
Findings of the Association for Computational Linguistics: ACL 2024, pages 15597–15611
August 11-16, 2024 ©2024 Association for Computational Linguistics

Tailoring with Targeted Precision: Edit-Based Agents for
Open-Domain Procedure Customization

Yash Kumar Lal13*, Li Zhang23∗, Faeze Brahman3,
Bodhisattwa Prasad Majumder3, Peter Clark3, Niket Tandon3

1 Stony Brook University, 2 University of Pennsylvania
3 Allen Institute for Artificial Intelligence

1ylal@cs.stonybrook.edu, 2zharry@upenn.edu,
3{faezeb,bodhisattwam,peterc,nikett}@allenai.org

Abstract

How-to procedures, such as how to plant a gar-
den, are now used by millions of users, but
sometimes need customizing to meet a user’s
specific needs, e.g., planting a garden without
pesticides. Our goal is to measure and improve
an LLM’s ability to perform such customiza-
tion. Our approach is to test several simple
multi-LLM-agent architectures for customiza-
tion, as well as an end-to-end LLM, using a
new evaluation set, called CUSTOMPLANS, of
over 200 WikiHow procedures each with a cus-
tomization need. We find that a simple archi-
tecture with two LLM agents used sequentially
performs best, one that edits a generic how-to
procedure and one that verifies its executability,
significantly outperforming (10.5% absolute)
an end-to-end prompted LLM. This suggests
that LLMs can be configured reasonably effec-
tively for procedure customization. This also
suggests that multi-agent editing architectures
may be worth exploring further for other cus-
tomization applications (e.g. coding, creative
writing) in the future.

1 Introduction

AI is headed towards a future where human-
machine interactions are seamlessly integrated to
enrich our daily routines, offering personalized and
tailored experiences (Chen et al., 2023). For in-
stance, a software engineer’s daily routine would
involve a co-pilot that customizes the same un-
derlying logic differently for two engineers (even
though we observe the structure might broadly
remain the same). Another application is smart
assistant and planners that can customize how-to
procedures, a popular query making up a large
fraction of search engine queries (De Rijke et al.,
2005; Zhang, 2022), based on a user’s specifica-
tions (though the sequence of steps broadly stay
the same). For example, a user looking for “How

*Work done as an intern at AI2 Aristo

How to plant a gardenGoal

1. Pick a sunny location with drained soil.
2. Add compost to soil.
…
9. Pull the weeds at least twice a week.

Procedure

1. Rake soil in garden.
2. Plant your seeds.
…

- replace (1, put pots at windows)
- insert (7, prune as they grow)

I live in an apartment.

1. Put pots at windows.
2. Add compost to soil.
…

Customization hint

Customize 
end-to-end

Use semi-symbolic 
edits (this paper)

You can’t have a garden 
patch on the concrete 

apartment floor.

End-to-end Prompt 
with Instruction

Figure 1: Procedures, e.g., how to plant a garden, need
customization, e.g., this user lives in an apartment.
Given a goal, uncustomized procedure and customiza-
tion hint, employing semi-symbolic edits (right) pro-
duces more desirable outputs than an E2E LLM (left;
which suggests a garden patch inside an apartment).

to plant a garden”, may have space restrictions in
their apartment, or not want to use pesticides. De-
spite the need for customization, it is challenging
to author new customized how-to procedures for
every users’ nuanced needs.

Automatically customizing procedures requires
the interpretation of the nuanced user needs ex-
pressed in natural language (Du et al., 2006). These
customization requests or hints can take up various
forms e.g., constraints (“I live in an apartment”),
personal preferences (“I prefer organic farming”),
or execution method (“plant a hydroponic garden").
These implicitly encode multiple requirements and
their interpretation is subjective — for example, liv-
ing in an apartment can entail a lack of space, lim-
ited space, convincing roommates, and more. Con-
temporary approaches to customization focus on
constraints in specific domains (Yuan et al., 2023;
Welch et al., 2022). LLMs could be considered

15597



a strong baseline for faithfully customizing pro-
cedures to different users’ needs (Acher, 2024),
and we did find that the generated customized
procedures are fluent and coherent. However, in
our experiments §2.2, we found that ~60% of the
procedures generated by contained errors (miss-
ing steps, extra steps, wrong steps, underspecified
steps), making the output inadequately customized
or inexecutable, as shown in Figure 1. We observe
that even though uncustomized and customized pro-
cedures share some inherent structure, end-to-end
systems disregard that and produce entirely new
structures which introduces unwanted changes.

Rather than using LLMs as end-to-end customiz-
ers, we distenagle the task into modifying a proce-
dure based on a customization requirement, and ver-
ifying for executability. We propose a multi-agent
framework comprising two LLM-based agents,
Modify agent and Verify agent for customization
and execution verification respectively. We create a
new evaluation set called CUSTOMPLANS of over
200 WikiHow procedures each with a customiza-
tion need, and show that these agents are most
effective when operating based on semi-symbolic
edits rather than free-form natural language edits.
We also discuss the generalizability of our frame-
work to support multiple Verify agents. Through
extensive experiments with CUSTOMPLANS, we
find that our multi-agent framework leads to 10.5%
more customized and executable procedures over
just using LLMs as end-to-end customizers.

In summary, our contributions are:

• Using a new evaluation set CUSTOMPLANS,
we show that LLMs are yet unsuited to cus-
tomize how-to procedures in an end-to-end
fashion.

• We propose a multi-agent framework compris-
ing Modify and Verify agents, and show that
semi-symbolic edits is the most effective means
of communicating results. This framework
achieves an improvement of 10.5% over using
LLMs as end-to-end customizers.

• We show the generalizability of our framework
to support multiple agent configurations, and
the limits of current methods when employed
for broader applications.

2 Task Setup

In this section, we define a problem formulation
and evaluation scheme for procedure customization
and showcase the shortcomings of using LLMs

as end-to-end customizers. LLMs are capable of
generating fluent texts, including procedures (Sak-
aguchi et al., 2021; Lyu et al., 2021). However,
because LLMs generate texts in an autoregressive
manner based on the previous context, they cannot
edit those texts like humans would. This means that
they need to rely on re-generation, which leads to
unsatisfactory performance on our proposed task.

2.1 Task Formulation

Model
Customized
Procedure

I live in an 
apartment

I prefer 
organic 
farming

Plant a 
hydroponic 

garden

Customization hints
can be diverse

Goal

Uncustomized
Procedure

Figure 2: Given a goal G, uncustomized procedure P
and a user’s customization hint H , we generate P ′, a
customized procedure that accounts for H .

