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Abstract

Chinese Spelling Correction (CSC) commonly
lacks large-scale high-quality corpora, due to
the labor-intensive labeling of spelling errors
in real-life human writing or typing scenarios.
Two data augmentation methods are widely
adopted: (1) Random Replacement with the
guidance of confusion sets and (2) OCR/ASR-
based Generation that simulates character mis-
using. However, both methods inevitably in-
troduce noisy data (e.g., false spelling errors),
potentially leading to over-correction. By care-
fully analyzing the two types of corpora, we
find that though the latter achieves more robust
generalization performance, the former yields
better-calibrated CSC models. We then provide
a theoretical analysis of this empirical obser-
vation, based on which a corpus refining strat-
egy is proposed. Specifically, OCR/ASR-based
data samples are fed into a well-calibrated CSC
model trained on random replacement-based
corpora and then filtered based on prediction
confidence. By learning a simple BERT-based
model on the refined OCR/ASR-based corpus,
we set up impressive state-of-the-art perfor-
mance on three widely-used benchmarks, while
significantly alleviating over-correction (e.g.,
lowering false positive predictions).

1 Introduction

Chinese Spelling Correction (CSC) aims to detect
and correct misspellings in the text while main-
taining the sentence length (Yu and Li, 2014). It
can not only directly facilitate human writing and
typing but also serve as a critical pre-processing
step for many downstream Chinese NLP tasks such
as search engine (Martins and Silva, 2004) and
optical character recognition (Afli et al., 2016).
One common challenge of applying CSC is the
lack of large-scale high-quality corpora in practice
since labeling spelling errors in real-life writing
or typing scenarios is labor-extensive (Wang et al.,
2018). Therefore, two data augmentation methods
are widely adopted for this task. The first one is
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Figure 1: Calibration curves and performance of BERT-
based CSC models trained on random replacement and
OCR/ASR-based data. ECE means the metric of Ex-
pected Calibration Error (Guo et al., 2017), and FPR
means the sentence-level false positive rate that mea-
sures over-corrections. Combing subplots (a), (b), and
(c), OCR/ASR-based data produce better performances
on standard metrics (e.g., P, R, and F1), while random
replacement yields better calibration and FPR. These
observations inspire us to denoise OCR/ASR-based data
with well-calibrated CSC models trained on random re-
placement data, to improve performance and mitigate
over-corrections.

random replacement with the guidance of confu-
sion sets (Liu et al., 2013) containing typical hu-
man misused cases based on statistics. The second
one is leveraging cross-modal models (Wang et al.,
2018), such as optical character recognition (OCR)
and automatic speech recognition (ASR), to simu-
late spelling errors in the shape-close or tone-close
patterns.

Compared to random replacement, OCR/ASR-
based generation better mimics human misspelling
scenarios, becoming the mainstream strategy used
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by many recent CSC efforts (Cheng et al., 2020;
Wang et al., 2021). Unfortunately, both data aug-
mentation methods inevitably introduce noises. For
example, we randomly sample 300 sentences in the
OCR/ASR-based corpus (Wang et al., 2018) and
check the annotated misused characters manually,
finding that 11.3% of them are false spelling er-
rors. Training on these noisy samples can produce
unintended over-correction (e.g., a high false pos-
itive rate). Previous works mainly alleviate the
problem through sophisticated model designs, e.g.,
integrating phonological and morphological infor-
mation using multi-modal approaches (Xu et al.,
2021; Huang et al., 2021). Unlike these efforts, in
this paper, we propose to improve CSC by directly
purifying noisy samples in CSC corpora.
Considering model confidence is commonly ex-
ploited to denoise data (Northcutt et al., 2021),
we first analyze the two types of CSC corpora by
checking the calibration characteristics and perfor-
mance of models trained on them (see Section 2 for
experiment details). The experimental results on
the SIGHAN 13 (Wu et al., 2013) benchmark are
shown in Figure 1 !. Comparing subplots (a) and
(b), we find that although the CSC model trained on
OCR/ASR-based data performs better (e.g., with a
better F1 score), it is worse calibrated than its coun-
terpart of random replacement. Its calibration curve
continuously lies below the dotted line (represent-
ing perfectly calibrated), indicating that the model
tends to make over-confident predictions. This ob-
servation is consistent with its higher false positive
rate (despite overall better performance) in subplot
(c). To explain the empirical observation, we then
perform a theoretical analysis of model confidence
based on bayesian inference (Section 3). We reveal
why the calibration curve differs between the two
categories of training data and identify which data
samples negatively affect model confidence.
Guided by the empirical observations and theo-
retical findings, we propose to refine the OCR/ASR-
based corpus with a CSC model trained on random
replacement data. Thanks to this CSC model’s
more trustful confidence, we can use it to filter
noisy OCR/ASR-based samples according to their
prediction scores. We achieve competitive perfor-
mance on three open CSC benchmarks by training
a simple BERT-based model on the refined cor-
pus. Notably, the model also produces a much
lower false positive rate and demonstrates better

! Appendix B shows the results on SIGHAN 14/15

calibration, which is essential in real-world CSC
applications.
In summary, our contributions are as follows:

* We empirically reveal that OSC/ASR-based
CSC datasets deliver more robust generaliza-
tion performance, while random replacement
datasets lead to better-calibrated models.

