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Abstract

In Large Visual Language Models (LVLMs),
the efficacy of In-Context Learning (ICL) re-
mains limited by challenges in cross-modal in-
teractions and representation disparities. To
overcome these challenges, we introduce a
novel Visual In-Context Learning (VICL)
method comprising Visual Demonstration Re-
trieval, Intent-Oriented Image Summarization,
and Intent-Oriented Demonstration Composi-
tion. Our approach retrieves images via “Re-
trieval & Rerank” paradigm, summarises im-
ages with task intent and task-specific visual
parsing, and composes language-based demon-
strations that reduce token count and alleviate
cross-modal interaction problem. Experimen-
tal evaluations on five visual reasoning datasets
demonstrate the effectiveness of our method.
Moreover, our extensive experiments leverage
information flow analysis to elucidate the ef-
fectiveness of our method, and investigate the
impact of length and position of demonstrations
for LVLM. The use of in-context unlearning fur-
ther shows promise in resetting specific model
knowledge without retraining.

1 Introduction

Large Language Models (LLMs) exhibit impres-
sive reasoning abilities across various natural lan-
guage tasks (Brown et al., 2020; Touvron et al.,
2023). Researchers are actively investigating the
extension of LLM capabilities to address chal-
lenges in the visual domain by integrating LLMs
with vision models (Zhu et al., 2023; Bai et al.,
2023). This endeavor has given rise to the develop-
ment of Large Visual Language Models (LVLMs).
LVLMs are designed to seamlessly fuse informa-
tion from both images and text, enabling them to
tackle more intricate tasks that demand a profound
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The image shows a person with their 
hands forming a heart shape, likely 
expressing love or affection. The 
person is standing near a body of 
water,  which  adds  a  se rene  and 
romantic atmosphere to the scene. The 
heart shape formed by the person's 
h a n d s  i s  a  s y m b o l  o f  l o v e  a n d 
affection, and the presence of the 
water  in the background fur ther 
emphasizes the emotional connection 
between the person and the scene.
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Figure 1: Illustrating Cross-Modal Challenges in LVLMs:
(a) Distribution of multi-modal interaction neurons. (b) The
distinct spaces are occupied by visual features and text embed-
dings before passing into LVLMs.

comprehension of both modalities (OpenAi, 2023;
Zhu et al., 2023).

The LLM has a remarkable capability, known as
In-Context Learning (ICL), which involves provid-
ing LLMs with a limited amount of labeled data as
demonstrations to improve their reasoning ability
(Brown et al., 2020; Dong et al., 2023; Zhang et al.,
2023d). This approach can significantly enhance
the performance of LLMs in various NLP tasks,
such as translation (Garcia et al., 2023; Moslem
et al., 2023), sentiment classification (Qin et al.,
2023), and question-answering (Qin et al., 2023; Li
et al., 2023). In the ICL, LLMs can flexibly adjust
their behavior based on the provided context, al-
lowing them to understand and perform tasks with
few labeled data. The success of ICL has moti-
vated research into extending the ICL capabilities
to LVLMs. However, some studies (Chen et al.,
2023; Peng et al., 2023) find that while LVLMs
have ICL capabilities, they are not as pronounced
as those observed in LLMs. Two factors lead to
this difference: (1) As shown in Figure 1(a), as
observed in previous research (Pan et al., 2023;
Schwettmann et al., 2023), visual-language inter-
actions occur at deeper layers in LVLMs, which
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highlights the difficulty of cross-modal interactions.
In ICL, label words aggregate information in shal-
low layers and subsequently distribute it in deeper
layers (Wang et al., 2023). Consequently, the is-
sue of cross-modal interactions significantly im-
pacts the ICL capabilities of LVLMs. (2) From
Figure 1(b), our analysis reveals that visual fea-
tures and LLM embeddings occupy distinct spaces
in LVLMs. This observation underscores the in-
herent cross-modal gap present in LVLMs. While
many works (Min et al., 2022; Lu et al., 2023)
are dedicated to enhancing the ICL capabilities of
LLMs, the challenges faced by LVLMs in this re-
gard differ substantially. This discrepancy arises
from the difficulty in cross-modal interactions and
inherent disparities in representation spaces within
LVLMs, which impose limitations on their ICL
performance.

