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Abstract

Assessing the capabilities of large language
models (LLMs) as agents in decision making
and operational tasks is crucial for the devel-
opment of LLM-as-agent service. We propose
CToolEval, a benchmark designed to evaluate
LLMs in the context of Chinese societal appli-
cations, featuring 398 APIs across 27 widely-
used Apps (e.g., Apps for shopping, map, mu-
sic, travel, etc.) that cover 14 domains. We
further present an evaluation framework that
simulates real-life scenarios, to facilitate the
assessment of tool invocation ability of LLMs
for tool learning and task completion ability
for user interation. Our extensive experiments
with CToolEval evaluate 11 LLMs, revealing
that while GPT-3.5-turbo excels in tool invo-
cation, Chinese LLMs usually struggle with
issues like hallucination and a lack of com-
prehensive tool understanding. Our findings
highlight the need for further refinement in
decision-making capabilities of LLMs, offering
insights into bridging the gap between current
functionalities and agent-level performance. To
promote further research for LLMs to fully act
as reliable agents in complex, real-world situa-
tions, we release our data and codes at https:
//github.com/tjunlp-lab/CToolEval.

1 Introduction

Recent years have witnessed that large language
models achieve remarkable progress in planning
and decision making. This promotes the emer-
gence of numerous LLM-as-agent applications,
such as ChatGPT plugins1, AutoGPT2, and Genera-
tive Agents (Park et al., 2023), even enabling LLM-
based plugin control with natural language inter-
face and provoking the development of LLM-based

*Equal contribution, the order of authors is determined by
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†Corresponding author
1https://openai.com/blog/chatgpt-plugins
2https://github.com/Significant-Gravitas/AutoGPT

OS. In view of such rapid progresses, pressing is-
sues are urgently emerging and soliciting attention
and solutions: (i) How should we assess the capa-
bility of LLMs as agents? (ii) Which LLMs have
reached agent level, and which have not? (iii)What
challenges do LLMs still face when used as agents?

To address these urgent and unresolved issues,
we curate a benchmark, CToolEval, for tool learn-
ing in Chinese scenarios. This benchmark is of
very high quality, characterized by that (i) all APIs
come from a wide and rigorous collection of open
APIs from widely-used real-world Apps, making
the benchmark akin to a testbed of natural lan-
guage driven mobile operation system. It assesses
whether an LLM-powered agent can understand
and accurately respond to various functionalities
within Apps, offering a high degree of real-world
interactions. (ii) The generation of instructions
is meticulously designed, with the use of certain
tools not being completely unrelated and abrupt,
but rather closely simulating all-around scenarios
in our daily lives. (iii) Each instruction is annotated
with a detailed reference answer and has undergone
a two-stage rigorous manual review to ensure its
quality.

To facilitate the agent assessment with CTool-
Eval, we futher propose a fine-grained evaluation
framework. Initially, we categorize the data from
single-tool and multi-tool scenarios into four types:
fixed-answer, open-ended, real-time, and opera-
tional types. In the first stage of evaluation, we
assess whether an LLM-powered agent has invoked
an appropriate tool, including understanding and
correctly calling the API in a single-tool scenario,
or whether the agent can decompose a complex
task into multiple subtasks, then plan to call APIs
for each subtask and understand the use of API
parameters to make the correct calls in a multi-tool
scenario. In the second stage of evaluation, we start
from the perspective of accuracy rather than having
humans (Song et al., 2023; Tang et al., 2023; Shen
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Benchmark Statistics Language Tool Type Evaluation Type

# Tools # APIs # Instances Real-world Multi-tool API Call Response

APIBench (Patil et al., 2023) 3 1,645 17,002 English ✘ ✘ ✔ ✘

RestBench (Song et al., 2023) 2 94 157 English ✔ ✔ ✔ ✘

API-Bank (Li et al., 2023) 53 53 274 English ✔ ✘ ✔ ✔

ToolAlpaca (Tang et al., 2023) 400 400 3,938 English ✘ ✘ ✔ ✔

ToolQA (Zhuang et al., 2023) 13 13 1,600 English ✔ ✔ ✔ ✔

ToolBench1 (Qin et al., 2023a) 3,451 16,464 12,657 English ✔ ✔ ✔ ✘

ToolBench2 (Xu et al., 2023) 8 232 2,746 English ✔ ✘ ✔ ✘

TPTU (Ruan et al., 2023) 12 12 120 English ✔ ✔ ✔ ✘

ToolEyes (Ye et al., 2024) 568 568 382 English ✔ ✔ ✔ ✔

CToolEval (ours) 27 398 6,816 Chinese ✔ ✔ ✔ ✔

Table 1: Comparison of CToolEval with existing related benchmarks.

et al., 2023) or GPT-4 (Qin et al., 2023a; Ye et al.,
2024; Guo et al., 2023) judge the quality of almost
all responses. Both approaches inevitably intro-
duce bias and issues with reusability and scalability.
Specifically, for real-time data, where answers are
constantly changing, such as a user’s query about
the highest temperature tomorrow, we aim for an
accurate temperature but cannot know the answer
in advance. This has always been a pain point in
agent evaluation because neither humans nor GPT-
4 can judge whether the answers are correct. Thus,
in our framework, we dynamically extract real-time
answers in observations to address this problem.