* We theoretically analyze models’ calibration
characteristics from a bayesian inference view,
explaining how and which data samples bring
the unintended over-confidence of predictions.

* We design a corpus refining strategy that in-
tegrates the generalization performance from
OSC/ASR-based data and the trustful model
confidence from random replacement data.

2 A Pilot Study of Data Characteristics

Figure 1 illustrates the properties of OCR/ASR-
based and random replacement data through the
calibration curves and performance of their respec-
tive models. The Expected Calibration Error (ECE)
metric is explained in detail in Appendix A. In this
section, we provide a comprehensive description
of the experimental methodology and procedures.

2.1 The Base CSC Model

Given data pair (X,Y’), where X is the original
sentence and Y is the generated sample containing
spelling errors, Chinese spelling correction aims
to restore Y to X. Since X and Y share the same
sentence length, this task is usually implemented
by a non-autoregressive model. In this work, Y is
input into a BERT model, and the output hidden
state of each character is fed into a classifier to get
the predicted correct character. The training target
can be written as the following cross-entropy loss:

L
Leg ==Y log[Py(x|Y)] (1)
i=1
where L is the shared length and 6 represents
model parameters.

2.2 Analysis of Two Datasets

Dataset Preparation. We use the OCR/ASR-
based dataset containing 271k sentences provided
by Wang et al. (2018). We can build a confusion
set based on its annotated spell errors. To obtain
a random-replacement dataset of similar volume,
we collect the same number of sentences and then
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uniformly substitute correct characters with a prob-
ability of 10% with characters in the constructed
confusion set. In this way, we can compare two
types of datasets fairly.

Metrics Settings. Regarding model performance,
in addition to standard metrics (e.g., precision (P),
recall (R), and F1), we also examine sentence-level
false positive rate (FPR) (Li et al., 2022c). A sen-
tence is regarded as a false positive if any initially
correct character is wrongly modified to another
one. Regarding model confidence, since most of
the characters in the dataset are correct, numer-
ous easy positive samples will blur the noteworthy
trends in calibration curves. Therefore, we elimi-
nate those characters—in whose prediction distri-
bution the possibility of being corrected to other
characters is below 0.1—to draw the calibration
curve and calculate ECE.

Main findings. The main results of SIGHAN 13
have been shown in Figure 1, and more experi-
mental results of SIGHAN 14 and 15 are placed
in Appendix B due to space limitation. In all three
datasets, we can observe in the calibration line chart
that the CSC model trained on OCR/ASR-based
data is flawed regarding the alignment between pre-
diction confidence and accuracy, despite the better
overall performance. ECE scores achieved by ran-
dom replacement and OCR/ASR-based generation
are 0.104 and 0.163, respectively, suggesting that
the former is closer to the ideal calibration and also
explaining why it achieves a lower FPR (e.g., with
fewer over-corrections).

3 Theoretical Analysis of Model
Confidence

3.1 Problem Statement

In this section, we present a theoretical analy-
sis of the above empirical findings. To begin,
we define a set X that each element, denoted as
X = (1,9, ...,x1), represents a sentence in the
real-world corpus comprised of individual charac-
ters. The prior probability of the sentence can be
determined using the probability function Py. By
some methods of data augmentation, a mapping
function F : X — ) is applied to imitate human’s
writing error set ), which consists of sentences
containing a small number of incorrect characters.
The probability of sentences in ) is obtained from
Py.

For any sentence X € X, we assume the
mapping function F replaces only one charac-

ter at a time. Y = F(X),y; = F(X); #
z;. We denote the context of z; as X\i =
(1, ey Ti—1, Tit1,...,x1). Based on these as-
sumptions, we can draw the following simple infer-
ences:

* X\; = Yy;: This equality implies that the
context surrounding the replaced character re-
mains unchanged when transforming X to Y.

* Py(X\;) = Py(Yy;). Since the data augmen-
tation methods do not alter the size of the
dataset, we can assert that |X'| = |))|. There
is a one-to-one correspondence between the
contexts in X and ). Consequently, we can
establish an equation relating the probabilities
of X\; and Y\;.

3.2 Bayesian Inference of Model Confidence

Combining the inferences, we can derive the theo-
retical correction model confidence P(X|Y") from
a Bayesian inference perspective, as the probability
P(Y'|X) in the augmentation process is known.

P(X‘Y) _ P(yz’X) PX(xz|X\z) )
ZUEV P(y’L‘X\’H U)PX(U‘X\Z)

In the formulation, the vocabulary V encom-
passes all possible characters. The detailed calcula-
tion procedure is presented in Appendix D.To fur-
ther decompose Eq. 2, we define a subset Vo,
which consists of the characters v that make both
P(yi| X\, v) and Py (v|X\;) non-zero.