In this study, we present a novel Visual In-
Context Learning (VICL) method to enhance the
ICL capability of LVLMs. VICL comprises Visual
Demonstration Retrieval, Intent-Oriented Image
Summarization, and Intent-Oriented Demonstra-
tion Composition. For Visual Demonstration Re-
trieval, we employ a pre-trained image encoder as
a retriever to search for relevant candidate images
for the provided image. Subsequently, we rerank
the retrieved candidates using textual descriptions
of the provided image. Moreover, LVLMs perform
Intent-Oriented Image Summarization, automati-
cally extracting image summary with task intent
and task-specific visual parsing from image-label
pairs. In addition, Intent-Oriented Demonstration
Composition uses language cues to create demon-
strations that enhance ICL of LVLMs, replacing im-
ages with image summary in demonstrations. Our
method not only boosts in-context learning but also
introduces in-context unlearning, allowing mod-
els to discard or reset specific knowledge through
demonstration. The substitution of images with
visual summaries significantly reduces the token
count, enabling the concatenation of more demon-
strations without encountering token limitations.
In comparison to conventional visual-language in-
teractions in standard visual ICL approaches, our
method solely relies on language interactions to
facilitate effective demonstration understanding.

Our experiments across five image reasoning
datasets evaluate our method’s effectiveness, com-
paring LVLM performance using our approach
against a baseline method. Moreover, we employed
information flow for interpretative analysis, to ver-

ify the effectiveness of our method. Furthermore,
examined the influence of demonstrations and their
sequence length on LVLM’s ICL capability. We
investigate the importance of intent-oriented im-
age summaries and the impact of demonstrations
order. In addition, we explore the application of in-
context unlearning, demonstrating its feasibility for
unlearning scenarios without additional training.

2 Related Work

2.1 Large Vision-Language Models

Large Vision-Language Models (LVLMs) are de-
signed to comprehend and generate content across
vision and language modalities, allowing them to
perform tasks that involve understanding and gen-
erating not only text, but also information in visual
forms (Yin et al., 2023).

LVLM can be broadly categorized into two main
types, according to the output modalities: visual
understanding and visual generation. Visual un-
derstanding models are capable of comprehend-
ing visual modality information provided to them
and generating textual responses, enabling them
to accomplish tasks such as image captioning, im-
age question answering (Zhu et al., 2023; OpenAi,
2023; Alayrac et al., 2022), video understanding
(Cho et al., 2021), video captioning (Bansal et al.,
2023), etc. The typical structure of these models
involves integrating the visual encoders based on
transformer architecture (like Clip(Radford et al.,
2021)) into a large language model.

On the other hand, visual generation models are
equipped with visual decoders, enabling the decod-
ing of feature vectors into images or videos. They
have shown the ability to create high-quality out-
puts in generative tasks, such as generating text,
images, and videos (Marcus et al., 2022; Saharia
et al., 2022; Zhang et al., 2023b).

2.2 In-Context Learning

In-Context Learning exemplifies a paradigm where
model weights require no optimization; rather, ad-
justing the model input (adding context) leads
to correct output generation (Dong et al., 2023).
An in-context learning prompt typically consists
of two components: demonstration and new
query. Demonstrations comprise multiple question-
answer pairs, each presenting a complete question
and its corresponding answer, while new queries
involve inquiries posed to the model. Due to the
emergent ability in large language models (Lu et al.,
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2023), they can to some extent reference demon-
strations to answer new questions (Min et al., 2022).
With the advantage of not necessitating fine-tuning
of model parameters, in-context learning has be-
come a popular paradigm for applying large lan-
guage models.

The inherent black-box nature of deep neural
models renders the reasons behind the efficacy of
in-context learning even more challenging to elu-
cidate (Mao et al., 2024; Hahn and Goyal, 2023;
?; von Oswald et al., 2023; Xie et al., 2022). One
of the most widely accepted theoretical explana-
tions at present is that when the pre-training text
has long-range coherence, if the demonstrations
in the prompt share potential concepts, in-context
learning ability will emerge (Xie et al., 2022).

2.3 Machine Unlearning

In certain scenarios involving security or privacy
concerns, it becomes imperative to selectively erase
specific knowledge acquired by machine learning
models (Goldsteen et al., 2022). Unlike conven-
tional databases where information is explicitly
stored in tabular forms, the entirety of a model’s
acquired knowledge is implicitly embedded within
its parameters. Consequently, the challenge arises
of accurately expunging unwanted information
without necessitating a complete retraining of the
model, thereby minimizing interference with other
retained knowledge. This intricate problem is ad-
dressed by a collective set of techniques known
as machine unlearning (Bourtoule et al., 2021;
Nguyen et al., 2022; Zhang et al., 2023a; Koch
and Soll, 2023).