The task, illustrated in Figure 2, involves taking
as input the goal G of the procedure P as well as a
user customization hint H . The output should be a
procedure to fulfill the goal while also taking into
account the user scenario described in the hint P ′.

2.2 How good are vanilla LLMs on this task?

We conduct an initial study using vanilla LLMs
(see Figure 1 (left)) on 40 procedures 1. Given
the goal G, uncustomized procedure P and cus-
tomization hint H , the LLM (gpt-3.5-turbo) is
expected to make changes as per the customiza-
tion hint. While this approach is simple, the output
is often undesirable (contains extra steps and yet
results inadequate or erroneous customization). Ta-
ble 1 presents two examples of these errors. We
find that 32.5% of these errors are due to addition
of extra steps which do not apply to G, and 15% of
the errors are due to inadequate or erroneous cus-
tomization. Given the shortcomings of end-to-end
methods, we need a more structured approach to
edit procedures for customization.

1These procedures are taken from the new evaluation set
CUSTOMPLANS that we include in this paper (see §4.1).

15598



Error Type Goal G Uncustomized Procedure P Customization Hint H Customized Procedure P ′

Wrong
Order

Bake Bread 1. Dissolve yeast in water.
2. Mix the ingredients.
3. Knead the dough.
4. Put dough into greased pan
...

I would like to make
something sweet
and I also like nuts.

...
3. Place into a baking pan.
4. Add chopped nuts.
5. Knead the dough.
...

Extra
Steps

Customize
Shoes

1. doodle on shoes.
2. add embellishments.
3. change out laces for ribbon.
4. glue rhinestones on straps.
5. wrap ribbon around straps.

I am a ballet dancer
and would like to im-
prove the comfort of
my shoes.

1. Identify areas of discomfort.
2. Purchase gel pads.
3. Insert in areas of discomfort.
...
11. Break in shoes gradually.

Table 1: Example of two major types of errors (shown in red) produced by vanilla LLMs. In the first example
(Wrong Order), placing the dough in a baking pan in Step 3 implies that the dough is ready to be baked, so Step 5
(knead the dough) is out of order. In the second example (Extra Steps), there are six extra steps being added (most of
them are unnecessary) because the resulting procedure contains 11 steps while the uncustomized one only has five.

3 Models

In this section, we describe our multi-agent ap-
proach for customizing procedures for users’ needs
using semi-symbolic edits. We disentangle the task
of generating customized procedures into two as-
pects, customizability and executability.

3.1 Agents for Procedure Customization

Recently, model-based agents (Xi et al., 2023) have
been used to perform different types of reason-
ing in service of achieving a larger goal (Yoran
et al., 2023). We use instances of LLMs to modify
for customization and verify for execution and use
them in conjunction. Modify agent suggests edits
that address a user’s customization needs, while
Verify agent suggests edits to maintain the exe-
cutability of procedures. Next, we describe how
these agents can interact with each other to best
generate customized procedures.

Each agent produces a bag of semi-structured ed-
its E that indicate the operations to be performed,
the step in the original procedure P to anchor the
edit, and the updated text for the step. We only al-
low for two types of edits, insert and replace:

• insert(2, XX) - a new step with text XX should
be added after step 2 of the input procedure.

• replace(3, YY) - the text of step 3 of the input
procedure should be replaced by YY.

Note that the replace operation can also perform
step deletion by specifying an empty string as its
second argument. The semi-symbolic nature of the
edits allows algorithmic application of the edits and
decreases model hallucinations compared to end-
to-end approaches which make unstructured edits.
We then apply these edits deterministically on P

to obtain P ′ i.e., we find the step number in P that
corresponds to a suggested edit and insert/replace
it with the edited text. Having a separate module to
apply edits allows us to study the reasoning a model
performs when trying to address user requirements.

3.2 How Do The Agents Interact?

We experiment with three ways of interaction for
the defined agents: UNIFIED, SEQUENTIAL, and
PARALLEL, demonstrated in Figure 3, Figure 4 and
Figure 5 respectively.

G, P, H P’

MODIFY
+

VERIFY
agent

Figure 3: Modify agent and Verify agent in UNIFIED
setting. Here, one LLM agent is asked to suggest edits
for both customizability as well as executability.

UNIFIED - We first define a single agent that
is prompted to suggest edits E to P that both cus-
tomizes it and ensures its executability. Mechani-
cally applying these edits results in the customized
plan P ′. This agent is required to understand how
to perform both customization towards a hint H
as well as execution to achieve the goal G. This is
somewhat similar to the end-to-end method which
is also required to understand both aspects of cus-
tomization. However, rather than generating the
customized procedure P ′ directly, it generates edits
to P that result in P ′ when applied. This setting is
shown in Figure 3.

SEQUENTIAL - In this setting, we first obtain a
set of edits Ec from Modify agent , and apply Ec

15599



G, P, H P’MODIFY
agent

VERIFY
agent

then

Figure 4: Modify agent and Verify agent in SEQUEN-
TIAL setting. Here, Modify agent first generates edits to
customize P . Then, Verify agent makes changes such
that the edited procedure is executable, producing P ′.

to obtain Pc. Ec represents the changes that need
to be made in order to suit a user’s customization
needs. We obtain Pc, a customized procedure, by
deterministically applying Ec in P . Pc denotes a
customized procedure. Then, to ensure that this pro-
cedure can be executed, Verify agent takes Pc as
input and suggests another set of edits Ee. Finally,
we deterministically apply Ee on Pc to obtain the
output customized procedure P ′. Here, the agents
are used in a sequential order, first suggesting ed-
its to meet customization requirements and next to
address any execution-related issues that may arise
from those edits. Figure 4 shows the interaction of
the agents in the SEQUENTIAL setting.

G, P, H P’

MODIFY
agent

Edit 
resolution 
module

VERIFY
agent

Figure 5: Modify agent and Verify agent in PARALLEL
setting. Here, Modify agent suggests edits to customize
the procedure P , while Verify agent suggests adding
often-missing details so that P can be followed. Finally,
the edit resolution module takes both sets of edits into
account and produces a final bag of edits to be applied
to P .