1% satisfying the condition is usually categorized
into the following three orthogonal cases. The next
section will provide more intuitive explanations of
the three cases.

Case 1: |V| = 1, in other word, V = {x;}.

P(yi|X) - Px(wi|X\;)
P(yi| X\s, i) Pr(i] X\5)

PT(X|Y) = =13

Case2: y; € V, for simplicity, let V= {zi,yi}.

1

14 Pr(yilX\i)  PuilX\ivi)
Px(zi|X\;)  P(yil X\s,24)

PN(X|Y) =

“)

Case 3: y; ¢ Vand |V| > 1. To simplify the
notation, let V = {x;,a},a # y;.

1
Px (alX\4)
1+ P (zi]X\;)

PM(X’Y) - P(yi| X\i,a) )

' P(yi|X\i71'i)
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3.3 Data Sample Categorization

Case | original | replaced | truth set of A?C
1 ABC ADC {B}
2 ABC ADC {B,D}
3 ABC ADC {B.E}

Table 1: Symbolic illustration of different cases. The
characters identified by underscores in the second and
third columns correspond to x; and y; respectively.

The three cases discussed in the previous sub-
section are naturally related to the three sample
types in the CSC dataset. Symbolic examples are
presented in Table 1. We analyze the impact of dif-
ferent data augmentation methods on these sample
types.

True Sample corresponds to Case 1, where the
context X\; can determine the unique character x;,
or there are multiple suitable characters, but y; only
appears in the confusion set of x;.

Noisy Sample corresponds to Case 2. In this case,
a correct sentence can unexpectedly be transformed
into another correct one during data augmentation,
generating false spelling errors.

When considering the four terms in the denom-
inator of Equation 4, regardless of the data aug-
mentation method, Px(y;|X\;) and Px(z;|X\;)
remain the same. Additionally, P(y;|X\;, y:) will
be close to 1, as misspellings generally constitute
only a small percentage of all characters. There-
fore, P(yi|X\;, ;) is the primary factor influenc-
ing PV (X|Y).

Specifically, random replacement data provide
a uniform distribution for P(y;|X\;,r;), which
can stabilize PV (X|Y). On the other hand,
OCR/ASR-based data may result in large values
of P(y;|X\;, ;) due to its inherent long-tail distri-
bution 2, which could result in overconfident pre-
dictions. In other words, Equation 4 provides an
upper bound for PN (X |Y) in the case of random
replacement data, facilitating the filtering of noisy
samples by setting a confidence threshold.
Multi-answer Sample corresponds to Case 3,
where a spelling error can have multiple correct
character alternatives. In this case, it is considered
a true spelling error (Px (y;|X\;) = 0), but there
exist multiple corrections other than x; that are

The most frequent spelling errors in each character’s con-
fusion set in the OCR/ASR-based data constitute 58.7% of
the whole misspellings. The percentage is 13.8% for random
replacement data

equally valid.

Similar to the analysis of noisy samples, the dif-
ference between the two data augmentation meth-
ods also relies on P(y;| X\;, ;). Further detailed
analysis on this matter can be found in Appendix F.

3.4 Lessons from The Theoretical Analysis

The theoretical analyses presented above provide
a clear explanation for the empirical findings ob-
served in our pilot study. Moreover, they serve as
inspiration to utilize the upper-bounded confidence
for denoising purposes.

: T (X|Y) . . y-spelling error
x-target
PM(X]Y) v-alternative
H PN(X|Y)
o I Mo-
x 9 x y x v 3

(a) True sample (b) Noisy sample (c) Multi-answer sample

.
.
o0 .
g — oo N -
M g - filtering SOM_@ - - correction
-t s model =" model
.

(d) Flat representation of sentence space

Figure 2: Conceptual illustration of sample confidence
and the filtering process for noisy samples. The upper
part demonstrates the variability of model confidence
across different samples. The bottom part illustrates the
utilization of confidence to identify and filter out noisy
samples. The dotted line represents a scalar, while the
plane serves as a visual aid for better comprehension.

Considering cases 2 and 3, it is important to
note that less than 10% of the characters are
replaced in the context of data augmentation,
P(yi| X\i»9i) > 0.9 >> 0.1 > P(yi| X\;,a). As
long as Px (y;| X\;) and Px(a|X\;) are of the same
order of magnitude, it can be derived that

0< PN(X]Y)< PM(X|Y) < PT(X|Y)=1
(6)

Since the model trained on random replacement
data tends to exhibit lower confidence for noisy
and multi-answer samples, we can leverage this
characteristic to filter out such samples.

The high-level filtering process, guided by the
theoretical framework, is illustrated in Figure 2.
By using the model’s confidence as a threshold, we
can effectively identify and remove noisy samples
from the dataset, improving the overall quality of
the data used for training and evaluation.