Among these methodologies, the in-context un-
learning (Pawelczyk et al., 2023) emerges as a
promising solution, which specifically applies the
in-context learning paradigm without updating any
model parameters, making it suitable for large lan-
guage models. The framework leverages a com-
bination of incorrectly and correctly labeled ex-
amples from training datasets. By analyzing and
understanding the nuances within these discrep-
ancies, a unique prompt is constructed for each
instance. This tailored prompt aims to highlight
specific challenges posed by the labeling discrepan-
cies, encouraging the model to refine its predictions
during inference.

3 Background

Generative language models could self-supervised
learn knowledge from pre-training corpora (Rad-
ford et al., 2018, 2019; Raffel et al., 2020). As the
scale of model parameters and pre-training corpora
expands, researchers have observed the emergent
ability in large language models, enabling them to
provide accurate answers merely by adjusting the
input prompt without fine-tuning model parameters
(Wei et al., 2022a,b; Fu et al., 2023).

The large language model is abstracted as a func-
tion denoted as LLM(·). Given an input prompt,
denoted as p, it generates the corresponding out-
put, denoted as o. In the most common case of
question-answering, the prompt p is exactly the
question q raised by the user. And the output o is
expected to be the answer a to the question q.

LLM(o|p) = LLM(a|q) (1)

However, under the in-context learning
paradigm, the input prompt picl is carefully
designed:

LLM(a|picl) = LLM(a|D⊕ q)

D = T(⊕n
j (q̂j ⊕ âj)), (2)

where the input prompt (denoted as picl) is formed
by concatenating (denoted as ⊕) demonstrations
D and query q, the current question raised by the
user. D is composed of number n sets of complete
questions(q̂j) and answers(âj), spliced together
through a fixed template T(·).

Considering the established efficacy of in-
context learning on large language models, it was
intuitive to extend the in-context learning approach
to large visual-language models upon its emergence
(Sun et al., 2023; Liu et al., 2023c; Xu et al., 2023;
Zhang et al., 2023c). In the context of a visual ques-
tion answering task, the formulation of in-context
learning on large visual-language model can be
delineated as follows:

LVLM(a|picl) = LVLM(a|D⊕ i⊕ q)

D = T(⊕n
j (q̂j ⊕ îj ⊕ âj)), (3)

where the visual input prompt, denoted as picl, is
created by concatenating demonstrations D, query
image i, and query text q. D consists of n sets of
complete questions (q̂j), images (îj), and answers
(âj), which are combined by a fixed template T(·).
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Figure 2: Overview of our Visual In-Context Learning (VICL) method. The Visual Encoder is used to encode images for
retrieval, and CLIP is used for cross-modal reranking of images and caption; LVLM is used to generate caption for input images,
generate intent-oriented image summaries, and predict answer based on the composed prompt.

4 Visual In-Context Learning

In this section, we elaborate on our approach VICL,
which comprises three core components: Visual
Demonstration Retrieval, Intent-Oriented Image
Summarization, and Intent-Oriented Demonstra-
tion Composition. The pipeline of VICL is shown
in Figure 2.

4.1 Visual Demonstration Retrieval
The Visual Demonstration Retrieval (VDR) compo-
nent is the first step in our VICL method, designed
to identify suitable samples for ICL as demonstra-
tions. The goal of VDR is to discern and choose vi-
sual demonstrations that bear the utmost relevance
to the current task. This process capitalizes on
both the visual features of images and their accom-
panying textual descriptions. Following de facto
“retrieval & rerank” paradigm (Zhou et al., 2023b),
VDR comprises these two phases.

Visual Retrieval. Given an image I , our goal
is to find a set of candidate demonstration images
D = {I1, I2, · · · , In} that are relevant to I . This
is achieved by employing a pre-trained image en-
coder, Vision-Enc, that maps images into a high-
dimensional feature space, i.e.,

f = Vision-Enc(I), (4)

fi = Vision-Enc(Ii), i ∈ {1, 2, · · · , n}, (5)

where f is the feature vector representing the em-
bedding of the image I , and fi represents the em-
bedding of the image Ii in the dataset. Vision-Enc
denotes ViT (Dosovitskiy et al., 2021). The re-
trieval operation is defined as:

Dq = Retrieval(I,D | Vision-Enc), (6)

The Retrieval function aims to select the top-n im-
ages from D whose embeddings are most similar

to the embedding of I , based on a similarity met-
ric Sim. This approach ensures that the selected
images Dq are those that are most relevant to the
query image in terms of visual features encoded
within the high-dimensional feature space. The
similarity metric is defined as:

Sim(f ,fi) =
E(f) · E(fi)

∥E(f)∥∥E(fi)∥
, (7)

where (·) is the dot product between two vectors.

