context box illustrates constructing relation-induced embedding of node V and A from KG. The
Integration box describes integrating query embedding, position embedding, role embedding, type embedding, and
relation-induced embedding into updated query embedding. Best viewed in color.

To take advantage of this information, we as-
sign a canonical number to each role of the query
graph (i.e., 0 for the anchor node, 1 for the variable
node, 2 for the answer node) and initialize the role
embedding for each role as:

Rrol =
[
ranch rvar rans

]
∈ R3×drol , (4)

where drol represents the dimension of the role em-
bedding. Rrol is a lookup table containing role
embeddings. ranch, rvar, and rans are role em-
beddings for anchor, variable, and answer nodes,
respectively. The role embedding is incorporated
into the query embeddings of the corresponding
node to provide information about the node’s role
within the query graph.

4.1.3 Type Embedding
While position and role embeddings provide valu-
able information about each node within a query
graph, they don’t necessarily reveal the complete
picture of how these nodes interact and contribute
to the distinct query structures. For instance, they

may struggle to represent unique query types like
2i and 3i in Figure 2. The answer entities in both
2i query and 3i query have position 1 with respect
to the anchor entity (position 0) and have the same
role embedding (answer). Therefore, position em-
bedding and role embedding are not enough to
reflect the different structure information of 2i and
3i query graphs.

To address this limitation, we propose a method
to capture the structural context of a given query
type. This approach extends beyond individual
node properties to understand the broader relation-
ships and dependencies between them. To cap-
ture this crucial structural context, we introduce
the query-type table. Illustrated in the Structural
Context box of Figure 3, this table encodes the
complete structural information of the query by
representing each node as a combination of its po-
sition and role. Flattening this table results in a
vector, where each element corresponds to a spe-
cific position-role combination. Consequently, this

15982



vector uniquely identifies the query’s structure (i.e.,
query type). Because the range of values in the
query type table is different for each query type,
we normalize the vector by dividing by 4, which
is the maximum sum of the values in the vector.
Finally, we use a linear transformation to map this
normalized vector into a continuous embedding
space, creating the type embedding. For a query
graph G, the type embedding of any node in the
query graph G is presented as follows:

gG = Wg · flatten(Count(G)). (5)

Count returns a query-type table (Count(G) ∈
R3×4), constructed by counting the occurrence of
each combination of position number and role num-
ber for the nodes in the graph G. The flatten func-
tion transforms this two-dimensional query-type
table into a vector. Wg represents a linear trans-
formation matrix. The type embedding is then in-
corporated into the query embedding of each node
within a query graph. All nodes within a query
graph share the same query table, resulting in iden-
tical type embedding. It’s worth noting that we
collectively refer to the position, role, and type
embeddings as structure embeddings.

4.2 Learning Relation-induced Context

Several approaches have been proposed for lever-
aging neighboring relations around entities to en-
hance reasoning in KGs (Sheng et al., 2020; Chen
et al., 2022a). However, computing attention
scores, as in (Sheng et al., 2020), requires a high
computational cost, making it more expensive to ap-
ply these approaches concurrently with computing
the query embedding. Additionally, it is challeng-
ing to represent an entity solely based on relations’
embedding as in (Chen et al., 2022a) due to the
distinct distributions of entities and relations. To
extract relation-induced context associated with
the nodes, we first define N in

r (vi) as the set of in-
coming relations of the node vi in the query graph.
N out

r (vi) represents the set of outgoing relations
of the node vi in the query graph. We then utilize
the connection of the relation in the KG to acquire
the information possessed by the relation associ-
ated with node vi on the query graph. To achieve
this, we define the entities serving as the tail of
relation r in the KG as Etail(r), and the entities
serving as the head as Ehead(r). We then aggregate
the embeddings of these entities to construct the
relation-induced context of the node, referred to

as the relation-induced embedding. This can be
formulated as follows:

linv = Agg{Emb(e) | e ∈ Etail(r), r ∈ N in
r (v)},

(6)
loutv = Agg{Emb(e) | e ∈ Ehead(r), r ∈ N out

r (v)},
(7)

lv = (linv + loutv )/2, (8)

where we use the mean operation as the Agg func-
tion, and lv indicates the relation-induced embed-
ding of node v. Note that in Equation (6) and
(7), considering computational efficiency, we sam-
ple up to K number of entities from Etail(r) and
Ehead(r), respectively.