PARALLEL - In this setting, shown in Figure 5,
both Modify agent and Verify agent propose a bag
of edits for their respective aspect, Ec and Ee, on
the uncustomized procedure P . Since changes for
customization and execution are different, conflicts
arise between those bags of edits. It is non-trivial to
understand how to select the correct edit, since both
conflicting edits are important to generate P ′ but
serve different objectives. To address this, we use
an edit resolution module, an LLM that is prompted
to take as input two bags of edits, Ec and Ee, and
produce a merged set of edits E. Finally, applying
E on the uncustomized procedure P results in P ′.

Functionally, this module is intended to resolve
conflicts, merge possible edits and remove redun-
dant edits. It is also required to remove any edits
which cannot be applied to the procedure determin-
istically. This is inspired by the meta-reasoner in
Yoran et al. (2023).

4 Experiments

To tailor procedures according to customization
hints, one needs to make implicit inferences out of
the hints, identify the steps that require changes,
and finally consistently apply changes to the dif-
ferent steps. Through our experiments, we aim to
understand how well models can modify generic
procedures to incorporate aspects captured in cus-
tomization hints.

4.1 Our CUSTOMPLANS evaluation set

We use WikiHow as the source of diverse goals
and corresponding procedures to accomplish them.
Given a broad goal, users are required to write
their situation in which they want to accomplish
the goal, which acts as their customization hint. We
collect 206 goals over 9 domains, their correspond-
ing WikiHow procedures and customization hints
collected from humans to build CUSTOMPLANS.
Each record is associated with constraint, expertise
and critical type (which subtype is more impor-
tant to perform customization), shown in Figure 6.
More details can be found in Appendix A.

Figure 6: Different types of needs expressed in cus-
tomization hints in CUSTOMPLANS.

15600



Method CUSTOMIZED EXECUTABLE FULLYCORRECT

E2E Customize 55.05% 48.45% 41.46%
SEQUENTIAL 60.68% 72.33% 51.94%

UNIFIED 54.85% 71.36% 47.09%
PARALLEL 53.88% 70.87% 45.63%

Reverse SEQUENTIAL 42.23% 63.59% 34.47%

Table 2: Customizability, executability and fully correct (strictest measure) of procedures generated by different
approaches as judged by majority of human evaluators. We note that the SEQUENTIAL setting performs the best
across all criteria. Note that all approaches built on edit-based agents lead to more executable procedures.

4.2 Evaluation

For open-ended text generation tasks (without gold
references) like procedure customization, the ab-
sence of an automatic evaluation that correlates
well with human judgments is a major challenge
(Chen et al., 2019; Ma et al., 2019; Caglayan et al.,
2020; Howcroft et al., 2020; Lal et al., 2021). As
a result, we use human evaluation directly, rather
than rely on proxies such as GPT-4.

We conduct a human evaluation with a standard-
ized interface to compare different models. To
this end, we pose questions about customizabil-
ity, whether a procedure can be performed as is to
accomplish the given goal (EXECUTABLE), and ex-
ecutability, whether it satisfies all the requirements
in a presented customization hint (CUSTOMIZED).
This serves as the human evaluation interface for
our task. The study is illustrated in Figure 7. The
task instructions and annotator details can be found
in Appendix B.

For each goal, customization hint, and a model’s
generated procedure, we ask 3 distinct annotators
to provide judgments about customizability and
executability of that procedure. A procedure can
be complete in an aspect (customizability or exe-
cutability), missing steps, have extra steps, have
underspecified steps, or have incorrect steps. An
annotator can point out multiple errors about an
aspect in the presented plan (negative), or judge
the plan to be correct (positive) in that aspect. We
take the majority vote of annotator judgments for
the CUSTOMIZED and EXECUTABLE criteria. If a
plan is judged to be both CUSTOMIZED and EXE-
CUTABLE by a majority of annotators, we consider
it to be FULLYCORRECT.

4.3 Results

We report majority statistics for customizability,
executability, and correctness of different models
in Table 2. Simply using LLMs in an end-to-end

Figure 7: MTurk interface presented to crowdsource
workers to judge model generated procedures.

fashion is not good enough to generate customized
procedures, only generating 41.46% fully correct
procedures. We make the following observations.

Customize first, fix later. Using Modify agent and
Verify agent in SEQUENTIAL order is the best at
producing customized procedures P ′, generating
fully correct customized procedures 51.94% of the
time. Customizing first allows for making changes
to suit a user’s customization requirements, before
editing the modified procedure to make sure it is
executable.
Modifying and verifying together is hard. Com-
bining both agents into one to obtain a bag of edits
in the UNIFIED setting requires suggesting edits
that serve the purpose of both customization as
well as execution. This is an inherently harder task
and, as expected, does not perform as well as the

15601



SEQUENTIAL setting.
Edit-based customization is interpretable. Using
LLMs as end-to-end customizer is directly com-
parable to the UNIFIED setting. The former uses
natural language while the latter relies on semi-
symbolic edits. By construction, not only does
the UNIFIED setting perform better, it is also more
interpretable since the end-to-end approach some-
times tends to completely change the procedure.
Resolving conflicts is difficult. We find that the
PARALLEL setting is the worst, even though its per-
formance on CUSTOMIZED and EXECUTABLE are
similar to other methods. However, the intersection
of both (FULLYCORRECT) is significantly lower
than others. We hypothesize that this problems
arises because the edit resolution module is un-
able to correctly merge bags of edits from Modify
agent and Verify agent . This agent can be im-
proved by providing a more complete outlook of
how to resolve conflicts and merge relevant edits.

Despite operating on gold procedures, Verify
agent removes redundant steps or adds critical de-
tails to underspecified procedures (often the case
with WikiHow). For example, the instructions to
make microwave banana bread start with dry ingre-
dients being mixed in one bowl, while wet ingre-
dients are mixed in another. However, it does not
specify what the dry or wet ingredients are. The
Verify agent expands on these details so that the
procedure can be followed. More generally, this
framing allows fixing issues in the uncustomized
procedure if it isn’t from a gold source.

5 Analysis

We analyze different aspects of the SEQUENTIAL

setting and its generated plans.

G, P, H P’VERIFY
agent

MODIFY
agent

then

Figure 8: Reverse order of interaction of Verify
agent and Modify agent in SEQUENTIAL setting. First,
Verify agent adds missing details to improve exe-
cutability, before Modify agent proposes changes to
suit a user’s customization needs.