Cross-Modal Reranking. After the visual re-
trieval, we obtain a set of candidate images Dq.
However, to ensure that the selected demonstra-
tions are not only visually similar but also seman-
tically relevant to I , we employ a reranking step
using textual descriptions. We use a large vision
language model, LVLM, to generate an image de-
scription Tq for the image I . The reranking process
adjusts the initial rankings based on the semantic
similarity between Tq and Ii, Ii ∈ Dq, which
is computed by a pre-trained image-text model
VL-Enc:

D̂q = Rerank(Dq,Tq | VL-Enc), (8)

where D̂q denotes the reranked set of demonstra-
tion images. VL-Enc refers to CLIP (Radford et al.,
2021). This dual-stage approach allows us to har-
ness the complementary strengths of visual and
textual modalities, ensuring that the chosen visual
demonstrations are not only visually pertinent but
also contextually aligned with the query image’s
task-specific requirements.

4.2 Intent-Oriented Image Summarization
Intent-Oriented Image Summarization (IOIS) aims
to simplify LVLM’s ICL problem by generating
a visual content summary from a task intent per-
spective. This summarization process focuses on
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exploring the relationship of a given reference im-
age, question and answer triplet, and generates an
image summary encapsulating the task intent and
the task-specific visual parsing.

ICL in LLM. For LLMs, given the reference
question-answering pair {Q̂, Â} and the input ques-
tion Q, the ICL problem can be formalized as:

P (A | Q)=P (A | Q,T )×P (T | {Q̂, Â}), (9)

where A is the predicted answer; T is task intent;
the model needs to infer the task intent from given
reference question-answer pairs to accurately re-
spond to a new question.

ICL in LVLM. In LVLMs, the ICL problem ex-
tends to:

P (A | Q, I) = P (A | I,Q,T ,P )

× P (T | {Î, Q̂, Â})
× P (P | {Î, Q̂, Â}), (10)

where the LVLM must first deduce the task intent
T and image parsing strategy P from the reference
image, question, and answer triplet {Î, Q̂, Â} be-
fore analyzing the content of the given image based
on these insights.

VICL. Our IOIS method significantly simplifies
this process by pre-generating a visual content sum-
mary that embodies both the task intent and the im-
age parsing approach. This summary is produced
by concatenating a carefully designed prompt with
the given reference image, question, and answer,
and then inputting this into the LVLM. The output
is a summary that not only describes the image
but and encapsulates task intent and task-specific
visual parsing. Our approach can be represented
as:

P (A|Q,I)=P (A|I,Q,S)×P (S|{Î,Q̂,Â}) (11)

where S denotes the set of intent-oriented visual
summarization for all reference images. This for-
mulation demonstrates how our method modifies
the LVLM’s ICL challenge by replacing the di-
rect analysis of images with the interpretation of
summarizations that are pre-aligned with the task’s
intent and preferred image parsing methodology.

Implementation of IOIS. The specific proce-
dure for generating the Intent-Oriented Image Sum-
marization involves constructing a prompt that in-
tegrates the demonstration image with its corre-
sponding label, underpinned by the task’s intent

and image parsing preferences. This prompt is then
input into the LVLM to produce the summarization.
The process can be mathematically function as:

Si = LVLM(Prompt(Îi, Q̂i, Âi),

where S = {S1,S2, · · · ,Sl},
Îi, Q̂i, Âi ∈ {Î, Q̂, Â}, (12)

where l is the number of reference examples.
Prompt is a function that formulates the input for
the LVLM, encapsulating the demonstration image
and label along with explicit cues about the task’s
intent and the approach to image parsing.

This approach ensures that the LVLM’s ICL pro-
cess is primed with a context that significantly low-
ers the cognitive load associated with cross-modal
mapping, allowing the model to focus on reason-
ing within a linguistic framework that is inherently
more aligned with its training. This strategic sim-
plification not only enhances the efficiency of the
LVLM’s ICL capabilities but also reduces the com-
plexity associated with direct image analysis.

4.3 Intent-Oriented Demonstration
Composition

Intent-Oriented Demonstration Composition
(IODC) aims to effectively integrate the generated
image summaries Si with corresponding questions
Qi and answers Ai into a coherent demonstration
for the LVLM.