With the proposed evaluation framework, we
evaluate 11 LLMs with Chinese language capa-
bilities. We find that OpenAI models generally
have superior tool invocation capabilities compared
to Chinese LLMs, but models with rich internal
knowledge like GPT-3.5-turbo1, when faced with
conflicts between internal and external knowledge,
tend to rely on internal knowledge rather than tool-
invoked knowledge to answer questions. For in-
stance, in multi-tool scenarios requiring the acqui-
sition of a location’s coordinates, it might provide
coordinates it already knows internally, which are
usually close but still have discrepancies, rather
than those obtained through tool invocation. And
we also find Chinese LLMs, like ChatGLM3-6b2,
have severe hallucination issues. They can decom-
pose instructions into subtasks and choose the cor-
rect tool names. However, due to a lack of complete
understanding of how to use the API, they cannot
pass in the correct parameters to obtain the correct
output from the API. Nevertheless, they still pre-
tend to have received output from the API server
and reply with fabricated answers.

Overall, our contributions are threefold:

1https://platform.openai.com/docs/models/gpt-3-5-turbo
2https://huggingface.co/THUDM/chatglm3-6B

• We propose CToolEval, a benchmark for eval-
uating the planning and operational capabili-
ties of large language models in real-world ap-
plication scenarios, covering 398 APIs across
14 domains in 27 Apps (please see detailed
comparison of CToolEval against existing tool
benchmarks.) .

• We propose a fine-grained evaluation frame-
work, meticulously designing evaluation
methods and indicators for each type of inter-
action from an accuracy perspective, solving
the evaluation problem for real-time dynamic
answers.

• We evaluate 11 LLMs with Chinese capabili-
ties and conduct a deep error analysis, provid-
ing profound insights into the improvements
needed for LLMs, including GPT models, to
act as decision-making agents.

2 Related Work

Research on evaluating LLMs for tool manipula-
tion and API interaction has led to benchmarks like
ToolBench (Qin et al., 2023a), with its extensive
collection of 16,464 APIs across 3,451 tools and
12,657 instances. The emulation of real-world sce-
narios is a pivotal aspect of benchmark evaluation
for LLMs, as it significantly affects the relevance
and applicability of evaluation findings. API-Bank
(Li et al., 2023), provides an interface with 53 APIs,
asserting its utility with 274 instances drawn from
real-world applications. ToolQA (Zhuang et al.,
2023) highlights multi-tool interactions, emphasiz-
ing their significance in LLM evaluation.

The dimension of evaluation type in benchmark-
ing LLMs is crucial as it directly influences the in-
terpretability and applicability of evaluation results.
This dimension encompasses the accuracy (Li et al.,
2023; Patil et al., 2023; Tang et al., 2023; Ruan
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Figure 1: The framework of CToolEval covers interactions in real-world scenarios across 27 Apps, each containing
a series of relevant APIs. The evaluation of LLMs’ tool invocation capability and task completion capability is
conducted from the perspective of four types of data.

et al., 2023) and execution success rate of API calls
(Song et al., 2023; Xu et al., 2023; Zhuang et al.,
2023; Qin et al., 2023a), the quality and relevance
of the responses (Li et al., 2023; Tang et al., 2023;
Zhuang et al., 2023; Huang and Xiong, 2023), and
the model’s ability to avoid hallucination — gener-
ating responses based on false or nonexistent infor-
mation (Patil et al., 2023). Specifically, the metrics
used in RestBench (Song et al., 2023) and ToolAl-
paca (Tang et al., 2023) require manual evaluation,
while the win rate indicator in ToolBench1 (Qin
et al., 2023a) relies on scoring by GPT-4, all of
which inevitably introduce elements of subjective
judgment and assessment unfairness caused by the
biases of human and LLMs.

A concurent work has a motivation very similar
to ours. ToolEyes (Ye et al., 2024) creates a fine-
grained evaluation of LLM’s tool learning capabili-
ties. Particularly in the data dimension, both of our
works include real-time and operational data types.
However, ToolEyes (Ye et al., 2024) still relies
mostly on scoring by advanced models like GPT-4
to deliver evaluation results, inevitably encounter-
ing issues such as model bias. Our contribution,
CToolEval, seeks to address these shortcomings
by prioritizing accuracy, solving for the dynamic
evaluation of answers that may change over time,
aiming to minimize reliance on model scoring for
better reuse and scalability.

CToolEval

Figure 2: Different App/tool categories covered in our
benchmark.

3 Benchmark Curation

Our data creation process, as illustrated in Figure
1, involves sourcing open APIs from real-world
applications.

3.1 APP Pool

Against the backdrop of real interactions between
users and Apps in Chinese society, we integrate
APIs available from popular Apps across 14 do-
mains. The selected Apps for integration satisify
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the following conditions: (i) Open for research
- These Apps are available for research purposes;
(ii) Providing Detailed Parameter Descriptions
and Usage instructions - Each App comes with
comprehensive documentation. After selection, we
finally choose 27 Apps from a wide range of do-
mains, which are essential and commonly used
in daily life, including but not limited to: travel
apps such as Gaode Maps and Baidu Maps; work-
related apps like Dingding and Feishu; shopping
apps including Taobao and Jingdong; music apps
like Ximalaya; logistics apps such as Yunda and
Express Bird and so on. We further sift through
these app platforms to find APIs that meet our cri-
teria. The division of all dimensions and apps can
be seen in Figure 2. The shopping domain has the
highest number of apps, including Taobao, Pinduo-
duo, Alibaba, Jingdong, and Red, with the Work
and Meeting domains having the largest number
of APIs, where the Feishu app alone includes 76
APIs.

3.2 API & LLM Integration

Utilizing the Langchain1 framework, our system
successfully integrated a total of 398 APIs with
LLMs. This integration involves meticulously de-
signed incorporation of each API into a compre-
hensive toolset pool. The LLM, initially unaware
of the available APIs within the pool, analyzes
user queries to identify and choose the correct tool
from the pool using vector storage for tool descrip-
tions and query embeddings, facilitating a similar-
ity search. It then translates queries into structured
data matching the selected tool’s interface and ex-
ecutes API calls. If responses are inadequate, it
iterates until achieving a satisfactory answer. This
method enables easy API pool expansion. Specifi-
cally, for APIs related to database operations, we
also establish essential databases, initialized with
initial entries. This step is a pivotal element in
constructing and utilizing the framework.