Ordering of agents matter. In the SEQUENTIAL

setting, we flip the order of the Modify agent and
Verify agent , as illustrated in Figure 8. We
find that this approach only generates usable
customized procedures 34.47% of the time. While

unintuitive, this setting addresses the lack of detail
in some WikiHow procedures while also correctly
making direct changes for customization.

Edits help executability. When comparing the
end-to-end approach with any of the edit-based
agents, we find that using the agentive framework
is better for executability. Table 2 shows that all
of our approaches produce executable procedures
>70% while using LLMs naively generates <50%
procedures that can be followed.

Error Types

P
er

ce
nt

ag
e 

of
 E

rr
or

s

0

25

50

75

100

Extra steps Missing steps Vague steps Partially correct 
steps

Customization Execution

Figure 9: Error distribution in customized plans pro-
duced by SEQUENTIAL setting.

Procedures cannot always be executed. We note
that execution accuracy for all models is similar.
Figure 9 shows that each proposed interaction of
the agents suffers the most from generating unnec-
essary steps, which often hinder achieving the goal
of the procedure G.
Procedures are not sufficiently customized. All
methods suffer from the problem of missing steps,
indicating that none of them adequately address the
requirements stated implicitly or explicitly in the
customization hint for the procedure. We use the
SEQUENTIAL setting as an illustration in Figure 9.

5.1 Analyzing subtypes of customization
needs

CUSTOMPLANS is annotated with different meta-
data related to types of expertise and constraints.
We use that to perform fine-grained analysis of the
generated procedures.
It is the hardest to satisfy prerequisites. Fig-
ure 10 shows the performance of using the SE-
QUENTIAL setting to address different types of con-
straints expressed in the customization hint. Gen-
erating customized procedures that address prereq-
uisites is the hardest. Performance on procedures
incorporating preferences is similar. Upon closer

15602



Constraint Type

0

25

50

75

100

Prerequisite Preference Refinement

Customized Executable Fully Correct

Figure 10: Performance in the SEQUENTIAL setting for
subtypes of constraints in customization hints.

inspection, we see that while the generated proce-
dures might be executable, they do not adhere to
the hard constraints set by prerequisities such as an
allergy to gluten.

Level of Expertise

0

25

50

75

100

Beginner Intermediate Expert

Customized Executable Fully Correct

Figure 11: Performance in the SEQUENTIAL setting for
subtypes of expertise in customization hints.

Complexity of customization matters. To study
the effect of depth of customization, we compare
performance on procedures that require varying
degrees of expertise. It is harder to generate
procedures for either experts or for beginners,
as presented in Figure 11. We hypothesize that
domain experts rarely require detailed feedback
and can work with small amounts of information
to achieve their task. Conversely, beginners require
careful instructions to be able to achieve a goal.
It is difficult for one approach to generate both
detailed as well as succinct, high-level plans.

Constraints are harder to account for than ex-
pertise. Figure 12 shows that it is the most difficult
to customize according to constraints. Correctly
satisfying requirements expressed in compositional
hints, where it is important to consider both exper-
tise and constraint, is also difficult even for the best
agent setting.

0

25

50

75

100

Constraint Expertise Both

Customized Executable Fully Correct

Figure 12: Performance in the SEQUENTIAL setting
when there are multiple aspects of customization ex-
pressed in a customization hint. Among these, con-
straints are hardest to fully satisfy in the resulting cus-
tomized procedures.

5.2 Qualitative Analysis

On the subset of data points in §2, we make
binary judgments about customizability and
executability, akin to §4.2, after anonymizing the
source of the plans to mitigate bias. The trends
for FULLYCORRECT are similar to full-scale
evaluation, except that the PARALLEL setting is
slightly better than the UNIFIED one. Executability
of procedures on this sample are higher than on
the full evaluation set, but trends across methods
remain the same, implying that our observations
apply to the full CUSTOMPLANS evaluation set.
We then perform qualitative analysis on plans
generated by each approach to understand their
characteristics.

Edit-based agents are conservative. Edit-based
agents tend to suggest less changes than their
end-to-end counterparts. We hypothesize that
these agents only generate edits that have higher
confidence, and more likely to maintain the
coherency of the plan. On the flip side, it makes it
harder to use these agents when the plan needs to
be completely changed in order to fully satisfy the
requisite customization needs.

End-to-end methods have greater creativity.
While completely rewriting procedures to suit cus-
tomization needs is not ideal, we observe that it is
important to do so when the fundamental way of
achieving the goal needs to be altered. We quantify
procedures that require changes in >4 steps to fall
into this category. For such procedures, we observe
that using LLMs as end-to-end customizers is bet-
ter since they produce more creative changes while

15603



edit-based agents are more conservative.

5.3 Discussion

While our task formulation works on uncustomized
gold procedures, our edit-based agents can also
be used to fix incorrectly customized procedures,
since it treats customization as a modification prob-
lem. Instead of using a gold plan as input, our
proposed framework supports starting with any re-
lated procedure for customization.

More complex tasks would require collaboration
between more agents, each dedicated to one aspect
of the task. Despite the effectiveness of the SE-
QUENTIAL setting for procedure customization, it
suffers from the problem of agent ordering. With a
larger number of agents, it would be non-trivial to
determine the correct order of using agents.

The PARALLEL setting is flexible and allows the
opportunity to integrate edits from multiple agents,
similar to prior work (Li et al., 2023; Yoran et al.,
2023; Wang et al., 2023). For instance, we can
integrate different agents to verify the executabil-
ity of procedures. An agent that use entity state
changes can be used as a proxy for checking the
coherence of a procedure. Similarly, an agent that
enforces the cause and effect relationship between
subsequent steps can also be used as a way to verify
executability of procedures. This setting can also
be used to integrate different agents for broader
applications such as collaborative tool use. Using
edits from such diverse agents is only practically
possible when using them in a parallel setting.

6 Related Work

Over the past few years, as information about users
has been readily available, user-facing technol-
ogy has become increasingly customized. Cus-
tomization has been widely studied in the context
of such technology, like search engines (Rashid
et al., 2002), chatbots (Majumder et al., 2020) and
game content (Shaker et al., 2010). There is some
work on customized procedural content generation
(Togelius et al., 2011; Yannakakis and Togelius,
2011). However, they focus on video game content
rather than everyday procedures related to prag-
matic goals. Previous research has shown the value
of customization in various settings. Kapusta et al.
(2019) present a method to customize collaborative
plans for robot-assisted dressing. Building cus-
tomized care plans is crucial for patients with se-
vere illnesses (Lin et al., 2017; Anbari et al., 2020).