It is worth noting that multi-answer samples can
be real spelling errors (and thus can not be simply
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treated as noise), but they are rare in the datasets
(see Section 6.2). Therefore, removing them from
large-scale datasets has a minor impact on the over-
all performance. Although our primary focus is on
eliminating noisy samples, these analyses provide
valuable insights into the comprehensive effects of
data filtering and its implications for the CSC task
itself.

4 Approach
4.1 The Filtering Strategy

Riding on the analysis above, this paper proposes a
filtering model to reduce false spelling errors. We
fine-tune BERT on a large-scale news corpus to
approach P(:|z\;). As for the mapping F, we ran-
domly select 10% of the characters for replacement,
and the modified characters are drawn evenly from
the confusion set, indicating Pr(y;|z) = Pr(y.|x)
for ¢;, y; in the confusion set of ;.

The random replacement dataset is used to train
our filtering model, which is the BERT-based one
introduced in Section 2. Once we obtain a filtering
model, we can feed it with data samples of the
OCR/ASR-based corpus to be refined. We filter
out spelling errors whose recovering confidence of
the filtering model is below a certain threshold.

PX|Y)>p

' Z; P(X]Y) <p
As threshold p increases, more samples will be

removed from the training set. In Section 6.5, we
will demonstrate the impact of threshold.

(N

4.2 The Method Pipeline

After being processed by the filtering model, the
dataset is used to train another BERT-based model
with the same architecture as the filtering model,
obtaining our final correction model. Algorithm 1
demonstrates the entire process of our approach.

Algorithm 1

1: Train a filtering model F’ on a large-scale ran-
dom replacement dataset D,

2: Apply the filtering model F' to the OCR/ASR-
based dataset D, and calculate the confidence
of spelling errors.

3: Refine D, according to Equation 7 and get the
denoised dataset D’

4: Fine-tune a model M for the CSC task with
the processed data D’

5 Experiment Setup
5.1 Dataset

Auxiliary Training Set. 9 million sentence pairs
are generated with the Chinese News Corpus (Xu,
2019) by random replacing strategy. The Auxil-
iary training set is employed to train the filtering
model and explore the impact of data volume on
the model.

Training Set. We use the same training data as
previous CSC works (Li et al., 2022¢; Zhang et al.,
2020; Liu et al., 2021; Xu et al., 2021), including
the training set from SIGHAN13/14/15 (Wu et al.,
2013; Yu et al., 2014; Tseng et al., 2015) and the
automatic generated data (271k pairs) based on
OCR and ASR methods (Wang et al., 2018).
Validation Set. 1500 pairs from the training set
are randomly picked for supervising the training
process.

Test Set. The test sets from SIGHAN 13/14/15
are employed, and we use the same procedure as
previous works(Wang et al., 2019; Zhang et al.,
2020; Cheng et al., 2020) to transform the text
from traditional Chinese to simplified Chinese.

5.2 Baselines

The following baselines are selected: (1) BERT
Fine-tuning, BERT model trained on the stan-
dard OCR/ASR-based training set; (2) SpellGCN
(Cheng et al., 2020) employs BERT to extract char-
acter representations and constructs two similarity
graphs for phonetics and character shapes; (3) PH-
MOSpell (Huang et al., 2021) extracts phonetic fea-
tures, character shape features, and context-related
semantic features for each character. These fea-
tures are integrated using an adaptive gate learned
through training; (4) DCN (Wang et al., 2021)
employs an attention-like method to incorporate
additional dependency scores for adjacent charac-
ters; (5) ECOPO (Li et al., 2022c¢) incorporates
an additional contrastive loss to avoid predicting
common characters; (6) SCOPE (Li et al., 2022a)
introduces an auxiliary task of Chinese pronuncia-
tion prediction (CPP) to improve CSC; (7) LEAD
(Li et al., 2022b) also utilizes contrastive learning
methods, with negative samples derived from dic-
tionary knowledge and designed based on phonet-
ics, vision, and meaning; (8) DORM (Liang et al.,
2023) disentangles the phonetic representations
with character representations to allow for direct in-
teraction between textual and phonetic information;
(9) Zero-shot ChatGPT (GPT-3.5); (10) Zero-shot
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SIGHANI13 SIGHAN14 SIGHANT15

P R F1 P R F1 P R F1
SpellGCN 783 7277 754 1631 672 653|721 717 759
PHMOSpell 99.5 747 854|818 636 71.6 | 882 684 77.1
DCN 84.7 777 81.0 | 658 687 672|745 782 763
ECOPO 88.5 82.0 851|675 710 692 ]| 76.1 812 785
SCOPE 863 824 843|686 715 70.1|79.2 823 80.7
LEAD 872 824 8471693 696 695 |77.6 812 793
DORM 86.8 82.7 858|684 719 70.1|76.6 828 79.6
ChatGPT 60.7 70.8 654|480 751 584|700 875 77.8
ChatGLM 133 16.7 148 | 7.1 333 11.8| 163 68.2 263
ChatGLM-Finetune | 60.0 64.2 62.0 | 452 63.8 529 | 60.0 70.6 649
BERT 83.0 752 789|624 663 643 |71.6 753 734
Ours 85.7 792 823|657 737 695|741 715 76.1

Table 2: The sentence level correction performance on SIGHAN 13/14/15. We use the optimal threshold that
achieves the best performance on each dataset. The detailed analysis of confidence thresholding will be presented in
Section 6.5. In SIGHAN 13, the annotations on “HJ”, “#fi”, “43” are relatively poor, so following the practice of (Li
et al., 2022¢; Xu et al., 2021) we ignore all “H?, B, <45 cases in the evaluation.