3.3 Instruction Generation

we designed queries reflecting real-life applications
solvable through the detailed functionalities of
these APIs. In this setup, GPT-4 is employed as an
agent to orchestrate and execute API calls. Queries
used for debugging the integrated code, are termed
as our seed instructions. We then guide GPT-4
with meticulously crafted instructions for expan-

1https://www.langchain.com

sion. Further Recognizing complex user needs, we
differentiated our evaluation into single-tool and
multi-tool assessments, addressing the varying de-
grees of challenge.

3.3.1 Single-tool Instructions
For single-tool queries, we crafted diverse inquiries
per API by: (i) changing query subjects like desti-
nations in map and delivery scenarios; (ii) varying
sentence structures; (iii) creating unique contexts
such as weather suitability for barbecues or hikes.
This generates 3,439 single-tool instructions.

3.3.2 Multi-tool Instructions
In the generation of multi-tool instructions, instead
of forcibly combining unrelated tools, our focus is
on the intrinsic connections between different tools,
resulting in the creation of 3,370 multi-tool instruc-
tions. The generation encompasses both multiple
APIs within the same App and across different
Apps.

Multiple APIs within the same App. During
API integration, we observe that many APIs are
interdependent. For instance, to obtain a route plan
from Gaode Maps, geographical encoding of the
start and end points, obtained through Gaode Maps’
geocoding tool, is necessary. Typically, the number
of APIs involved in these interactions is basically
between 2 and 10.

Multiple APIs across different Apps. Beyond
the same App, multi-API queries across different
Apps also have numerous real-life applications.
For instance, in the shopping category, compar-
ing prices of the same item on Taobao and JD.com
is a common practice. Based on this, we create sim-
ilar cross-App multi-API queries to address more
complex requirements.

3.4 Reference Answer Annotation

Upon the completion of designing each query, we
deploy GPT-4 as an agent to plan and execute API
calls, ensuring the feasibility of each query. The
responses are then annotated based on the output
of this execution. Employing the ReAct principle
for the agent’s implementation, the final answers
encompass the decision process, actions, observa-
tions, and final answers of the agent. The sequence
of API calls and responses obtained from the final
API execution are meticulously annotated in our re-
sponses. However, the design of our queries poses
significant challenges to GPT-4. Therefore, a rigor-
ous manual review is conducted, ocusing on output
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Statistics Single-tool Multi-tool Total
# of tools/Apps 27 24 27
# of domains 14 13 14
# of APIs 185 231 398
# of API calls 3,439 10,8648 14,303
# Max APIs/inst. 1 9 9
# Max calls/inst. 1 13 13
# of Fixed-Answer 2,295 706 3,001
# of Open-Ended 189 182 371
# of Real-Time 540 481 1,021
# of Operational 415 2,008 2,423
Total 3,439 3,377 6,816

Table 2: Statistics of the CToolEval benchmark.

format and logical consistency, these reviewed an-
swers are annotated in our benchmark. Ultimately,
we retained 6,816 queries in our benchmark.

3.5 Statistics
The data statistics of our dataset can be seen in
Table 2. In the end, we construct a comprehen-
sive benchmark that covers 27 tools, featuring 398
distinct APIs, comprising a total of 6,816 queries,
14,303 API calls. Within this benchmark, the dis-
tribution of queries is as follows: 3,439 queries
utilize a single tool, while 3,377 queries employ
multiple tools, showing a balanced distribution be-
tween single-tool and multi-tool instances. More-
over, single-tool instances involve 27 tools and 185
APIs, while multi-tool instances cover 24 tools and
231 APIs, indicating that our application scenarios
are very rich. From the perspective of evaluation
method classification, we can further categorize
these instances as follows: 2,423 queries in the op-
erational category, 371 queries in the open-ended
category, 3,001 queries in the fixed-answer cate-
gory, and 1,021 queries in the real-time response
category. For more details about the division and in-
stances of these four types of evaluation categories,
please refer to Table 2.

3.6 Quality
To ensure the quality of the data in our benchmark,
we also conduct a detailed review of each data in-
stance. Every instance in the evaluation set has
been reviewed by annotators, with the review pro-
cess divided into two phases. During the data gen-
eration phase, we annotate the answers with great
detail and strictness. We employ GPT-4 as the
agent to execute all instances. However, given
that our benchmark operates in real-world Chinese-
language scenarios, it also poses significant chal-
lenges to GPT-4. Throughout multiple debugging
sessions, GPT-4’s responses are not always satis-

factory, sometimes presenting issues like incorrect
tool planning or fabricated API results. Therefore,
after obtaining GPT-4’s output, a rigorous manual
review is conducted, including scrutiny of interface
compatibility, the rationality of API planning, and
the congruence of the final answer with the API’s
actual return. We run multiple iterations until the
correct answers are obtained, including manual ad-
justments for some responses. For instance, if after
several attempts it still could not produce output
in Chinese, we perform manual translations into
English, and for responses containing “I am a text
generation model, unable to invoke tools“, we man-
ually remove them. In the evaluation phase, to
enhance the robustness of our benchmark, we first
test all the data using GPT-3.5. After this stage,
we eliminate 2% of the data, including instances
where the API itself has issues and could not re-
spond correctly, as well as operational instances
that could not meet our repeated evaluation require-
ments. These stringent quality controls further im-
prove the quality of our benchmark, allowing us
to primarily assess the quality of LLMs as proxy
tools in a standard and fair setting.