4.3 Integrating Two Contextual Embeddings
We incorporate the structural embedding (Sec 4.1)
and the relation-induced embedding (Sec 4.2) into
the embeddings of each node in the query graph
using a neural network architecture. Different em-
beddings are passed through the neural network,
concatenated, and then mapped into the same low-
dimensional embedding space as the original query
embedding. The node embedding of the arbitrary
query graph G, which incorporates the obtained
information from above, can be formulated as fol-
lows:

pv = Ppos[positionv], (9)

rv = Rrol[rolev], (10)

q′
v = W′ ·(MLPq ·qv |MLPI({pv, rv,gG , lv}),

(11)
where [·] is a lookup operation. Note that the node
v can be either a variable node or an answer node
in G. positionv denotes the canonical position of
node v in the query graph G. rolev represents the
number corresponding to the role of node v in the
query graph G. pv, rv, gG , and lv represent the
position embedding, role embedding, type embed-
ding, and the relation-induced embedding of node
v, respectively. MLPq and MLPI signify multi-
layer perceptrons, respectively. (·|·) is a concate-
nation. qv represents the embedding of the branch
toward node v in the query graph resulting from
projection operators of the base query embedding
model (e.g., Q2B, BetaE, or ConE). q′

v represents
the updated representation obtained by integrating
structural and relation-induced context into qv.

The query embedding models sequentially com-
pute embeddings of nodes in the query graph, ul-
timately deriving the embedding for the answer
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node. The integration occurs at each instance of a
projection operation. The position, role, type, and
relation-induced embeddings are precomputed for
each variable node and answer node. During the
execution of projection operation, these context em-
beddings are integrated into the embedding of the
corresponding node in the query graph, resulting
in an enhanced representation.

4.4 Training
The structure embeddings, relation-induced em-
bedding and parameters consisting of neural net-
works of Equation (11) for integration are updated
through backward propagation from the loss func-
tion of each query embedding model. The loss
function defined in the query embedding model is
common as follows:

Lqe =− log σ(γ − Dist(v,q′
A))

−
k∑

j=1

1

k
log σ(Dist(v′

j,q
′
A)− γ).

(12)

Here, q′
A indicates the modified query embedding

of the answer node by Equation (11). v and v′
j

denote the positive (i.e., answer entity) and nega-
tive entity for each query. k represents the number
of negative samples (Mikolov et al., 2013), and
Dist is the model-specific function that measures
the distance between query embedding and entity
embedding.
In the case of BetaE, utilizing entities’ embeddings
as parameters for beta distributions can lead to sig-
nificant variance shifts, hindering the convergence
of the model’s learning. Therefore, for BetaE, we
introduce an additional loss to mitigate the vari-
ance shifts. The details about the variance loss are
provided in Appendix D.

4.5 Time Complexity Analysis
Acquiring the relation-induced embedding costs
O(NKD), where N is the number of nodes in the
query graph, K is the size of sample entities for
constructing the relation-induced embedding, and
D is the dimension of the embedding. When in-
tegrating all embeddings, O(PMD2 +NKD) ≈
O(1 ·D2) is required. Here, P is the number of
projection operations in the given query, and M is
the number of contextual information embeddings
used (4 in case when using all embeddings). In
addition to the analysis, we compare the inference
times of the query embedding model and that with
our methodology in Table 4 of Appendix.

5 Experiments

5.1 Datasets and Base Reasoning Models

For evaluation, we use two datasets: FB15k-
237 (Toutanova and Chen, 2015) and NELL (Xiong
et al., 2017). We evaluate the effectiveness of
our approach on the Q2B (Ren et al., 2020), Be-
taE (Ren and Leskovec, 2020), and ConE (Zhang
et al., 2021) models, which have received consid-
erable attention in various FOL tasks as founda-
tion models. For more detailed information on the
datasets and query structures, please refer to Ap-
pendix A.