Composition of Demonstrations. The IODC
process involves the assembly of each image sum-
mary Si with its corresponding question Qi and an-
swer Ai into a single, unified demonstration. This
is achieved through the concatenation of these el-
ements in a manner that preserves the logical and
semantic coherence necessary for effective ICL.
Formally, the process can be represented as:

D̄i = Concat(Si,Qi,Ai), (13)

where Concat is the concatenation operation, and
D̄i represents the i-th demonstration composed of
the image summary, question, and answer triplet.
This operation is performed for each set of Si, Qi,
and Ai, resulting in a collection of demonstrations:

D̄ = {D̄1, D̄2, · · · , D̄n}, (14)

where D̄ denotes the complete set of demonstra-
tions ready for presentation to the LVLM.
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Enhancing ICL with Demonstration Composi-
tion. By replacing original images Ii with intent-
oriented visual summaries Si, we significantly re-
duce the complexity and token count inherent in
direct image processing. This reduction allows for
the inclusion of a larger number of demonstrations
within the LVLM’s token limit, thereby enriching
the context available for ICL without overwhelm-
ing the model with excessive information, i.e.,

A = LVLM(D̄, I,Q). (15)

The IODC methodology facilitates a shift in LVLM
processing from a reliance on direct visual inputs to
an emphasis on linguistic representations of visual
content, grounded in the task’s intent. This shift not
only streamlines the ICL process by minimizing
the token count but also aligns the demonstrations
more closely with the LVLM’s linguistic process-
ing capabilities.

4.4 Information Flow Analysis
Following Wang et al. (2023), we analyze the in-
formation flow of VICL in the LVLM. To calculate
saliency score of each element in attention matrix,
we employ Taylor expansion (Michel et al., 2019):

Il =
∑

h

∣∣∣∣A⊤
h,l

∂L(x)
∂Ah,l

∣∣∣∣ (16)

where h and l represent different attention heads
and transformer layers, respectively. L(x) is the
loss function for the task. Furthermore, we define
four different information flow significance scores
as follows:

Swp =

∑
(i,j)∈Cwp

I(i, j)

|Cwp|
,

Cwp = {(pk, j) : k ∈ [1, C], j < pk} (17)

Spq =

∑
(i,j)∈Cpq

Il(i, j)

|Cpq|
,

Cpq = {(q, pk) : k ∈ [1, C]} (18)

Svq =

∑
(i,j)∈Cvq

Il(i, j)

|Cvq|
, Cvq = {(q, v)} (19)

Sww =

∑
(i,j)∈Cww

Il(i, j)

|Cww|
,

Cww = {(i, j) : j < i}−Cwp−Cpq−Cvq (20)

where pk, C, q and v represent the label words,
the total number of label words, the target position
and the input image, respectively. Swp denotes the
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Figure 3: Information flow results on the EmoSet.

significance of information flow from the image
summaries to label words; Spq represents the sig-
nificance of information flow from label words to
the target position; Svq signifies the significance
of information flow from label words to the input
image part; Sww indicates the significance of the
information flow amongst all words, excluding in-
fluences represented by Swp, Spq, and Svq.

As shown in Figure 3, the analysis reveals vary-
ing degrees of importance in information flow
within VICL across different layers and attention
heads. In the shallow layers, Swp is highly impor-
tant but diminishes as the layers progress. This
suggests that image summaries are crucial in de-
termining label words in the early stages, but their
influence weakens with increasing model depth.
Unlike Swp, the importance of Spq increases as the
layers deepen. This implies that the influence of
label words on determining the target position be-
comes more significant in the later stages of the
model. Similar to Spq, Svq shows some impor-
tance in the early stages but diminishes as the lay-
ers deepen. This suggests that the influence of label
words on the input image weakens as the model
progresses. Sww remains relatively stable through-
out the training process, showing no significant
trend. Image summaries are crucial for label words
aggregating information in the early stages, but the
model increasingly emphasizes the relationship be-
tween label words and target position as it deepens.

5 Experiments

5.1 Experimental Settings
Dataset. In our experiments, we used five pop-
ular datasets related to image content reasoning:
EmoSet (Yang et al., 2023), Emotion6 (Peng et al.,
2015), UnBiasedEmo (Panda et al., 2018), CI-
FAR10 (Krizhevsky, 2009), and MNIST (Deng,
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Model Method EmoSet Emotion6 UnBiasedEmo CIFAR10 MNIST

LLaVA-7B (Liu et al., 2023a)
Zero-Shot 0.23 0.31 0.31 0.75 0.85

ICL 0.32 0.40 0.38 0.68 0.77
VICL 0.69 0.70 0.76 0.84 0.88

MiniGPT-4 (Zhu et al., 2023)
Zero-Shot 0.21 0.27 0.27 0.61 0.84

ICL 0.28 0.34 0.36 0.65 0.67
VICL 0.61 0.61 0.74 0.76 0.85

Qwen-VL (Bai et al., 2023)
Zero-Shot 0.22 0.29 0.30 0.74 0.78

ICL 0.31 0.39 0.37 0.66 0.75
VICL 0.64 0.63 0.74 0.84 0.85

LLaVA-13B (Liu et al., 2023a)
Zero-Shot 0.32 0.34 0.38 0.79 0.87

ICL 0.32 0.52 0.42 0.70 0.80
VICL 0.72 0.76 0.78 0.87 0.90

Table 1: Comparison results of LVLM on five datasets.