4 Evaluation Framework

In a comprehensive process where an LLM acts as
an agent to solve problems using tools, the model
initially extracts the query and the list of avail-
able tools along with their descriptions from the
prompts. It then decomposes the query into smaller
sub-tasks and sequentially calls the corresponding
tools, using the knowledge returned by each tool to
progressively deduce the correct answers.

However, prior research (Ruan et al., 2023; Kong
et al., 2023; Qin et al., 2023b) reveals the inadequa-
cies of most LLMs in tool utilization, highlighting
their failure in task decomposition, tool invocation,
and knowledge application, with errors frequently
emerging at various stages.

Thus, to thoroughly assess LLMs’ tool utiliza-
tion proficiency, we scrutinize both tool invocation
and task completion capabilities. Through an in-
depth analysis shown in Appendix A, we evalu-
ate LLMs’ ability to apply tool-generated knowl-
edge. These competencies are interrelated, mark-
ing ascending levels of tool usage mastery. Ad-
ditionally, leveraging actual user inputs, CToolE-
val’s instructions are classified into four categories:
fixed-answer, open-ended, operational, and real-
time, enabling a nuanced, multi-faceted evaluation
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of accuracy in these dimensions.

4.1 Data Type

Existing benchmarks predominantly feature open
and fixed-answer queries, with their evaluation rely-
ing on advanced LLM-based scoring and accuracy
metrics. Despite the sophisticated capabilities of
such models, their assessments of answer accuracy
can be unreliable, particularly for queries necessi-
tating tool-derived knowledge.

To enhance the evaluation of large language mod-
els’ tool usage proficiency, we collect real user
queries that demand tool invocation, and categorize
them into four distinct types based on evaluation
methods: fixed-answer, open-ended, operational,
and real-time, as detailed in Table 7.

(i) Fixed-answer queries entail questions with a
static, fill-in-the-blank response.

(ii) Open-ended questions require detailed re-
sponses without a predetermined format.

(iii) Operational questions necessitate the execu-
tion of tool-based APIs for specific tasks.

(iv) Real-time questions involve answers that are
dynamic over time.

We apply different evaluation methodologies for
these question types to accurately measure task
completion efficacy.

4.2 Retriever

LLMs usually have limited context capacity. Over-
loading LLMs with excessive irrelevant tool in-
formation can hinder their tool invocation ability.
Hence, employing a retriever to assist LLMs in se-
lecting suitable tools is essential (Qin et al., 2023b).
We use Sentence-BERT (Reimers and Gurevych,
2019), based on Chinese-bert-base1, to train a re-
triever that calculates the semantic similarity be-
tween the embeddings of CToolEval instructions
and tool descriptions to identify the most relevant
tool. The effectiveness of the retriever is measured
using the NDCG metric (Järvelin and Kekäläinen,
2002). More details about the retriever are given in
Appendix C.

4.3 Tool Invocation Capability

Tool invocation capability is the fundamental abil-
ity that determines whether an LLM can effectively
complete tasks that involve the use of tools, which
requires LLMs to decompose tasks into sub-tasks
and appropriately match tools to each sub-task. The

1https://huggingface.co/google-bert/bert-base-chinese

evaluation metric we employ is the “Tool Match-
ing Rate“, which is calculated as the number of
tools correctly used divided by the total number of
tools that should be used. Please note that, at this
stage, we exclusively examine the correctness of
tool usage.

4.4 Task Completion Capability

Task completion capability is a crucial competency
that assesses LLMs’ ability to utilize knowledge
obtained from tools to engage in reasoning and
solve problems, which entails LLMs’ step-by-step
integration of sub-task results to deduce the final
answers.

For fixed-answer queries, we employ "accuracy"
as the evaluation metric. For open-ended questions,
we utilize advanced LLMs to score based on the
reference answers, focusing on rationality, com-
pleteness, and richness of information. Regarding
operational queries, where LLMs may potentially
provide deceptive responses by falsely asserting
task completion without performing the necessary
operations, we thoroughly check the status codes
of the responses from the tools invoked for each
subtask. Typically, network responses returned by
different APIs contain status codes that represent
the result of the request. If the operation is suc-
cessful, the status code is a specific value. The
evaluation metric is the number of tools return-
ing the correct response divided by the number of
tools needed as per the reference. Furthermore,
as CToolEval serves as an open-source evaluation
dataset, it should ensure the consistency of the back-
end database objects across multiple evaluations.
Therefore, we design a rollback function. Specif-
ically, after each successful invocation of a tool,
the system will automatically perform the "reverse
operation" of this invocation. For example, after
adding a friend using an instant messaging tool,
the system will delete this friend. In the case of
real-time queries, we treat them as real-time fill-
in-the-blank queries. When establishing reference
answers for such queries, we store the API links
and parameters to be called, ensuring that reference
answers can be easily extracted or assembled from
the returned information. This approach enables
us to conduct "dynamic assessments" of real-time
queries based on accuracy.
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Model Single-tool Multi-tool All
FA OE OP RT FA OE OP RT

GPT-3.5-turbo 77.11 49.04 90.36 76.68 21.43 98.17 31.68 51.08 61.94
Qwen-7B-Chat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen-14B-Chat 1.53 3.69 3.21 2.78 0.00 0.31 0.01 0.06 1.45
Qwen-72B-Chat 25.93 21.15 32.07 11.56 19.87 7.71 4.70 3.67 15.82
InternLM-chat-7B 22.82 25.69 41.52 13.76 15.73 6.09 8.71 6.26 17.81
InternLM-chat-20B 53.47 23.67 40.74 12.63 14.25 6.50 9.17 7.73 21.02
Baichuan2-7B-Chat 4.91 8.26 11.81 5.65 4.20 5.95 2.94 2.01 5.72
Baichuan2-13B-Chat 2.40 10.09 15.88 2.42 4.72 1.56 0.00 2.37 4.93
Chinese-Alpaca-2-7B-16k 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Chinese-Alpaca-2-7B-64k 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Chinese-Alpaca-2-13B-16k 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Evaluation results of the tool invocation capability of different models in each category. The metric is "Tool
Matching Rate"(%), with "All" representing score over all senerios.