Procedural text understanding addresses the task
of tracking entity states throughout the text (Bosse-
lut et al., 2018; Henaff et al., 2017). Generating
such texts (Aouladomar and Saint-Dizier, 2005)
involves different types of understanding such as
temporal reasoning and entity linking. Mori et al.
(2014) generated procedures from a meaning rep-
resentation taking intermediate states into account.
ChattyChef (Le et al., 2023) uses the conversational
setting to generate cooking instructions and itera-
tively refine its step ordering. To study decision
branching in procedures, Hou et al. (2023) gener-
ated user scenarios and choices for various steps
in a procedure and presented CHOICE-75. For the
task of counterfactual planning, COPLAN (Brah-
man et al., 2023) collects conditions and combines
them with a revised list of steps. Majumder et al.
(2019) use historical user preferences to generate
customized recipes. But they only focus on one
domain (cooking) and on one dimension to model
customization. LLMs have been shown to generate
procedural text well but it is unclear how they can
be customized for diverse user preferences.

Customized models are designed to capture lan-
guage patters specific to individual users. King
and Cook (2020) examined methods for creating
customized LMs using interpolating, fine-tuning
and priming. Similarly, Welch et al. (2022) present
another approach for fine-tuning and interpolation
to customize LMs. LLMs have also been used to
study constrained planning (Yuan et al., 2023) and
new interfaces for personalization (Ma et al., 2023).
Role-based prompting is a recent trend. Pseudo
Dialog Prompting (Han et al., 2022) is a method
to build prompts for LLMs so that chatbots mimic
fictional characters, while Vincent et al. (2023) re-
lease a dataset of character annotations to induce
personas in LLM output. However, it is still un-
clear how to encapsulate more fine-grained aspects
of customization.

7 Conclusion

This paper studies the capabilities of current LLMs
to customize open-domain procedures. First , we
show that current LLMs cannot effectively cus-
tomize open-domain procedures. Next, we propose
several LLM-based agent architectures, and find
that sequentially using semi-symbolic edits from
the Modify agent and the Verify agent provides
an improvement of 10.5% in generating fully cor-
rect procedures over naive prompting. Even though

15604



we show that using edits helps executability, we
find that generated procedures are often not suf-
ficiently customized, and there is clear room for
improvement. Finally, we discuss the generalizabil-
ity of our framework for other diverse applications
such as coding and creative writing that require
customization.

Limitations

In this work, we focus on using LLMs in a zero-
shot setting. It has been shown that model perfor-
mance improves by providing in-context examples,
performing chain-of-thought reasoning, and incor-
porating notions of self-consistency. However, we
leave these explorations for future work.

We acknowledge that there can be multiple ways
to interpret a customization hint and only the user
providing that hint can truly know their needs from
the procedure. This also means that only that per-
son is the right person to evaluate a customized
procedure. Even so, due to the open-domain na-
ture of this task, it is difficult for any one person
to evaluate the various aspects of generated proce-
dures. This can only be done by domain experts.
To alleviate these problems, we use 3 annotators
(master turkers) to judge model generated plans
and consider their majority judgment (Lal et al.,
2022), but recognize that this might not be the per-
fect solution.

Due to the nature of LLMs, they are unable to
encapsulate personal preferences (V Ganesan et al.,
2023; Dey et al., 2024). Since the procedure cus-
tomization inherently involves user preferences,
LLMs cannot be reliably used as automatic judges
yet.

Ethics Statement

Our setting assumes that users will not provide any
adversarial customization hints. However, in real-
world environments, this assumption is unlikely to
hold. Users can generate malicious procedures by
providing such hints to LLMs.

LLMs can generate text that might be biased and
insensitive to a user’s socio-cultural context (Bor-
dia and Bowman, 2019; Sharma et al., 2021; Hovy
and Prabhumoye, 2021). Since customization hints
can have multiple interpretations, it is possible that
LLMs can misinterpret the customization needs
of users and generate biased and stereotypical pro-
cedures. Thus the system will need checks and
balances to ensure that the generated customized

procedure is not harmful.

References
Mathieu Acher. 2024. A demonstration of end-user

code customization using generative ai. In 18th
International Working Conference on Variability
Modelling of Software-Intensive Systems, Bern,
Switzerland.

Allison Brandt Anbari, Pamela L. Ostby, and Pamela
Ginex. 2020. Breast cancer–related lymphedema:
Personalized plans of care to guide survivorship.
Current Breast Cancer Reports, 12:237 – 243.

Farida Aouladomar and Patrick Saint-Dizier. 2005.
Towards generating procedural texts: An explo-
ration of their rhetorical and argumentative structure.
In Proceedings of the Tenth European Workshop
on Natural Language Generation (ENLG-05), Ab-
erdeen, Scotland. Association for Computational Lin-
guistics.

Shikha Bordia and Samuel R. Bowman. 2019. Identify-
ing and reducing gender bias in word-level language
models. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Student Research
Workshop, pages 7–15, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin
Ennis, Dieter Fox, and Yejin Choi. 2018. Simulat-
ing action dynamics with neural process networks.
ICLR.

Faeze Brahman, Chandra Bhagavatula, Valentina Py-
atkin, Jena D. Hwang, Xiang Lorraine Li, Hirona J.
Arai, Soumya Sanyal, Keisuke Sakaguchi, Xiang
Ren, and Yejin Choi. 2023. Plasma: Making small
language models better procedural knowledge mod-
els for (counterfactual) planning.

Ozan Caglayan, Pranava Madhyastha, and Lucia Specia.
2020. Curious case of language generation evalua-
tion metrics: A cautionary tale. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 2322–2328, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Anthony Chen, Gabriel Stanovsky, Sameer Singh, and
Matt Gardner. 2019. Evaluating question answer-
ing evaluation. In Proceedings of the 2nd Workshop
on Machine Reading for Question Answering, pages
119–124, Hong Kong, China. Association for Com-
putational Linguistics.

Jin Chen, Zheng Liu, Xu Huang, Chenwang Wu, Qi Liu,
Gangwei Jiang, Yuanhao Pu, Yuxuan Lei, Xiaolong
Chen, Xingmei Wang, Defu Lian, and Enhong Chen.
2023. When large language models meet personal-
ization: Perspectives of challenges and opportunities.