2012). EmoSet, Emotion6, and UnBiasedEmo are
datasets for image emotion classification, where the
goal is to infer emotions based on the content of
the images. EmoSet consists of 8 emotions, while
Emotion6 and UnBiasedEmo consist of 6 emotions,
each with multiple sub-categories. CIFAR10 and
MNIST are classification datasets, where the task
is to identify the object category in the images.
For each of EmoSet, Emotion6, UnBiasedEmo, CI-
FAR10 and MNIST, we sampled 100 and 1000
samples as demonstration candidates and test sets,
respectively. The metric for all test sets is accuracy.

Prompts. We have considered three distinct
prompts for experimental comparison: (1) “Zero-
shot” involves using the instruction and input im-
age directly as the prompt without providing any
demonstrations, formatted as “{instruction} {im-
age}”. (2) “ICL” (In-Context Learning) includes
first retrieving demonstrations using Visual Demon-
stration Retrieval, then integrating these demon-
strations into the prompt, formatted as “{instruc-
tion} {demonstrations} {image}”. (3) “VICL” (Vi-
sual In-Context Learning) involves first retriev-
ing demonstrations using Visual Demonstration
Retrieval, then converting the images from the
demonstrations into text using Intent-Oriented Im-
age Summarization, concatenating this text back
into the demonstrations, and finally integrating
them into the prompt, formatted as “{instruction}
{text demonstrations} {image}”. Detailed prompt
specifications are provided in Appendix A.

Large Vision-Language Models. In this paper,
we leverage four state-of-the-art LVLMs with var-
ious prompts to perform visual reasoning tasks.
These models are LLaVA-7B (Liu et al., 2023a),
MiniGPT-4 (Zhu et al., 2023), Qwen-VL (Bai et al.,

2023), and LLaVA-13B (Liu et al., 2023a). LLaVA-
7B and LLaVA-13B are based on the visual instruc-
tion tuning (VIT) technique, which aligns a frozen
visual encoder and a large language model (LLM)
using one projection layer. MiniGPT-4 is an open-
source chatbot that fine-tunes LLaMA/Vicuna on
GPT-generated multi-modal instruction-following
data. Qwen-VL is a versatile vision-language
model that can perform understanding image and
text. We compare and analyze the in-context learn-
ing performance and capabilities of these models.

5.2 In-Context Learning

We analyze the performance of LVLMs using Zero-
Shot, ICL, and VICL approaches on five datasets.
The results in Table 1 show the effectiveness of
VICL across different LVLMs and datasets. VICL
consistently outperforms both ICL and Zero-Shot
across all models and datasets. This improvement
underscores the effectiveness of VICL in enhanc-
ing the in-context learning capability of LVLMs
by providing intent-oriented demonstrations. The
method significantly bridges the cross-modal gap,
allowing LVLMs to better understand and incor-
porate visual information within LLM reasoning
processes. The performance increase is more pro-
nounced in models like LLaVA-13B, where VICL
boosts performance notably compared to the base-
line Zero-Shot and ICL methods. This suggests
that models with higher capacity or more parame-
ters benefit more from the VICL approach due to
their stronger ability to reason with multi-modal
information.

5.3 Analysis

Visual Demonstration Retrieval. As shown in
Figure 4, our experiments compare retrieval and
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Figure 4: Diferent retrieval method comparison. “V-Ret +
VL-Rank” denotes the combination of ViT for retrieval and
CLIP for reranking. “VL-Ret + V-Rank” refers to CLIP for
retrieval and ViT for reranking. “V-Ret” and “VL-Ret” are
ViT and CLIP alone for retrieval, respectively. “Random” is
random sampling.
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Figure 5: Impact of Image Demonstration Number.
reranking strategies on three datasets. “V-Ret +
VL-Rank”, outperforms others on the Emotion6
dataset, highlighting the benefits of broad retrieval
by ViT complemented by CLIP’s nuanced under-
standing. “VL-Ret + V-Rank”, maintains consistent
performance across datasets but falls short of “V-
Ret + VL-Rank” on Emotion6 and UnBiasedEmo,
suggesting ViT’s unique approach may not always
enhance performance. “V-Ret”, shows consistency
but lacks the leading performance of combined ap-
proaches. “VL-Ret”, performs better than random
sampling but lags behind two-step methods. “Ran-
dom” emphasizes the need for strategic retrieval
and reranking.