Model Single-tool Multi-tool All
FA OE OP RT FA OE OP RT

GPT-3.5-turbo 57.40 39.45 72.53 56.49 43.35 44.04 19.49 30.88 45.45
Qwen-7B-Chat 8.26 14.86 0.00 0.00 3.73 19.89 0.00 0.21 5.87
Qwen-14B-Chat 10.36 22.39 5.66 1.59 3.92 23.74 0.05 0.85 8.57
Qwen-72B-Chat 28.39 35.62 9.91 4.28 19.69 7.28 1.32 3.11 13.7
InternLM-chat-7B 10.91 24.40 32.16 0.00 4.60 20.88 2.49 0.00 11.93
InternLM-chat-20B 28.02 23.76 33.28 2.16 5.55 22.64 4.42 1.73 15.20
Baichuan2-7B-Chat 6.51 20.92 7.47 0.87 1.47 18.90 0.69 0.21 7.13
Baichuan2-13B-Chat 2.75 19.63 8.87 0.58 0.61 14.62 0.00 0.00 5.88
Chinese-Alpaca-2-7B-16k 23.66 20.55 0.00 0.00 8.57 20.00 0.00 0.00 9.10
Chinese-Alpaca-2-7B-64k 17.48 21.83 0.00 0.00 12.27 20.22 0.00 0.00 8.98
Chinese-Alpaca-2-13B-16k 16.34 18.53 0.00 0.00 9.89 19.89 0.00 0.00 8.08

Table 4: Evaluation results of the task completion capability of different models in each category. The metric
for Fixed-Answer (FA) and Real-Time (RT) is accuracy (%), for Open-Ended (OE) is GPT-4 score (%) and for
Operational is execution success rate (%), with "All" representing score over all senerios.

5 Experiments

We evaluated a variety of LLMs, including 1 closed-
source LLMs and 10 open-source Chinese LLMs.
As our evaluation requires LLMs to have a cer-
tain level of compliance with instructions, we se-
lected those that have been fine-tuned with SFT
and possess chat capabilities. Additionally, due
to the large number of tools, and some multi-tool
queries even containing more than 10 tools, the
prompts fed into the LLMs can be very long, ne-
cessitating LLMs with a relatively large context
window, at least above 8K. The evaluated closed-
source LLMs is GPT-3.5-turbo.1 The open-source
LLMs include Qwen-7B-chat,2 Qwen-14B-chat,3

Qwen-72B-chat,4 InternLM-chat-7b,5 InternLM-
chat-20b,6 Baichuan2-13B-chat,7 Baichuan2-13B-

1https://openai.com/docs/models/gpt-3-5
2https://huggingface.co/Qwen/Qwen-7B-Chat
3https://huggingface.co/Qwen/Qwen-14B-Chat
4https://huggingface.co/Qwen/Qwen-72B-Chat
5https://huggingface.co/internlm/internlm-chat-7b
6https://huggingface.co/internlm/internlm-chat-20b
7https://huggingface.co/Baichuan2-7B-Chat

chat,8 Chinese-alpaca-2-7b-16k,9 Chinese-alpaca-
2-7b-64k10 and Chinese-alpaca-2-13b-16k.11

5.1 Main Results

Table 3 presents the evaluation results of the tool
invocation capability of different LLMs, while Ta-
ble 4 shows the task completion capabilities of dif-
ferent LLMs. From these results, we can observe
that: (i) The gap between open-source Chinese
LLMs and the proprietary GPT-3.5-turbo re-
mains significant. In terms of the comparison of
different model capabilities, GPT-3.5-turbo far sur-
passes Chinese LLMs in both tool invocation and
task completion capabilities, with InternLM-Chat-
20B scoring the highest among Chinese LLMs,
reaching up to 53.47 points in tool invocation ca-
pability for single-tool fixed-answer data types; (ii)
Task completion scores of LLMs are higher than
tool invocation scores, especially in fixed-answer
and open-ended types, indicating that many LLMs

8https://huggingface.co/Baichuan2-13B-Chat
9https://huggingface.co/chinese-alpaca-2-7b-16k

10https://huggingface.co/chinese-alpaca-2-7b-64k
11https://huggingface.co/chinese-alpaca-2-13b-16k
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Scenarios Error Type Percentage

Single-tool

False Input Parameters Format 10.35%
Miss Input Parameters 6.64%
False Input Parameters 34.89%
Parsing Error 6.38%
Failed API Retrieval 6.07%
Invalid API 5.34%
False API Selection 5.22%
Duplicate Response 13.51%
Redundant response 11.60%

Multi-tool

Unfinished Operation 37.93%
Skipping Previous Operations 18.82%
API Call Logic Error 2.65%
No API Invocation 0.12%
Parsing Error 6.29%
Failed API Retrieval 7.14%
Invalid API 11.19%
False Input Parameter Format 2.19%
Miss Input Parameters 3.61%
False Input Parameters 9.74%

Table 5: Distribution of errors made by GPT-3.5-turbo.