15605

https://doi.org/10.1145/3634713.3634732
https://doi.org/10.1145/3634713.3634732
https://aclanthology.org/W05-1618
https://aclanthology.org/W05-1618
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/N19-3002
https://doi.org/10.18653/v1/N19-3002
http://arxiv.org/abs/2305.19472
http://arxiv.org/abs/2305.19472
http://arxiv.org/abs/2305.19472
https://doi.org/10.18653/v1/2020.coling-main.210
https://doi.org/10.18653/v1/2020.coling-main.210
https://doi.org/10.18653/v1/D19-5817
https://doi.org/10.18653/v1/D19-5817
http://arxiv.org/abs/2307.16376
http://arxiv.org/abs/2307.16376


Maarten De Rijke et al. 2005. Question answering:
What’s next?

Gourab Dey, Adithya V Ganesan, Yash Kumar Lal,
Manal Shah, Shreyashee Sinha, Matthew Matero,
Salvatore Giorgi, Vivek Kulkarni, and H. Schwartz.
2024. SOCIALITE-LLAMA: An instruction-tuned
model for social scientific tasks. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 454–468, St. Julian’s, Malta.
Association for Computational Linguistics.

Xuehong Du, Jianxin Jiao, and Mitchell M Tseng. 2006.
Understanding customer satisfaction in product cus-
tomization. The International Journal of Advanced
Manufacturing Technology, 31:396–406.

Seungju Han, Beomsu Kim, Jin Yong Yoo, Seokjun
Seo, Sangbum Kim, Enkhbayar Erdenee, and Buru
Chang. 2022. Meet your favorite character: Open-
domain chatbot mimicking fictional characters with
only a few utterances. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5114–5132, Seattle,
United States. Association for Computational Lin-
guistics.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking the world
state with recurrent entity networks. ICLR.

Zhaoyi Joey Hou, Li Zhang, and Chris Callison-Burch.
2023. Choice-75: A dataset on decision branching in
script learning. arXiv preprint arXiv:2309.11737.

Dirk Hovy and Shrimai Prabhumoye. 2021. Five
sources of bias in natural language processing.
Language and Linguistics Compass, 15(8):e12432.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A. Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation: NLG
needs evaluation sheets and standardised definitions.
In Proceedings of the 13th International Conference
on Natural Language Generation, pages 169–182,
Dublin, Ireland. Association for Computational Lin-
guistics.

Ariel Kapusta, Zackory M. Erickson, Henry M. Clever,
Wenhao Yu, C. Karen Liu, Greg Turk, and Charles C.
Kemp. 2019. Personalized collaborative plans for
robot-assisted dressing via optimization and simula-
tion. Autonomous Robots, 43:2183 – 2207.

Milton King and Paul Cook. 2020. Evaluating ap-
proaches to personalizing language models. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 2461–2469, Marseille,
France. European Language Resources Association.

Yash Kumar Lal, Nathanael Chambers, Raymond
Mooney, and Niranjan Balasubramanian. 2021.

TellMeWhy: A dataset for answering why-questions
in narratives. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 596–610, Online. Association for Computa-
tional Linguistics.

Yash Kumar Lal, Niket Tandon, Tanvi Aggarwal, Ho-
race Liu, Nathanael Chambers, Raymond Mooney,
and Niranjan Balasubramanian. 2022. Using com-
monsense knowledge to answer why-questions. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
1204–1219, Abu Dhabi, United Arab Emirates. Asso-
ciation for Computational Linguistics.

Duong Minh Le, Ruohao Guo, Wei Xu, and Alan Rit-
ter. 2023. Improved instruction ordering in recipe-
grounded conversation.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333,
Toronto, Canada. Association for Computational Lin-
guistics.

Hung-Hsin Lin, Nien Wei, T-Y. Chou, Chun-Chi Lin,
Yuan-Tsu Lan, Shin-Ching Chang, Huann-Sheng
Wang, Shung-Haur Yang, Wei-Shone Chen, Tzu
chen Lin, Jen-Kou Lin, and Jeng-Kai Jiang. 2017.
Building personalized treatment plans for early-stage
colorectal cancer patients. Oncotarget, 8:13805 –
13817.

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2021.
Goal-oriented script construction. In Proceedings
of the 14th International Conference on Natural
Language Generation, pages 184–200, Aberdeen,
Scotland, UK. Association for Computational Lin-
guistics.

Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette
Graham. 2019. Results of the WMT19 metrics
shared task: Segment-level and strong MT sys-
tems pose big challenges. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 62–90, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Xiao Ma, Swaroop Mishra, Ariel Liu, Sophie Su, Jilin
Chen, Chinmay Kulkarni, Heng-Tze Cheng, Quoc
Le, and Ed Chi. 2023. Beyond chatbots: Explorellm
for structured thoughts and personalized model re-
sponses.

Bodhisattwa Prasad Majumder, Harsh Jhamtani, Tay-
lor Berg-Kirkpatrick, and Julian McAuley. 2020.
Like hiking? you probably enjoy nature: Persona-
grounded dialog with commonsense expansions. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9194–9206, Online. Association for Computa-
tional Linguistics.

15606

https://aclanthology.org/2024.eacl-short.40
https://aclanthology.org/2024.eacl-short.40
https://doi.org/10.18653/v1/2022.naacl-main.377
https://doi.org/10.18653/v1/2022.naacl-main.377
https://doi.org/10.18653/v1/2022.naacl-main.377
https://doi.org/https://doi.org/10.1111/lnc3.12432
https://doi.org/https://doi.org/10.1111/lnc3.12432
https://doi.org/10.18653/v1/2020.inlg-1.23
https://doi.org/10.18653/v1/2020.inlg-1.23
https://aclanthology.org/2020.lrec-1.299
https://aclanthology.org/2020.lrec-1.299
https://doi.org/10.18653/v1/2021.findings-acl.53
https://doi.org/10.18653/v1/2021.findings-acl.53
https://doi.org/10.18653/v1/2022.emnlp-main.79
https://doi.org/10.18653/v1/2022.emnlp-main.79
http://arxiv.org/abs/2305.17280
http://arxiv.org/abs/2305.17280
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2021.inlg-1.19
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
http://arxiv.org/abs/2312.00763
http://arxiv.org/abs/2312.00763
http://arxiv.org/abs/2312.00763
https://doi.org/10.18653/v1/2020.emnlp-main.739
https://doi.org/10.18653/v1/2020.emnlp-main.739


Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo
Ni, and Julian McAuley. 2019. Generating
personalized recipes from historical user prefer-
ences. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 5976–5982, Hong Kong, China. Association
for Computational Linguistics.