Impact of Image Demonstration Number. Our
experimental results reveal a clear impact of the
number of image demonstrations on the perfor-
mance of both ICL and VICL. As shown in Fig-
ure 5, the ICL method shows a modest increase in
performance with an increasing number of demon-
strations, particularly evident in the progression
from one to three demonstrations. However, the
performance tends to plateau or even slightly de-
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Figure 6: Impact of Context Length.
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Figure 7: Impact of Demonstration Order.

crease beyond three demonstrations, suggesting a
diminishing return on additional demonstrations.
In stark contrast, the VICL method exhibits a more
pronounced improvement with the increase in the
number of demonstrations. This indicates that
the VICL method effectively leverages additional
demonstrations, translating into substantial perfor-
mance gains.

Impact of Context Length. The performance
dynamics of the VICL method, as observed in Fig-
ure 6, exhibit a discernible correlation with the
length of the context provided. The results demon-
strate an initial increase in accuracy with the expan-
sion of context length of VICL. Particularly, on the
EmoSet dataset, the accuracy ascends from 0.3 to a
peak of 0.69, followed by a tapering off and slight
fluctuations thereafter. A similar trend is observ-
able in the Emotion6 and UnBiasedEmo dataset.
However, beyond certain context lengths, there is a
general trend of diminishing gains, or even a slight
decline in accuracy. This highlights the balance
between providing sufficient context for the model
to leverage and avoiding an excessive amount.

Order of Demonstrations. We delve into the
influence of the position of examples with posi-
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Method EmoSet Emotion6 UnBiasedEmo

Standard 0.61 0.62 0.65
Task Intent 0.64 0.65 0.71

Image Parsing 0.66 0.68 0.69
IOIS 0.69 0.70 0.76

Table 2: Impact of Visual Summarization.

tive labels – labels as same as the true category
of the prediction sample – within the demonstra-
tion sequence. Following (Liu et al., 2023b; Zhou
et al., 2023a), we split the positions into three dis-
tinct sections: head, middle, and tail. As depicted
in Figure 7, the head position yields the highest
accuracy across all datasets, and the tail position
demonstrates the next best performance. The mid-
dle position shows the least favorable performance.
This trend could suggest that the model’s predic-
tions are more influenced by examples positioned
at the beginning and end of the sequence. These
observations underscore the significance of demon-
stration order in visual in-context learning.

Impact of Visual Summarization Method. To
evaluate the effect of various visual summarization
for VICL, we consider four strategies, i.e, Stan-
dard captioning, Task Intent Summarization, Im-
age Parsing Summarization, and Intent-Oriented
Image Summarization (IOIS). Details can be found
in Appendix B. As Table 2 shown, task intent sum-
marization yields a moderate increase in accuracy,
demonstrating the benefit of aligning the image
summary with the task. Image Parsing, including a
detailed visual reasoning process, can significantly
enhance performance. The IOIS method, leverag-
ing the strengths of the previous two approaches,
achieves the best performance with a notable mar-
gin. The improvement demonstrates the efficacy of
integrating task intent with image parsing, suggest-
ing that an understanding of both task and visual
content is paramount.

5.4 In-Context Unlearning
We evaluate the capability of models to unlearn
specific information, as shown in Table 3. We ran-
domly selected sub-classes from the dataset and re-
placed the class to build the Unlearning Set, while
the entire dataset constitutes the All Set. The details
can be found in the Appendix C. The Zero-Shot
shows the lowest performance, indicating a limited
ability to disregard incorrect sub-class information
based on the model’s pre-existing knowledge. ICL
exhibits a marked improvement in the Unlearn-

Method Emotion6 UnBiasedEmo

Unlearning Set All Set Unlearning Set All Set

Zero-Shot 0.1 0.26 0.08 0.24
ICL 0.57 0.35 0.49 0.36

VICL 0.77 0.69 0.82 0.74

Table 3: In-Context Unlearning.

ing Set, demonstrating its ability to adapt to the
new context provided by the altered demonstrations.
VICL method significantly outperforms the other
approaches, achieving the highest unlearning accu-
racy. VICL also maintains superior performance in
the All Set, indicating robustness in distinguishing
between correctly and incorrectly labeled samples
and adjusting its inferences accordingly.

6 Conclusion

This paper has introduced the integration of In-
Context Learning (ICL) into Large Visual Lan-
guage Models (LVLMs), addressing challenges in
cross-modal interactions and the distinct represen-
tation spaces. Through Visual In-Context Learn-
ing (VICL), incorporating Visual Demonstration
Retrieval, Intent-Oriented Image Summarization,
and Demonstration Composition, LVLMs show en-
hanced performance in understanding visual and
textual information. In VICL, we have not only
streamlined the in-context learning process but also
introduced the concept of in-context unlearning,
allowing LVLMs to adjust their knowledge base
dynamically without the need for retraining. Our
method shows effective in improving LVLMs in
processing multi-modal tasks. The extensive evalu-
ations verify the effectiveness of our VICL method,
highlighting its potential to bridge the gap between
visual and linguistic modalities.