still lack the capability to invoke tools, yet they
still use their internal knowledge to answer user
questions. Despite demonstrating good interactiv-
ity, LLMs may deceitfully pretend to have obtained
answers through tools, leading to significant issues
with hallucination; (iii) Almost all LLMs score
higher in single-tool scenarios than in multi-tool
scenarios, particularly, for LLMs capable of tool
invocation, the scores for operation types in single-
tool scenarios often exceed those for fixed-answers
and open-ended responses. This may be due to the
tool descriptions and parameters being relatively
brief in single-tool operations, allowing LLMs to
better understand and follow the context in shorter
prompts, but multi-tool scenarios still pose a greater
challenge, and real-time queries are difficult for
LLMs in both single- and multi-tool contexts; (iv)
Increasing model size can enhance the tool learn-
ing capability of LLMs to a certain extent, but
not always. For InternLM and Qwen, increasing
the model size has improved the capability in both
tool invocation and task answering, especially for
Qwen-72B-Chat, which has seen a qualitative im-
provement compared to the other two sizes. How-
ever, for Chinese-Alpaca-2, increasing the model
size can actually impair model performance. Thus,
to enhance the model’s tool learning capability, be-
sides ensuring a sufficiently long context window,
it is also necessary to further balance the model
size and fine-tuning data.

5.2 Error Analysis

We conducted a detailed analysis on errors made by
GPT-3.5-turbo in single-tool and multi-tool scenar-
ios, and have categorized the errors in single-tool
scenarios into 9 types and those in multi-tool sce-
narios into 10 types. The percentages of error types
are presented in Table 5. In the single-tool scenario,
the failure to correctly invoke an API can occur for
various reasons, such as incorrect API names, in-
correct or erroneous format of input parameters,
the retriever failing to provide the required API or
providing the needed API but making the wrong
choice, and fabrications. The most common errors
include false input parameters, Duplicate Response,
and Redundant Response. In the multi-tool con-
text, the failure to execute multiple tools is mainly
due to the model not completing operations, only
performing halfway and then outputting answers,
as well as skipping the necessary preceding opera-
tions and directly relying on its internal knowledge
or fabricating the required parameters’ inputs. In
addition, it is common in multi-tool scenarios to
insert multiple required tools into a single action,
leading to persistent failure. These errors suggest
that GPT-3.5-turbo’s learning and understanding
of how to use tools, especially the ability to asso-
ciate between tools, still needs improvement, and
duplicate response failure indicates a deficiency in
the ability to follow instructions. Moreover, we
have also discovered that GPT-3.5-turbo has sig-
nificant issues with temporal reasoning. Whenever
our queries involve "tomorrow", it often reasons in-
correctly about the input time parameters for APIs.
This could be an area that GPT-3.5 needs to address
in order to become a truly grounded agent.

6 Discussion

6.1 Impact of Retriever on Baseline Model
Performance

To study how retrieval affects the tool invocation
capabilities in LLMs, we provided gold APIs to
InternLM-7B-chat, InternLM-20B-chat, and GPT-
3.5-turbo and assessed their performance. Results
in Table 8 and 9 in Appendix D show that gold
APIs significantly enhance invocation capabilities,
particularly because the retriever presents ten tool
options, making prompts longer and harder for
models to process useful data. Although the re-
triever exhibits a high recall rate, we observe that
in multi-tool tasks, the tools returned by the re-
triever sometimes do not include those that are
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more critical in the earlier stages of the solution
path. This absence of essential tools early in the
tool invocation process imposes limitations on the
LLMs.

Morever, InternLM-7B-chat and InternLM-20B-
chat improve more than GPT-3.5-turbo. We specu-
late that providing gold APIs benefits LLMs with
weaker reasoning ability in task planning, while
stronger LLMs can effectively select APIs even
without gold APIs.

6.2 Performance of LLMs Being Fine-tuned
on CToolEval

We utilized the training set of CToolEval to fine-
tune Baichuan2-7b-chat and Qwen-7b-chat models
using two parameter-efficient methods, QLoRA
and LoRA. Additionally, we benchmarked these
models against GPT-4 in a zero-shot setting on the
test set. Results, detailed in Table 10 and 11 in
Appendix E, indicate significant improvements in
both tool matching rate and task completion metrics
for the fine-tuned Baichuan2-7B-chat and Qwen-
7B-chat models. Furthermore, the Qwen-7B-chat
models, fine-tuned using both QLoRA and LoRA
methods, exhibit comparable abilities.

However, fine-tuning also intensifies the ten-
dency for tool invocation hallucination. This means
that after fine-tuning, the models are more likely to
simulate API responses rather than performing ac-
tual tool invocations, leading to higher tool match-
ing scores but not proportionately higher task com-
pletion scores. This is because while selecting the
correct tool contributes to the tool matching rate,
effective task completion depends on the LLM’s
ability to reason and analyze actual API responses.
Since the nature of answers to real-time and open-
ended queries fluctuates, without real tool invoca-
tions, task completion cannot improve. Therefore,
for models to excel in both metrics, they must gen-
uinely invoke tools similar to GPT-4.

6.3 Knowledge Utilization Capability of
GPT-3.5

Knowledge utilization capability is a crucial abil-
ity that determines whether LLMs can effectively
harness the knowledge provided by tools, which
requires LLMs to accurately utilize the knowl-
edge obtained from each sub-task without hallu-
cination. However, manually annotating correct
results for each sub-task can be prohibitively ex-
pensive. Therefore, we introduce an innovative
control group evaluation method.