Shinsuke Mori, Hirokuni Maeta, Tetsuro Sasada,
Koichiro Yoshino, Atsushi Hashimoto, Takuya
Funatomi, and Yoko Yamakata. 2014. Flow-
Graph2Text: Automatic sentence skeleton compila-
tion for procedural text generation. In Proceedings of
the 8th International Natural Language Generation
Conference (INLG), pages 118–122, Philadelphia,
Pennsylvania, U.S.A. Association for Computational
Linguistics.

Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shy-
ong K. Lam, Sean M. McNee, Joseph A. Konstan,
and John Riedl. 2002. Getting to know you: Learning
new user preferences in recommender systems. In
Proceedings of the 7th International Conference on
Intelligent User Interfaces, IUI ’02, page 127–134,
New York, NY, USA. Association for Computing
Machinery.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proScript: Partially ordered scripts generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2138–2149, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Noor Shaker, Georgios Yannakakis, and Julian Togelius.
2010. Towards automatic personalized content gener-
ation for platform games. Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment, 6(1):63–68.

Shanya Sharma, Manan Dey, and Koustuv Sinha. 2021.
Evaluating gender bias in natural language inference.

Julian Togelius, Georgios N. Yannakakis, Kenneth O.
Stanley, and Cameron Browne. 2011. Search-
based procedural content generation: A taxonomy
and survey. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):172–186.

Adithya V Ganesan, Yash Kumar Lal, August Nils-
son, and H. Schwartz. 2023. Systematic eval-
uation of GPT-3 for zero-shot personality esti-
mation. In Proceedings of the 13th Workshop
on Computational Approaches to Subjectivity,
Sentiment, & Social Media Analysis, pages 390–
400, Toronto, Canada. Association for Computational
Linguistics.

Sebastian Vincent, Rowanne Sumner, Alice Dowek,
Charlotte Blundell, Emily Preston, Chris Bayliss,
Chris Oakley, and Carolina Scarton. 2023. Per-
sonalised language modelling of screen characters

using rich metadata annotations. arXiv preprint
arXiv:2303.16618.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Charles Welch, Chenxi Gu, Jonathan K. Kummer-
feld, Veronica Perez-Rosas, and Rada Mihalcea.
2022. Leveraging similar users for personalized lan-
guage modeling with limited data. In Proceedings
of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 1742–1752, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui.
2023. The rise and potential of large language model
based agents: A survey.

Georgios N. Yannakakis and Julian Togelius. 2011.
Experience-driven procedural content genera-
tion. IEEE Transactions on Affective Computing,
2(3):147–161.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel
Deutch, and Jonathan Berant. 2023. Answering
questions by meta-reasoning over multiple chains of
thought. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 5942–5966, Singapore. Association for Com-
putational Linguistics.

Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, So-
ham Shah, Charles Jankowski, Yanghua Xiao, and
Deqing Yang. 2023. Distilling script knowledge from
large language models for constrained language plan-
ning. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4303–4325,
Toronto, Canada. Association for Computational Lin-
guistics.

Li Zhang. 2022. Reasoning about procedures with nat-
ural language processing: A tutorial. arXiv preprint
arXiv:2205.07455.

15607

https://doi.org/10.18653/v1/D19-1613
https://doi.org/10.18653/v1/D19-1613
https://doi.org/10.18653/v1/D19-1613
https://doi.org/10.3115/v1/W14-4418
https://doi.org/10.3115/v1/W14-4418
https://doi.org/10.3115/v1/W14-4418
https://doi.org/10.1145/502716.502737
https://doi.org/10.1145/502716.502737
https://doi.org/10.18653/v1/2021.findings-emnlp.184
https://doi.org/10.1609/aiide.v6i1.12399
https://doi.org/10.1609/aiide.v6i1.12399
http://arxiv.org/abs/2105.05541
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.18653/v1/2023.wassa-1.34
https://doi.org/10.18653/v1/2023.wassa-1.34
https://doi.org/10.18653/v1/2023.wassa-1.34
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/2022.acl-long.122
https://doi.org/10.18653/v1/2022.acl-long.122
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2309.07864
https://doi.org/10.1109/T-AFFC.2011.6
https://doi.org/10.1109/T-AFFC.2011.6
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.emnlp-main.364
https://doi.org/10.18653/v1/2023.acl-long.236
https://doi.org/10.18653/v1/2023.acl-long.236
https://doi.org/10.18653/v1/2023.acl-long.236


A The CUSTOMPLANS Evaluation Set

Prior work on editing and customizing procedures
has focused on specific domains. So, data for the
task of procedure customization is limited. To al-
leviate this problem, we re-purpose two related
datasets and collect more high-quality data from
WikiHow to create the CUSTOMPLANS evaluation
set.

A.1 CUSTOMPLANSREAL

Each WikiHow article consists of a goal (indicated
in the title starting with “How to”) and ordered,
richly described steps that lead to that goal. It al-
ready contains articles that include multiple meth-
ods for a task. Additionally, search queries can be
used to retrieve and select articles broadly related
to the same goal. However, user interaction sig-
nals like fine-grained querying related to specific
versions of procedures are not available publicly.
Such signals can be used to improve user experi-
ences. Therefore, we create a new evaluation set
that contains a procedural goal and an individual
user’s relevant context.

To compile this data, we start by identifying 9
diverse domains. For each domain, we employ two
methods to curate WikiHow articles. 1) Search Re-
sults: We devise relevant, popular and pragmatic
goals which have relevant instructions present in
WikiHow. We present each goal to users of rele-
vant persona and ask them to provide their feedback
according to their personal preferences. For exam-
ple, for the broad goal of staying healthy, a col-
lected user persona was that of a teenager looking
to build long-term healthy habits. 2) Multiple Meth-
ods: For the same set of broad goals, we filter out
WikiHow articles that contain multiple methods to
achieve the same goal. Given the broad goal, users
are required to provide situational feedback cor-
responding to each method. Using this approach,
we collect 106 customized goals (corresponding to
user feedback) over 9 domains and build CUSTOM-
PLANSREAL, which contains customization hints
collected from humans.