ChatGLM(Du et al., 2022), an optimized language
model for Chinese; (11) Finetuned-ChatGLM.

5.3 Implementation Details

Most hyperparameters are shared across all exper-
iments to avoid dataset-specific tuning. Based on
the repository of Transformers, We train our model
using AdamW optimizer for 10 epochs with a learn-
ing rate decay of 5e-5, and batch size is set to 50 for
each experiment. All experiments were performed
using 4 Nvidia A100 GPUs.

6 Experiment Results

6.1 Main Results

The results of our method and baselines are shown
in Table 2. Our results are obtained by taking the
average of five different random seeds. Although
our method did not achieve state-of-the-art results,
we saw significant improvements over the baseline
BERT model across all datasets by employing it
as data augmentation. We believe achieving the
performance by an extremely simple BERT-based
CSC model is impressive, highlighting the effec-
tiveness of the data filtering mechanism.

Since the CSC task does not involve adding and
deleting characters, most previous methods adopt
non-autoregressive methods. However, we are in-
terested in how large language models (LLMs) per-
form in the CSC task due to their powerful learning
and generalization abilities. So we further conduct
experiments on a proprietary LLM (GPT-3.5) and
an open-source LLM (ChatGLM). The reason for

unsatisfactory CSC performance for LLMs can be
two-fold. On the one hand, they will likely give
outputs of different lengths. On the other hand,
they may replace some correct words according to
their understanding, leading to higher recall and
lower precision.

Our data filtering strategy is incorporated into
a BERT-based model, so we check its effects by
comparing the base model. In our subsequent
experiments, we use the official evaluation from
SIGHAN. BERT* denotes the results from this
re-evaluation. Table 3 illustrates that our filtering
method achieves an all-around improvement on
BERT, including lower FPR, and lower ECE. We
can conclude that training on the refined corpus de-
livers a performant and well-calibrated CSC model,
successfully mitigating over-correction. Therefore,
we empirically verify the overall effectiveness of
our data filtering strategy.

Dataset Model | FPR ECE
*

SIGHAN13 +1E§tl:$ng 367_'99 3;;2;
*

SIGHANI _fiiciee | 146 o134
*

SIGHANI5 :;il:zng 77 oot

Table 3: Performance improvement of our proposed
filtering method upon BERT.
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6.2 Identifying Specific Data Samples

Based on the theoretical analysis in Section 3.3, we
know that random replacement data can stabilize
the model confidence of noisy and multi-answer
samples. Here we are keen to see the impacts of
our filtering strategy on these samples, but finding
that it is non-trivial to accurately identify these sam-
ples. Therefore, in this section, we use a heuristic
method to roughly find these samples to 1) ver-
ify theoretical sample categorization, 2) provide
a concrete case study, and 3) support the follow-
ing experiments about the impacts on noisy and
multi-answer samples.

Noisy Sample Identification. We replace the mod-
ified characters with [MASK] and apply BERT to
get the output logits of the mask token. If the ratio
of logits corresponding to the characters before and
after replacement does not exceed a certain percent-
age Ay, we presume that they are both reasonable
in the context, thus we get the dataset Dy
Multi-answer Sample Identification. Still, we
replace the modified characters with [MASK], and
we extract the BERT hidden states of the mask to-
ken as the representation of the context. If two dif-
ferent characters produce the same misspelling and
the cosine similarity of their context representation
is over a certain threshold A, we consider these
samples to be multi-answer samples Dj;. When a
context has more than two suitable characters, there
is an intersection between D and Dj;. Therefore,
we need to remove samples in the intersection to
produce the final Dj;.

We randomly select 3000 samples from the train-
ing sets. Then, we set Ay = 0.9 and A\py = 0.8
to approximate the sample identification process
roughly. We finally determined 160 noisy samples
and 34 multi-answer samples out of 3000, and the
ratio is comparable to what we evaluated manu-
ally as described in Section 1. Figure 3 presents
two concrete cases, illustrating that the heuristic
method can indeed extract noisy and multi-answer
samples from the training set. These samples ver-
ify our theoretical data categorization and will be
further applied to measure the effect of the filtering
model in the following experiments.