5.2 Main Results

Table 1 demonstrates that applying our method
results in performance gains for all compared mod-
els, with Q2B showing a particularly notable 19.5%
increase on the NELL dataset. This significant im-
provement could stem from the unique alignment
between Q2B’s hyper-rectangular embedding space
and the space where our position, role, and type
embeddings are mapped.

The lower performance of BetaE+CaQR(R) com-
pared to BetaE+CaQR(S) can be attributed to
the parameters of BetaE. BetaE utilizes two d-
dimensional embedding vectors, α and β, as the pa-
rameters of beta distributions, to represent entities.
The relation-induced embedding is constructed for
each query node by computing the average values
across multiple entities. However, since the param-
eter of averaged multiple beta distributions is not
the same as the average of parameters of beta distri-
butions, the resulting relation-induced embedding
can deviate from the actual values.

While not as pronounced as with Q2B and BetaE,
our method still delivers performance gains for
ConE across 1p, 2p, and 3p queries. This suggests
that our methodology benefits even simpler query
structures, indicating its broad applicability and
effectiveness. Table 1 demonstrates a consistent
performance improvement with the application of
CaQR(S). Furthermore, in the context of complex
queries (e.g., 2i, 3i, pi, and ip), a synergistic effect
is evident when both S and R are employed.

Table 2 presents the experimental results for
queries with negation. While there is an overall
positive effect, it is smaller compared to previous
query types. This could be attributed to the late
application of our method, which operates after the
projection step.
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Dataset Model 1p 2p 3p 2i 3i pi ip 2u up Avg Imp(%)

FB15k-237

Q2B 40.35 9.27 6.87 28.57 40.88 20.71 12.75 10.96 7.48 19.76 -
Q2B+CaQR(S) 42.49 10.82 8.92 32.55 45.92 23.44 13.29 14.27 8.67 22.26 12.7
Q2B+CaQR(R) 42.66 10.94 9.18 32.53 45.98 22.00 13.47 14.46 8.45 22.18 12.2

Q2B+CaQR 42.65 10.82 9.00 32.43 46.42 21.70 13.39 14.53 8.75 22.19 12.3
BetaE 39.20 10.69 10.15 29.16 42.59 22.53 12.28 12.52 9.73 20.98 -

BetaE+CaQR(S) 40.82 12.16 10.78 32.04 45.80 24.66 13.71 13.94 10.59 22.72 8.3
BetaE+CaQR(R) 41.08 12.31 10.70 31.64 45.21 24.49 14.22 13.94 10.46 22.67 8.1

BetaE+CaQR 41.35 12.75 10.79 31.89 45.55 24.70 14.69 14.24 10.67 22.96 9.4
ConE 42.33 12.78 10.97 32.59 47.13 25.45 13.71 14.35 10.50 23.31 -

ConE+CaQR(S) 42.89 13.13 11.16 33.07 47.56 24.75 11.97 15.49 10.90 23.44 0.5
ConE+CaQR(R) 42.92 12.98 11.16 32.32 46.99 24.31 14.36 15.18 10.67 23.43 0.5

ConE+CaQR 41.81 12.84 10.90 33.78 48.24 25.65 14.41 14.48 10.95 23.67 1.5

NELL

Q2B 41.48 13.80 11.17 32.01 44.71 21.90 16.80 11.19 10.12 22.57 -
Q2B+CaQR(S) 57.12 16.15 13.54 37.81 50.92 23.45 17.47 14.60 10.37 26.83 18.9
Q2B+CaQR(R) 57.15 16.08 13.75 37.84 50.68 22.82 18.03 14.80 10.36 26.83 18.9

Q2B+CaQR 57.15 15.99 13.42 37.95 51.25 24.24 17.57 14.80 10.42 26.97 19.5
BetaE 53.09 13.10 11.56 37.62 47.87 24.40 14.89 12.05 8.63 24.80 -