A.2 CUSTOMPLANSSIMULATED

To study decision branching in scripts, Hou et al.
(2023) created CHOICE-75, a benchmark of 565
data points which requires selecting the next step in
a procedure given descriptive scenarios. These sce-
narios are valid only at a step level. However, they
can also be incorporated into the full procedure if

treated as constraints. We treat these scenarios as
customization hints.

COPLAN is a dataset of machine-generated,
human-verified scripts. We use the test set of
861 data points for the counterfactual plan re-
vision task for our purposes. Brahman et al.
(2023) collect goals from diverse topics and prompt
text-curie-001 to generate a set of ordered steps
as a plan to achieve that goal. text-curie-001 is
also used, in a few-shot manner, to generate condi-
tions that can alter these plans. Human verification
of these components leads to the creation of a test
set that contains a goal, an uncustomized procedure
and a relevant condition. These conditions describe
prerequisites to be fulfilled that require the original
procedure to be customized in a specific manner.
We treat these conditions as customization hints.
The combination of data from these two sources is
referred to as CUSTOMPLANSSIMULATED since
it contains customization hints generated automati-
cally.

A.3 Statistics: CUSTOMPLANS evaluation set

We randomly select 100 procedures and their cor-
responding customization hints from CUSTOM-
PLANSSIMULATED and add them to CUSTOM-
PLANSREAL to form the CUSTOMPLANS eval-
uation set. Overall, CUSTOMPLANS contains 206
data points, each of which is made up of a goal, a
list of steps to achieve that goal and a customization
hint from a user according to which the procedure
should be modified. It contains 106 unique goals
and 203 unique customization hints.

We also store relevant metadata for each user
persona providing the annotation such as their level
of expertise and their constraints like dietary pref-
erences or availability of tools. 6.2% of these cus-
tomized procedures can only be performed by do-
main experts, 11.6% need an intermediate level of
expertise, and the rest are beginner-friendly. The
user comments contain implicit or explicit con-
straints — 58% contain hard prerequisites, 30%
reflect some user preference and the rest mention
a target refinement to be achieved. The types of
customization hints, as well as corresponding ex-
amples, in this dataset are presented in Figure 13.

B Mechanical Turk tasks

We present the instructions given to annotators for
both the tasks in Figure 14. Annotators were given
clear direction for the task, as well as provided

15608



Figure 13: Types of customization hints present in CUSTOMPLANS, enabling analysis of diverse customization
hints. Prerequisites are usually expressed explicitly, while preferences and refinements may be expressed implicitly
in the hint. Expertise usually needs to be inferred from the hint, except in hints collected experts. Some hints also
encode both user expertise as well as constraints in their scenarios.

examples for various cases of desirable and unde-
sirable characteristics of a procedure. We restricted
the task to master turkers. The master turkers are
paid 0.30$ per HIT, which translates to 17$/hr ac-
cording to average time needed for completion. We
do not collect any demographic information, or ap-
ply any restrictions on who can provide judgments
(except master turker qualification). The average
lifetime approval rate of the turkers is 97.98% while
their average approval rate over the last 30 days was
97.06%.

C Reproducibility

C.1 LLM Settings

We used a temperature of 0.0 for all the experiments
to select the most likely token at each step, as this
setting allow for reproducibility2.

We use the following code snippet for any exper-
iments performed with gpt-3.5-turbo:

import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
response = openai.ChatCompletion.create(

model="gpt-3.5-turbo-0301",
messages=[{'role': 'user',

'content': prompt}],
temperature=0.0, # reproducibility.
max_tokens=500,
top_p=1,
frequency_penalty=0.1,
presence_penalty=0
)

2We note that some researchers have shown
that even this setting might not make it com-
pletely reproducible: https://twitter.com/
ofirpress/status/1542610741668093952?s=46&t=
f9v5k9RzVKnTK1e0UyauOA and https://twitter.com/
BorisMPower/status/1608522707372740609

C.2 Prompts Used
We list the prompts we use in different parts of our
methods in Figure 15.

15609

https://twitter.com/ofirpress/status/1542610741668093952?s=46&t=f9v5k9RzVKnTK1e0UyauOA
https://twitter.com/ofirpress/status/1542610741668093952?s=46&t=f9v5k9RzVKnTK1e0UyauOA
https://twitter.com/ofirpress/status/1542610741668093952?s=46&t=f9v5k9RzVKnTK1e0UyauOA
https://twitter.com/BorisMPower/status/1608522707372740609
https://twitter.com/BorisMPower/status/1608522707372740609


Figure 14: Instructions for MTurk tasks

15610



E2E customize [{“role”: “user”, “content”: f“Write a list of steps for the following goal\nGoal: 
{goal}”}, {“role”: “assistant”, “content”: f“Steps:\n{procedure}”}, {“role”: f“My 
situation is that {customization_hint}. List the new set of steps.”}]

MODIFY [{'role': 'user', 'content': f"Here is a student generated steps to {goal} given the 
condition that "{customization_hint}".\n\n{procedure}\n\nYour task is to go 
over every step and suggest a change in the step only if the condition is not 
met. Suggest changes only if really necessary. \n\nWhen changing a step M, 
you are only allowed to use these two operations: \nreplace(3, XX): Replace 
the full text of step 3 with new full text XX\ninsert(2, XX): Insert the full text 
XX as a new step after step 2\n\nGive the set of revisions."}]

VERIFY [{'role': 'user', 'content': f"Here is a student generated steps to {goal} given the 
condition that "{customization_hint}".\n\n{procedure}\n\nYour task is to go 
over every step and suggest a change in the step only if the step won't work. 
Suggest changes only if really necessary. \n\nWhen changing a step M, you 
are only allowed to use these two operations: \nreplace(3, XX): Replace the 
full text of step 3 with new full text XX\ninsert(2, XX): Insert the full text XX as 
a new step after step 2\n\nGive the set of revisions."}]

RESOLVE [{'role': 'user', 'content': f”Here is a student generated steps to {goal} given the 
condition that "{customization_hint}".\n\n{procedure}\n\nThe student realized 
their mistake and decided to edit the steps in the following way. 
\n\n{customization_edits}\n{execution_edits}\nHowever, these edits can be 
repetitive, conflicting or unnecessary. Now, imagine you are a teacher.  Your 
task is to tell the student the correct set of edits. You must only give the 
essential edits.\n\nCorrect and minimal set of edits are:\n”}]

Figure 15: Prompts used in various parts of our experiments.

15611