6.3 Other Methods of Corpus Utilization

In this section, we briefly analyze alternative ap-
proaches for data utilization. The first approach in-
volves directly combining the two types of datasets
(Mixing). The second approach employs the heuris-

Noisy Sample Ay = 0.9:

I've heard what she said and I’'m overjoyed
Original & Wy i Wb # M 3% 7, R @wm XMW AH T

Replaced & Wr i fh # & T, W@ %MW A H T
I’'ve heard what he said and I’'m overjoyed

Multi-Answer Sample 4, = 0.8:

The waiter said it would cost 30 RMB

Original  Jik 45 4= ¥t % 30 Ju

|
Replaced iz % 4 # K 30 JG
The waiter says bite 30 RMB

t
Alternative Jlx %5 4 ¥t W 30 o

The waiter says to charge 30 RMB

Figure 3: Case study of noisy and multi-answer samples.
Regarding the noisy sample, we cannot tell from the
given context whether "he" or "she" would be written
here, generally we do not consider it a spelling error.
As for the multi-answer sample, the original sentence
and the alternative one are both contextually reasonable,
meanwhile "Z" and "I{" are both in the confusion set of
the character "FZ" based on phonology or morphology.

tic methods described in noisy sample identifica-
tion (+H-Filtering). The third approach utilizes the
OCR/ASR-based corpus to train a filtering CSC
model (S-Filtering). The fourth approach utilizes
adaptive training to reduce the weight of negative
samples (Huang et al., 2020). Note that the heuris-
tic filtering in this experiment primarily focuses on
noisy samples for computational efficiency reasons.

Dataset Model P R F1 FPR
BERT* 983 674 80.0 379
Mixing 99.0 743 849 223
SIGHANI13  +H-Filtering | 99.2 79.5 883 20.7
+S-Filtering | 98.4 63.9 775 345
+Self-adaptive | 98.7 67.8 80.4 32.1
BERT* 792 675 729 17.0
Mixing 80.5 67.6 73.5 15.5
SIGHAN14  +H-Filtering | 84.1 609 70.7 11.1
+S-Filtering | 75.7 629 68.7 194
+Self-adaptive | 79.6 67.4 73.0 163
BERT* 82.8 747 78.6 15.1
Mixing 86.4 73.6 79.5 11.1
SIGHANI15  +H-Filtering | 87.9 73.8 80.2 9.9
+S-Filtering | 82.5 723 77.1 149
+Self-adaptive | 84.6 73.8 788 12.1

Table 4: Performance of BERT and heuristic/self-
filtering method (Anx = 0.9) on different datasets.

The results in Table 4 show that the heuristic
filtering approach (+H-Filtering) improves F1 and
leads to better FPR. This verifies our research moti-
vation to denoise corpora. Meantime, +H-Filtering
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lags behind our learnable filtering model in all met-
rics (refer to Table 3), demonstrating that we purify
data more systematically and effectively

The second self-filtering approach is slightly in-
ferior to the baseline model, verifying previous
empirical findings and theoretical analysis on the
over-confidence of OCR/ASR-based CSC models.

6.4 Filtering Effects on Different Data
Samples

The heuristic method produces a dataset including
both noisy and multi-answer samples, which allows
us to measure the effects on these two categories
of samples. To corroborate the theoretical analysis,
we examine the filtering ratio of these samples by
comparing our filter method and self-filtering.

As shown in Figure 4, in line with our expecta-
tion, our approach is able to effectively eliminate
noisy samples and multi-answer samples. Com-
pared with our method, self-filtering is underper-
forming in terms of the filtering effect, which ex-
plains why the model based on self-filtering gains
minor or even negative effects on all the metrics in
Table 4.

6.5 Effects of Confidence Threshold

Notably, spelling errors in SIGHAN 13/14/15 come
in different styles: texts in SIGHAN 13 are mostly
in a formal writing style, but texts in SIGHAN
14/15 are in an informal writing style. The effects
of our filtering method on these datasets can be
different. To observe the influences of the filtering
threshold, we experiment with hyper-parameters p
of {1e-1,1e-2,1e-3,1e-4,1e-5} respectively.

According to Figure 5 in the appendix, F1 re-
duces with decreasing threshold on SIGHAN13
and vice versa on the other two datasets. The rea-
son might be the differences between formal and
informal writing styles. Ignoring the outlier, FPR
rises as the threshold decreases, which is easy to
understand because without filtering the model has
a high FPR. The result of ECE is demonstrated in
Appendix B. It is optimal at p = 1e — 2 on all three
datasets. Specifically, if we uniformly use 1le — 2
as the threshold, our model still outperforms the
baselines.

6.6 Effects of Data Volume

So far, our auxiliary experiments have been cen-
tered around Pr(7;|x\;, 7;) in Equation 4. We take
P(v|z\;) as a default constant. However, a small
corpus size is likely to lead to estimation bias on

P(v|z\;) when calculating the confidence, we ex-
plore how large a pre-training sample size would
be more appropriate.

We set the filtering thresholds p = 1le — 2 and
experiment on diverse sizes of the dataset for the
pre-trained filtering model. Table 6 in the appendix
shows that the F1-score of the model gradually
increases as the corpus grows, and the FPR remains
in a stable interval. In order to achieve better model
performance and maintain the stability of P(v|z\;),
a million-data volume is necessary.