BetaE+CaQR(S) 54.72 14.83 12.58 37.49 48.34 24.06 15.00 12.50 9.76 25.47 2.7
BetaE+CaQR(R) 54.42 14.44 12.53 37.03 47.76 24.01 15.64 12.08 9.48 25.26 1.9

BetaE+CaQR 55.20 15.44 13.52 37.99 48.47 25.45 16.59 13.06 10.26 26.22 5.7
ConE 53.19 16.08 14.04 39.88 51.08 26.04 17.58 15.41 11.24 27.17 -

ConE+CaQR(S) 55.86 17.27 14.95 39.84 50.91 24.77 17.76 14.86 11.95 27.58 1.5
ConE+CaQR(R) 55.28 16.94 14.77 39.95 50.98 24.31 16.42 15.02 11.41 27.23 0.2

ConE+CaQR 56.05 17.49 14.57 40.46 51.08 22.99 16.50 15.06 11.99 27.35 0.7

Table 1: MRR results (%) for answering conjunctive queries without negation (∃, ∧, ∨) on FB15k-237 and NELL.
Imp denotes the percentage of improvement in average MRR compared to the base reasoning models. +CaQR(S)
denotes the model utilizing structure embedding. +CaQR(R) indicates the model using relation-induced embedding.
+CaQR represents the model using both structure and relation-induced embeddings. The bold text highlights the
best result for each type of query.

Dataset Model 2in 3in inp pni pin Avg

FB15k-237

BetaE 5.19 7.94 7.44 3.60 3.55 5.54
BetaE+CaQR(S) 5.29 8.35 7.77 3.51 3.90 5.76
BetaE+CaQR(R) 5.42 8.30 7.83 3.60 3.89 5.81

BetaE+CaQR 5.49 8.24 8.01 3.77 3.91 5.88
ConE 5.78 9.57 7.95 3.85 4.41 6.31

ConE+CaQR(S) 6.25 9.62 7.60 3.97 4.03 6.30
ConE+CaQR(R) 6.84 10.44 7.66 4.49 4.79 6.85

ConE+CaQR 5.24 8.91 8.07 3.51 3.90 5.93

NELL

BetaE 5.23 7.64 10.12 3.27 3.09 5.87
BetaE+CaQR(S) 5.37 7.96 10.43 3.46 3.29 6.10
BetaE+CaQR(R) 4.91 7.63 10.06 3.17 3.02 5.76

BetaE+CaQR 5.50 7.62 10.87 3.70 3.30 6.20
ConE 5.70 8.01 10.96 3.83 3.58 6.40

ConE+CaQR(S) 6.02 8.11 11.54 4.01 3.72 6.88
ConE+CaQR(R) 6.10 8.35 11.02 4.07 3.65 6.64

ConE+CaQR 5.77 8.01 11.12 3.87 3.66 6.49

Table 2: MRR results (%) for answering conjunctive
queries with negation.

5.3 Ablation Study

We conduct an ablation experiment on Q2B, BetaE,
and ConE to dissect the roles of position, role, and
type embeddings in building the structural context
of the query graph, as shown in Figure 4. Inter-
estingly, the results reveal that using any single
embedding (position, role, or type) achieves per-
formance comparable to using the combination of
all three, demonstrating the effectiveness of each
embedding option.

5.4 Hyper-parameter Sensitivity Study

Two considerations arise when applying our
methodology, CaQR, to a query embedding-based
model: the number of entities sampled to construct
the relation-induced embedding and the dimension
of the structure embedding.

Size of Entity Samples. We evaluate the ef-
fect of entity samples per relation when con-
structing relation-induced embedding from KG
on Q2B+CaQR(R). The number of entity samples
varies to 60, 120, 240, and 480. The results are de-
picted in Figure 5 (a). For FB15k-237, we observe
an improvement in performance on Q2B as the sam-
ple size increases, along with a notable variation
in performance based on sample size. However,
in the case of NELL, it is evident that the model’s
performance is relatively insensitive to the number
of samples. The number of entities on the NELL
dataset could be the factor of this result because the
FB15k-237 dataset has a smaller number of entities
than the NELL dataset.