Limitations

This study introduces the VICL method to ad-
vance LVLMs, yet acknowledges several limita-
tions warranting further investigation: (1) The effi-
cacy of VICL heavily depends on the performance
of LVLMs, which in turn is highly reliant on the
original parameter size and the scale of training
data. Further validation with larger LVLMs re-
quires more computational resources. (2) While
VICL demonstrates promise in visual reasoning
tasks, its broader applications can be explored.
Some Difficult tasks may require improved strate-
gies for VICL method.
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A Prompts

There are prompts for the three methods, i.e., Zero-
Shot, ICL, and VICL.

• For EmoSet, Emotion6 and UnBiasedEmo
dataset, the prompt for Zero-Shot is “Ques-
tion: Do you feel which emotion when seeing
this image? There is an emotion category list:
[{Label List}]. Image: {image}. Answer: ”.

• For CIFAR10 and MNIST dataset, the prompt
for Zero-Shot is “Question: What you see in
this image? There is a category list: [{Label
List}]. Image: {image}. Answer: ”.

• For EmoSet, Emotion6 and UnBiasedEmo
dataset, the prompt for ICL is “Question: Do
you feel which emotion when seeing this im-
age? There is an emotion category list: [{La-
bel List}]. Image 1: {image-1}. Answer:
{label-1}. Image 2: {image-2}. Answer:
{label-2} . . . Image N: {image-N}. Answer:
”.

• For CIFAR10 and MNIST dataset, the prompt
for ICL is “Question: What you see in this im-
age? There is a category list: [{Label List}].
Image 1: {image-1}. Answer: {label-1}. Im-
age 2: {image-2}. Answer: {label-2} . . .
Image N: {image-N}. Answer: ”.

• For EmoSet, Emotion6 and UnBiasedEmo
dataset, the prompt for VICL is “Question: Do
you feel which emotion when seeing this im-
age? There is an emotion category list: [{La-
bel List}]. Image 1: {summary-1}. Answer:
{label-1}. Image 2: {summary-2}. Answer:
{label-2} . . . Image N: {image-N}. Answer:
”.

• For CIFAR10 and MNIST dataset, the prompt
for VICL is “Question: What you see in this
image? There is a category list: [{Label List}].
Image 1: {summary-1}. Answer: {label-1}.
Image 2: {summary-2}. Answer: {label-2}
. . . Image N: {image-N}. Answer: ”.

B Visual Summarization Prompt

We investigate different visual summarization
method for VICL, and the prompt for summariza-
tion as follows:

• The Standard captioning approach employs
conventional captioning techniques, and its

prompt is “Generate a detailed description of
the content depicted in the provided image.”.

• Task Intent method enriches image descrip-
tions with task-specific intent, and its prompt
is “Given an image and a corresponding label,
generate a descriptive caption that not only
describes the image content but also conveys
the intention or purpose behind the depicted
scene.”.

• Image Parsing goes further by incorporating
descriptions of both image observations and
the reasoning process, and its prompt is “You
are presented with an image along with ac-
companying labels. Your task is to provide
a detailed description of the image content
while also explaining the observations and
reasoning process behind your description.”.

• IOIS combines features of both Task Intent
and Image Parsing to provide comprehensive
summaries, and its prompt is “Generate a
descriptive caption for the provided image
and labels, elucidating both the visual con-
tent and the underlying purpose or intention
depicted. Craft a clear and concise descrip-
tion that seamlessly integrates details from the
image and labels, highlighting connections
between visual cues and semantic meaning.
Your caption should not only describe what
is visible in the image but also convey the
task-oriented aspect.”.

C In-Context Unlearning

The “Unlearning Set” comprises samples from five
randomly selected sub-classes with labels reas-
signed to alternate categories and incorporated into
the demonstration set and test set. Specifically, we
randomly select an example corresponding to the
input image’s class and include it in the demonstra-
tion set. Other examples in the demonstration set
are drawn from samples belonging to standard cate-
gories. This setup is designed to assess the model’s
ability to discard previously learned sub-class infor-
mation when exposed to intentionally mislabeled
examples. The performance on this set directly re-
flects the unlearning accuracy. Meanwhile, the “All
Set” includes the Unlearning Set combined with
additional samples from standard categories.
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