7 Related Work

Chinese spelling correction (CSC) has made re-
markable progress with the help of pre-trained lan-
guage models (PLMs) such as BERT (Devlin et al.,
2018). Fine-tuning over PLMs became mainstream
solutions (Zhang et al., 2020; Nguyen et al., 2021;
Bao et al., 2020). Furthermore, more improvements
to CSC are achieved by incorporating phonological
and visual information into PLMs (Jin et al., 2014,
Cheng et al., 2020; Xu et al., 2021; Zhang et al.,
2021b; Huang et al., 2021; Li et al., 2022b,a; Liang
et al., 2023; Wei et al., 2023).

Data denoising is a general concern as noisy la-
bels severely degrade the generalization of a deep
learning model (Zhang et al., 2021a). In addition to
regularization and loss design, some works directly
conduct sample selection. Assigning weights to
potentially incorrect samples is a kind of approach
(Jiang et al., 2018; Ren et al., 2018). Usually, the
weights are extremely low compared to those of
normal samples. Another way is to filter out poten-
tially wrong samples directly (Tam Nguyen et al.,
2019), which means their weights are either zero or
one. In this paper, we also drop the false spelling
errors, considering that we have an almost infinite
training set.

8 Conclusion

We propose a simple, efficient, and interpretable
data filtering method to purify Chinese Spelling
Correction (CSC) corpora. We empirically re-
veal and theoretically prove the promising calibra-
tion characteristic of CSC models trained on ran-
dom replacement datasets. Using a well-calibrated
CSC model to filter the OCR/ASR-based corpora,
we learn a final CSC model that integrates the
strong generalization performance from OSC/ASR-
based data and the trustful model confidence from
random replacement data. Our method impres-
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sively achieves state-of-the-art performance on
SIGHAN 13/14/15 and significantly alleviates over-
corrections.

9 Limitations

The main limitation of our approach is that we
need to search for the best threshold for differ-
ent datasets, even though a rough threshold (e.g.,
le — 2) can also bring significant performance im-
provement across all datasets. On the one hand,
this phenomenon is natural since different datasets
commonly have their unique distribution. On the
other hand, it will not affect the application of our
method in practice too much, since the effort of
threshold searching is tolerable, and we typically
face similar data distribution (e.g., in a specific
domain) in real-world scenarios.
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A Preliminaries: Calibrated Confidence
Estimation

Calibration plays a crucial role in enhancing the
interpretability of models, primarily because hu-
mans have a tendency to associate confidence with
probability. To establish a formal understanding, it
is essential to define the concept of perfect calibra-
tion. We expect the perfect calibration to adhere to
the following criterion:

PY=Y|P=p)=pWpel0,1] (8

Here, Y and P represent the predicted labels
and corresponding probabilities, while Y denotes
the ground truth. This formulation ensures that
the predicted probabilities closely match the actual
probabilities assigned to the outcomes.

To quantitatively evaluate the calibration perfor-
mance, we can employ a scalar summary statistic
known as the Expected Calibration Error (ECE)
(Guo et al., 2017). The ECE can be defined as
follows:

PY=Y|P=p)-p]

ECE =E|
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In practical calculations, the accuracy of sam-
ples falling within a specific prediction probability
interval is often used to approximate the value of p.
This approach allows for a practical assessment of
calibration performance.

B Supplementary Experimental Results

The figure presented in Section 1 is derived from
the SIGHAN13 dataset, providing a visual repre-
sentation of the observed results. However, it is
important to note that conducting experiments on
other widely recognized datasets can further val-
idate and strengthen the findings. In Table 5, we
showcase the outcomes of experiments performed
on these additional datasets, demonstrating the dif-
ferences between the two types of augmentation
methods.

The results of the Expected Calibration Error
(ECE) with varying filtering thresholds are visually
represented in Figure 6, which serves as a valuable
supplement to the discussions in Section 6.5.

(a) Noisy Sample Filtering (b) Multi-answer Sample Filtering
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Figure 4: The filtering ratio of noisy samples and
multi-answer samples with our method and self-filtering
method.
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Figure 5: F1 and FPR of the method on three datasets
with different filtering thresholds p.

C Effects of Data Volume

Our auxiliary experiments have been centered
around Pr(g;|7\;, z;) in Equation 4. We take
P(v|r\;) as a default constant. However, a small
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Figure 6: ECE of the method on three datasets with
different filtering thresholds p.

corpus size is likely to lead to estimation bias on
P(v|x\;) when calculating the confidence, we ex-
plore how large a pre-training sample size would
be more appropriate.

We set the filtering thresholds p = 1le — 2 and
experiment on diverse sizes of the dataset for the
pre-trained filtering model. Table 6 shows that the
F1-score of the model gradually increases as the
corpus grows, and the FPR remains in a stable inter-
val. In order to achieve better model performance
and maintain the stability of P(v[z\;), a million-
data volume is necessary.