Dimension of Structure Embeddings. Further-
more, we conduct a hyper-parameter sensitivity
study on Q2B+CaQR(S), specifically focusing on
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(a) Q2B (b) BetaE (c) ConE

Figure 4: Ablation study on the existence of Position, Role, and Type embedding. FB237 denotes the FB15k-237
dataset. +P, +Rol, +T and +S indicates the model with position embedding, role embedding, type embedding, and
all the structure embeddings, respectively.

(a) Q2B+CaQR(R) (b) Q2B+CaQR(S)

Figure 5: Effect of Hyper-parameters on
Q2B+{CaQR(S), CaQR(R)}.

the effect of position embedding, role embedding,
and type embedding (i.e., structure embedding) di-
mensions. The dimensions are varied to 108, 200,
400, and 800, respectively. The results are pre-
sented in Figure 5 (b). For FB15k-237, the most
optimal performance was observed with a dimen-
sion of 108 while significant performance degrada-
tion was evident with other dimensions. In the case
of NELL, it is evident that the model’s performance
is relatively insensitive to changes in dimension.

6 Conclusion

In this paper, we introduced CaQR, a model-
agnostic approach that leverages structural and
relation-induced context within the query graph.
By seamlessly fusing position, role, type, and
relation-induced embeddings into the query rep-
resentation, CaQR substantially improves the per-
formance of query embedding-based multi-hop rea-
soning models across diverse query types.

7 Ethics Statement

Our model proposes a methodology that enhances
the effectiveness of multi-hop logical reasoning
by fully integrating the context of the FOL query
graph. We do not additionally leverage any ex-

ternal knowledge or information that might bias
the evaluation of our model. However, while this
approach can improve model performance, it may
also inadvertently reinforce existing harmful biases
in the knowledge graphs.

8 Limitation

With the two context modeling approaches, we
have observed an increase in performance. Al-
though these approaches are model-agnostic, they
may offer relatively smaller improvements, simi-
lar to those seen in ConE. Moreover, they intro-
duce additional hyperparameters, such as the di-
mensions of structure and relation-induced embed-
dings, which can result in 1-2% fluctuation in Mean
Reciprocal Rank (MRR).
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A Experimental Details

We use the default parameters from the existing
baseline. The hyperparameter search was con-
ducted for the number of entity samples {60, 120,
240, 480} and for the dimension of the structure
embedding {108, 200, 400, 800}. We use 120 for
the entity sample size, 800 for structure embedding
for ConE (Zhang et al., 2021), and 108 for the other
baselines.

A.1 Datasets
We use two datasets to study CaQR :

• FB15k-237 (Toutanova and Chen, 2015) con-
sists of 14,505 entities, 237 relations, and
272,115 triplets when not considering the in-
verse of relations. In the process of obtaining
relation-induced context information from the
query graph, we utilize 544,230 triplets con-
sidering the inverse of relations.

• NELL (Xiong et al., 2017) comprises 63,361
entities, 400 relations, and 114,213 edges
without considering the inverse of relations.
We utilize 228,426 triplets considering the in-
verses when obtaining relation-induced con-
text information from the query graph.

A.2 Query Dataset
The query data employed for the experiment com-
prises 14 types as illustrated in Figure 6 with 4 of
them (i.e., ip, pi, 2u, and up) exclusively utilized
for evaluation purposes. The statistics of the query
data are provided in Table 3.

Figure 6: Query types used in experiments.

A.3 Base Reasoning Models
Since our approach is model-agnostic, it can be
applied to any query embedding-based multi-hop

Table 3: The Statistics of Query Datasets. Neg. means
queries with negation operators.