For all the tools successfully invoked in a single
command execution, we will set up correspond-
ing control groups according to the order of tool
invocation, where each tool’s control group will
represent a command execution without using that
particular tool. Specifically, if n tools are used,
there will be n− 1 control groups. By calculating
the similarity between the control group’s answers
and the answers to be evaluated with the reference
answer, we can determine whether the execution
effectively utilizes the knowledge returned by each
tool step. See Appendix A for results and analyses.

7 Conclusion

In this paper, we have presented CToolEval, a
benchmark for assessing LLMs as agents to in-
teract with Chinese Apps, which covers 398 real-
world APIs. Through our fine-grained evaluation
framework, we identify critical insights into the ca-
pabilities of LLMs, specifically in the domains of
tool invocation and task completion. Our analysis
indicates that while GPT-3.5-turbo demonstrates a
higher proficiency in tool utilization, there remains
a notable gap in the ability of Chinese LLMs to
apply tools effectively. This gap is often marked
by a reliance on internal knowledge and the oc-
currence of hallucinations, which leads to a dis-
crepancy between the output provided and the in-
formation available through tool invocation. By
dissecting the errors and pinpointing the nuances in
the operational use of APIs, our work contributes
to a more nuanced understanding and evaluation
of the agent-level capabilities of LLMs and opens
up avenues for future research and development of
LLM-powered agents in real-world scenarios.

Limitations

Although we have established a Chinese bench-
mark that simulates real-world App interactions
to conduct a comprehensive analysis of existing
LLMs and outlined various existing issues, our
work has two notable limitations. First, since the
APIs we use are publicly accessible, there might be
instances where an API interface becomes faulty
over time, affecting our evaluation results, but this
is an unavoidable aspect of simulating real-world
tool interactions. Second, due to the token usage
limitations of GPT-4, our ability to evaluate all
existing LLMs is restricted. It is important to em-
phasize that we meticulously selected the most rep-
resentative Chinese LLMs for evaluation and anal-
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ysis, aiming to identify key problems with Chinese
LLMs in agentization.

Ethics Statement

This paper establishes a new benchmark for evaluat-
ing the tool learning capabilities of Chinese LLMs,
and herein we discuss some related ethical consider-
ations. All App interfaces in our dataset come from
open platforms accessible to researchers, without
infringing upon any existing commercial software.
Furthermore, to annotate data within the bench-
mark, annotators involved in the annotation were
fully compensated for their efforts.
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Figure 3: Violin diagram of single open-ended and mul-
tiple open-ended type instructions.

A Knowledge Utilization Capability of
GPT-3.5-turbo

Figure 3 is a violin plot for GPT-3.5-turbo-1106 on
multi-tool open-ended and single-tool open-ended
queries, where each point represents a query exe-
cution, the horizontal axis represents the number
of tools invoked, and the vertical axis represents
the similarity between the answers and the refer-
ence answers. Surprisingly, the quality of LLM-
generated answers does not increase with the num-
ber of tools invoked. Most queries show improve-
ment when the first tool is invoked compared to no
tool invocation; however, after invoking the second
tool, the quality of answers slightly decreases for
some instructions, and after invoking three tools,
the quality of LLM-generated answers decreases
for most instructions. We speculate that the single-
open and multi-open commands in CToolEval re-
quire a large number of tokens from the returned
information of the tools. After invoking a small
number of tools, the LLM can obtain information to
answer the question; when the number of invoked
tools increases, the rapid increase in the number
of tokens makes it difficult for the LLM to capture
useful information, leading to a decrease in answer
quality.

B Four Examples of Question Types

CToolEval classifies queries into fixed-answer,
open-ended, operational, and real-time types de-
pending on how they are evaluated. Question ex-
amples and reference answers are shown in Table
7.

Average NDCG@1 Average NDCG@3 Average NDCG@5
0.9688 0.9797 0.9831

Table 6: The average NDCG@K scores of our API
retriever used in main experiments.

C Retriever

We opt to fine-tune the Chinese-bert-base1 model
based on Sentence-BERT (Reimers and Gurevych,
2019) using pairs of query-tool information data.
Following ToolLLM (Qin et al., 2023b), we as-
sess retrieval performance using NDCG (Normal-
ized Discounted Cumulative Gain) (Järvelin and
Kekäläinen, 2002), a widely used metric in infor-
mation retrieval and recommendation systems to
measure the quality of ranking results. NDCG ac-
counts for the relevance of the results and assigns
higher weights to more relevant results that appear
earlier in the ranking, thus achieving better retrieval
outcomes. The NDCG scores of the retriever used
in CToolEval are as follows.

NDCG@K refers to the NDCG at a given rank
position k. Average NDCG@1 is the average
NDCG value for results ranked first in each query,
while Average NDCG@3 and Average NDCG@5
are the average NDCG values for results ranked
third and fifth, respectively. These values help
evaluate the quality of a retrieval across different
lengths of search. The retrieval scores indicate that
the retriever used in CToolEval effectively returns
the most matching tools.

D Evaluation Results of Baseline Model
Provided With Gold APIs

To explore the effect of retriever on tool invocation
capabilities, we provided only the gold APIs to
InternLM-7B, InternLM-20B, and GPT-3.5-turbo,
and documented their performance on the test set.
The experimental results are shown in Table 8 and
9.

E Evaluation Results of LLMs Being
Fine-tuned on CToolEval

We employed the training set of CToolEval for fine-
tuning using two parameter-efficient fine-tuning
methods, QLoRA and LoRA, on Baichuan2-7b-
chat and Qwen-7b-chat. The experimental results
on the test set are presented in Table 10 and 11.

1https://huggingface.co/google-bert/bert-base-chinese
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Query Type Query Example Reference Answer

fixed-answer

请为我提供2022年10月13日印度尼西亚
雅加达证券交易所的SMGR.JK（Semen
Indonesia）的收盘价和交易量。
Please provide me with the closing
price and trading volume of SMGR.JK
on the Indonesia Stock Exchange on
October 13, 2022.