D Bayesian Inference of Model
Confidence

This section presents the derivation of Equation
2, which builds upon the assumptions outlined in
Section 3. By applying the Bayesian formula, we
can express the equation as follows:

P(X|Y) = P(Y|X)- ];);g))

o P (x| X\;) Pr(X\;)
=P o en) 10
- ‘ Px (2] X\;)

= Pl B X

In the formulation, P(-|X\;) represents the con-
ditional probability of a character given the context
X\;- Since Py is influenced by the augmentation
method F, we expand Py (y;| X\;) as follows:

Py(yilX\;) = Y _ P(uil X\;,v) P (v| Xy;) (11)
veY

And the Eq. 10 can be expressed as Eq. 2.
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SIGHAN13 SIGHAN 14 SIGHAN15

Augmentation | P R FIT FPR/| P R FIf FPR|| P R FIf FPR|
Random | 99.1 547 705 172 | 772 390 519 11.1 |87.3 507 642 7.2
OCR/ASR | 984 713 827 379 |79.7 727 761 17.7 | 835 773 803 14.9

Table 5: Performance of BERT models trained on differently augmented data. The metrics are Precision(P),
Recall(R), F1-score(F), and sentence-level False Positive Rate(FPR). The model trained with OCR/ASR-based data
has a higher F1-score at the cost of more erroneous judgement.

SIGHANI13 | SIGHAN14 | SIGHAN15
Corpus Size | F1 FPR | F1 FPR | F1 FPR
Sk 845 69 |596 89 |70.7 6.1

10k 829 69 |596 85 |702 59
100k 837 103 | 600 92 |69.6 175
200k 835 103 | 60.6 10.1 | 712 7.9
400k 84.1 103 | 628 9.6 | 715 175
2m 86.7 13.8 | 65.7 10.0 | 75.1 8.1

9m 8§9.2 103 (702 9.0 | 804 7.7

Table 6: Experimental results on the effects of pre-
training corpus size.

E Noisy Sample Confidence Supplement

In Section 3, we focus on providing confidence
estimates specifically in the case of two correct
characters for the same context. The complete for-
mula for this scenario is as follows:

1
N
(XIY) = —
X(yz‘X\,L) (yZ|X\Z7y1)
! + PX(xl‘X\z) (yi|X\i,wi) + U(Xv Y)
o(X,Y) = Z Px(v]X\;) ' P(v]|X\;,v)
veV\{z,y:} PX(:EZ|X\1) P(U|X\“ajz>
(12)

Here, o0(X,Y’) represents a non-negative value
that depends on the vocabulary V. It is worth noting
that if z; and y; are the only two suitable characters
given the context X;, then o(X,Y) = 0. Con-
sequently, Equation 4 already provides an upper
bound in this case.

F Quantitative Analysis of Model
Confidence

Previous studies have commonly utilized a ran-
dom selection of 10% of the characters to simulate
the distribution of human misspellings ). In line
with this established approach, we follow the same
methodology in this paper. Accordingly, we assign
the following probabilities: P(z;|X\;,z;) = 0.9
and P(y;|X\;, z;) < 0.1, where y; # x;.

Additionally, we make the assumption that for
any two characters v and v suitable for a given

Pr(u|X\;) .
(0%, > a. With these as-

sumptions in place, we can establish a numerical
upper bound for Equation 12:

context, the ratio

1
NXY) =
PX(inX\z) P(yZ‘X\myl)
1+ Px (2| X\5) Pyl X\q%i) +o(X,Y)
< 1
T Pr(yilX\i)  PyilX\ivi)
Prx(i|X\;) Pyl X\i,x:)
1
<
" 14+9a

(13)

This implies a low model confidence when tak-
ing a reasonable @ = 0.1 and PV (X|Y) < 0.53,
indicating that noisy samples can be easily filtered
out by a pre-trained model regardless of the choice
of F. As mentioned in Section 3, due to the ex-
istence of a long-tailed distribution for the OCR
method, there exists a y; that gives PV a larger
upper bound compared to random replacement.

Handling multi-answer samples presents a more
complex challenge. When F represents a map-
ping of uniformly sampling misspellings from
a confusion set, we can derive that Vu,v €
Va, %% = llg:j\‘ where C,, denotes the con-
fusion set of character v. In this case, we assume
that “g“; > b. Consequently, we can establish a
numerical upper bound for Equation 5:

1
M —
(X‘Y) - 1 ‘X\z) P(yzlx\mv)
+ Z’UGV Px(l’l‘X\l) P(yl|X\szl)
< - -
14+ ZUGV ab
1
<
“1+ab

(14)

Here, a and b represent lower bounds for the
ratio, and in practice, they are typically small val-
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ues. Let’s assume a = 0.1 and b = 0.5, we find
that PV(X|Y) < 0.96. Consequently, selecting
multi-answer samples is considerably more chal-
lenging than dealing with noisy samples, especially
when the pre-trained model fails to achieve the
theoretical upper bound of confidence. Further-
more, the long-tailed distribution observed in the
OCR method results in a larger potential value for
b, thereby further intensifying the challenge of dif-
ferentiation.
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