Dataset
Training Validation Test

w/o Neg. Neg. 1p others 1p others
FB15k-237 273,710 27,371 59,078 8,000 66,990 8,000

NELL 149,689 14,968 20,094 5,000 22,804 5,000

reasoning model. Therefore, we evaluate the ef-
fectiveness of our approach on the Q2B (Ren
et al., 2020), BetaE (Ren and Leskovec, 2020), and
ConE (Zhang et al., 2021) models for conjunctive
query types with path lengths 1, 2, and 3 (1p, 2p,
3p, 2i, 3i, 2in, 3in, inp, pni, pin, ip, pi, 2u, and up).
Note that evaluations involving negations (2in, 3in,
inp, pni, and pin) are excluded on Q2B due to their
limitations of the inability to address negations.

B Computation Graph

The computation graph shows a computationally
feasible form of query graph using logical opera-
tors. Each query graph can be mapped into its cor-
responding computation graph (Ren et al., 2020),
where each atomic formula is represented with re-
lation projection, merged by intersection, and trans-
formed negation by complement. The computation
graph effectively demonstrates the computational
procedure to resolve the query. In a computation
graph, each node represents an embedding or a
distribution over a set of entities in the KG, and
each edge signifies a logical transformation (e.g.,
relational projection, intersection/union/negation
operators) of this distribution. The computation
graph for a FOL query resembles a tree. The root
node of the computation graph represents the an-
swer (or target) variable, with one or more anchor
nodes provided by the FOL. Embeddings of en-
tities and transformation operators are initialized;
embeddings of anchor nodes are then input into the
connected neural network of logical operators in a
serial manner to obtain the final embeddings for the
answer variable, thereby creating a query embed-
ding. During training, models ensure the proximity
of query embeddings to the ground truth. In the pre-
diction stage, entities close to the query embedding
are utilized for prediction. We follow the origi-
nal implementations of the base reasoning models,
such as Q2B, BetaE, and ConE. Four logical opera-
tors are used to express the first-order logic queries:
relation projection operator, intersection operator,
union operator, and negation operator.

• Relation projection operator. For a set of
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entities S ⊆ V , and a relation type r ∈ R,
the relation projection operator produces all
the neighboring entities ∪v∈SN(v, r), where
N(v, r) ≡ {v′ ∈ V | r(v, v′) = True}.

• Intersection operator. For a set of entity sets,
{S1, S2, ..., Sn} of size n, the intersection op-
erator outputs ∩n

i=1Si.

• Union operator. Given a set of entity sets,
{S1, S2, ..., Sn} of size n, the union operator
produces ∪n

i=1Si.

• Negation operator. The negation operator
outputs a complement set, S ≡ V\S, of a set
of entities S ⊆ V .

C Case Study

Figure 7: 1p query and 2i query.

To investigate whether our model reflects
the context of the query graph in its embed-
dings, we conduct a case study using the 1p
query Contains−1(Europe,A) and the 2i query
Contains−1(Europe,A) ∧ Tenure(Enrico,A)
(Figure 7). When employing the conventional
query embedding (Q2B) approach, it is not possible
to capture the overall context of the query graph,
thus resulting in the same query embedding for the
Contains−1(Europe,A) in 1p and 2i queries. On
the contrary, when applying our model, we observe
the difference between Contains−1(Europe,A)
embedding of 1p and 2i query indicating the in-
corporation of the query graph’s context into the
embeddings.
As shown in Figure 8a, through Q2B, it is im-
possible to obtain embedding that reflects the
query graph context. Consequently, around
the embedding of the Contains−1(Europe,A)
branch (black), entities unrelated to the branch
Tenure(EnricoFermi,A), which are not in
the domain of University are mapped in close
proximity. Conversely, upon applying our
model, as depicted in Figure 8b, an adapta-
tion based on the context of the query graph
becomes apparent. The embedding of the

(a) Result from Q2B

(b) Result from Q2B + CaQR

Figure 8: The embedding results of two models for a
branch Contains−1(Europe,A) in the 2i query.

Contains−1(Europe,A) branch (black) is influ-
enced by the Tenure(EnricoFermi,A) branch,
leading to entities associated with University close
to the query embedding. This case shows the capac-
ity to obtain refined representations by incorporat-
ing query context, yielding more accurate answers.