7041.94091796875, 4795700.0

open-ended

在淘宝上查找流行的电子书阅读器，推
荐一款，并提供其屏幕尺寸和存储容量
信息。
Search for popular e-book readers on
Taobao, recommend one, and provide
information on its screen size and
storage capacity.

推荐的电子书阅读器是“掌阅iReader
Light3电子书阅读器”。其屏幕尺寸
为6英寸，内存容量为32GB。
The recommended e-book reader is the
’iReader Light3 E-book Reader’ by
Zhangyue. It has a 6-inch screen size
and a memory capacity of 32GB.

operational

麻烦创建一个“学生成绩”表，其中应
该有“学生编号”、“姓名”、“课程”
和“分数”。
Create a ’Student Grades’ table, which
should include ’Student ID,’ ’Name,’
’Course,’ and ’Score.’

已成功创建名为“学生成绩”的表格，
其中包含“学生编号”、“姓名”、
“课程”和“分数”四列。
The table named ’Student Grades’ has
been successfully created, consisting of
four columns: ’Student ID,’ ’Name,’
’Course,’ and ’Score’.

real-time

我计划一会要去西安市雁塔区大雁塔
789号，这里附近600米范围内的各拥
堵路段信息怎么样？
I plan to go to 789 Dayanta in Yanta
District, Xi’an shortly. How is the
traffic congestion information for the
roads within a 600-meter radius of
this location?

整体畅通，没有报告特别拥堵的路段。
The overall traffic is smooth, with no
particularly congested sections.

Table 7: Four different query types of question types and their reference answers.

Model Single-tool Multi-tool All
FA OE OP RT FA OE OP RT

GPT-3.5-turbo 82.05↑ 63.64↑ 92.77↑ 51.61↓ 53.55↑ 57.84↓ 60.78↑ 57.39↑ 64.95↑
InternLM-7B-chat 11.63↑ 26.36↑ 32.05↓ 0.00↓ 5.56↑ 22.94↑ 2.93↑ 0.00↓ 12.68↑
InternLM-20B-chat 33.18↑ 22.73↓ 34.82↑ 2.29↑ 5.56↑ 21.18↓ 3.58↓ 5.15↑ 16.06↑

Table 8: The tool matching rate of diffrent models provided with gold APIs in each category. The upward arrow and
the downward arrow represent the trend of changes in the tool matching rate when providing the gold API compared
to providing the top 10 relevant APIs by the retriever.

Model Single-tool Multi-tool All
FA OE OP RT FA OE OP RT

GPT-3.5-turbo 61.25↑ 43.64↑ 80.72↑ 44.08↓ 30.56↑ 30.00↓ 40.79↑ 18.56↓ 43.70↓
InternLM-7B-chat 26.70↑ 23.64↓ 47.71↑ 15.68↑ 17.72↑ 6.98↑ 8.86↑ 5.68↓ 19.12↑
InternLM-20B-chat 59.27↑ 24.18↑ 45.05↑ 14.75↑ 13.85↑ 10.78↑ 9.84↑ 6.58↓ 23.04↑

Table 9: Evaluation results of the task completion capability of diffrent models provided with gold APIs in each
category. The upward arrow and the downward arrow represent the trend of changes in the task completion metrics
when providing the golden API compared to providing the top 10 relevant APIs by the retriever.

Model Single-tool Multi-tool All
FA OE OP RT FA OE OP RT

GPT-4 74.93 51.76 85.54 93.55 81.48 95.98 81.90 72.34 79.69
GPT-3.5-turbo 76.35 48.25 91.57 74.19 44.52 96.13 48.74 43.99 65.47
Baichuan2-7B-chat(QLoRA) 74.36↑ 54.55↑ 67.47↑ 49.46↑ 24.23↑ 10.78↑ 25.92↑ 14.60↑ 40.17↑
Qwen-7B-chat(QLoRA) 82.91↑ 90.91↑ 92.77↑ 77.42↑ 43.52↑ 31.86↑ 58.86↑ 30.58↑ 63.60↑
Qwen-7B-chat(LoRA) 83.48↑ 90.91↑ 87.95↑ 76.34↑ 45.29↑ 32.84↑ 57.12↑ 33.51↑ 63.43↑

Table 10: The tool matching rate of LLMs fine-tuned on CToolEval in each category. The upward arrow and the
downward arrow represent the trend of changes in the tool matching rate after fine-tuning compared to zero-shot.
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Model Single-tool Multi-tool All
FA OE OP RT FA OE OP RT

GPT-4 60.97 46.18 72.29 70.97 55.56 42.96 48.48 68.04 58.18
GPT-3.5-turbo 58.40 40.72 71.08 49.46 20.37 36.07 35.75 25.77 42.20
Baichuan2-7B-chat(QLoRA) 57.26↑ 24.55↓ 56.63↑ 36.56↑ 10.19↑ 8.235↑ 14.28↑ 2.060↑ 26.22↑
Qwen-7B-chat(QLoRA) 59.26↑ 36.37↑ 63.86↑ 39.78↑ 20.37↑ 15.29↑ 29.86↑ 4.120↑ 33.61↑
Qwen-7B-chat(LoRA) 61.25↑ 40.00↑ 60.24↑ 43.01↑ 17.59↑ 36.07↑ 24.72↑ 4.120↑ 33.50↑

Table 11: Evaluation results of the task completion capability of LLMs fine-tuned on CToolEval in each category.
The upward arrow and the downward arrow represent the trend of changes in the tool matching rate after fine-tuning
compared to zero-shot.
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