D Variance Loss

Our approach ensures that the centers of query em-
bedding, whether they are central points within the
coordinate system, the averages of probability dis-
tributions, or the central axis of a cone in a polar
coordinate, experience nuanced adjustments based
on the contextual information inherent to the query.
This leads to an enhanced representation by inte-
grating both the overall structural and the relation-
induced context within the query graph. However,
the probability-based query embedding approach,
such as BetaE (Ren and Leskovec, 2020), employs
parameters (α, β) of multiple beta distributions as
query embeddings. In this method, when the em-
bedding changes, it not only affects the centers but
also alters the variances. Consequently, to mitigate
unintended shifts in variance hindering the conver-
gence of a model, we introduce a variance loss
to BetaE. The adjusted embedding, q′

A, does not
deviate significantly from the offset of the query
embedding composed of the parameters learned by
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the BetaE, qA, as follows:

Lvar = ||V ar(qA)− V ar(q′
A)||2, (13)

where V ar(·) returns a vector of variances of beta
distributions consisting of Beta embedding. The
loss considering Equation (13) is as follows:

L = Lqe + λLvar, (14)

where the λ is a hyper-parameter that determines
the weighting of the variance loss. Details about
Equation (13) are provided in Appendix A. De-
tailed formula of Equation (13) can be written as
follow:

qA = [(α1, β1), ..., (αd, βd)], (15)

q′
A = [(α′

1, β
′
1), ..., (α

′
d, β

′
d)]. (16)

Here, qA and q′
A are embedding learned by the

BetaE, and adjust query embedding of answer node
A of query graph, as described in Section 4.4 of the
main text. d is the dimension of BetaE, the number
of beta distributions representing the query. When
Betai is an beta distribution parameterized by αi

and βi, variance of qA and q′
A are as follow:

V ar(qA) = [σ(Beta1), ..., σ(Betad)] (17)

V ar(q′
A) = [σ(Beta′1), ..., σ(Beta′d)], (18)

where σ(·) is a variance of a probability distribu-
tion, and

σ(Betai) =
αiβi

(αi + βi)2(αi + βi + 1)
, (19)

σ(Beta′i) =
α′
iβ

′
i

(α′
i + β′

i)
2(α′

i + β′
i + 1)

. (20)

Then, we add the L2 norm of variance difference
between the query embedding constructed with pre-
trained BetaE and the adjusted query embedding
to the query-answering loss as described in Equa-
tion (14) with coefficient λ.

E Inference Time Comparison

We evaluate the inference times of both the baseline
and the baseline with our methodology applied,
showcasing the outcomes in Table 4.

F Further Experiment

In addition to experiments conducted on Q2B, Be-
taE, and ConE, we further performed experiments
applying our CaQR to the FuzzQE (Chen et al.,
2022b) using the FB15k-237 dataset. The exper-
imental results are on the Table 5. We observe
performance improvements even for FuzzQE.

Model
Inference Time (ms)

3p 3i ip
Q2B 2.0 (± 1.6) 2.3 (± 1.3) 2.6 (± 1.9)

Q2B + CaQR(S) 3.3 (± 2.3) 2.9 (± 2.5) 3.8 (± 2.7)
Q2B + CaQR(R) 5.4 (± 4.3) 3.4 (± 2.4) 3.6 (± 1.5)

Q2B + CaQR 9.6 (± 6.9) 4.6 (± 3.2) 6.5 (± 4.7)

Table 4: Averages and standard deviations of inference
time on 1,000 queries involving complex query types
(3p, 3i, ip). CaQR(S) denotes the model with position,
role, and type embedding. CaQR(R) indicates the model
with relation-induced embedding.

Table 5: MRR results (%) of applying CaQR to Fuz-
zQE on FB15k-237 dataset. Avg_P, Avg_N, and Avg
represent the average results for query types without
negation, query types with negation, and all query types,
respectively.

Model Avg_P Avg_N Avg Imp(%)
FuzzQE 21.19 6.91 16.09 -

FuzzQE+CaQR 23.10 7.13 17.39 8.1
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