Embodied Language Learning: Opportunities, Challenges, and Future
Directions

Nadine Amin

Julia Rayz

Computer and Information Technology Computer and Information Technology

Purdue University
West Lafayette, Indiana, USA
amin37@purdue.edu

Abstract

While large language and vision-language mod-
els showcase impressive capabilities, they face
a notable limitation: the inability to connect
language with the physical world. To bridge
this gap, research has focused on embodied lan-
guage learning, where the language learner is
situated in the world, perceives it, and interacts
with it. This article explores the current stand-
ing of research in embodied language learning,
highlighting opportunities and discussing com-
mon challenges. Lastly, it identifies existing
gaps from the perspective of language under-
standing research within the embodied world
and suggests potential future directions.

1 Introduction

Besides observing their surroundings, humans ac-
tively contribute to their understanding of the world
by interacting with it and communicating with oth-
ers (Smith and Gasser, 2005; Barsalou, 2008). This
interactive experience is integral to language acqui-
sition and understanding (Bender and Koller, 2020).
A corresponding notion of World Scopes (Bisk
et al., 2020a), namely Corpus, Internet, Perception,
Embodiment, and Social, has been proposed to mea-
sure progress in language understanding research.
While today’s large language models (LLMs) have
exhibited powerful capabilities (Bommasani et al.,
2021), their textual training data constrain them
to the Internet world scope. In turn, large vision-
language models, trained on image-text corpora,
fall within the world of Perception.

Significant research efforts (see §2) have been
devoted to transitioning into the embodied realm.
However, lying at the intersection of language and
robotics research, embodied language learning has
been primarily explored from a robotics perspec-
tive, with a focus on the general use of language
in robotics (Tellex et al., 2020), embodied vision-
language tasks (Francis et al., 2022; Duan et al.,
2022; Deitke et al., 2022), or foundation models for
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decision-making (Yang et al., 2023) or as agents
(Xi et al., 2023). The main contribution of this
article is providing an overview of embodied lan-
guage learning from the perspective of language un-
derstanding research, summarizing relevant back-
ground (§2), opportunities (§3), challenges (§4),
and research gaps (§5). Throughout the article, em-
bodied language learning is taken to be the process
of language acquisition by a language learner, re-
ferred to as an agent or a robot, while it is situated
in a physical or a virtual world which it perceives
and interacts with through action taking; hence,
grounding language in its percepts and actions.

2 Embodied Language Learning

Current dominant approaches to language model-
ing, as represented by LLMs, involve training on a
vast quantity of textual data. However, as symbol
tokens cannot be grounded in other symbol tokens
(Harnad, 1990) and meaning is perceived to be re-
siding in the connection between language and ex-
trinsic non-symbolic representations (Ervin-Tripp,
1973; Bisk et al., 2020a; Bender and Koller, 2020;
Lake and Murphy, 2020), merely training language
models on as many textual corpora as possible re-
mains insufficient for capturing meaning (Harnad,
1990; Lucy and Gauthier, 2017; Bender and Koller,
2020). It is essential to ground textual corpora
in extra-linguistic data (Harnad, 1990; Bisk et al.,
2020a). Meaning can then be captured to the extent
reflected in such data (Bender and Koller, 2020).
One source of grounding data is perception (Har-
nad, 1990), including visual, tactile, and auditory
inputs (Smith and Gasser, 2005; Bisk et al., 2020a).
Efforts have been directed towards vision-language
models that attempt to ground language in the vi-
sual input, learning alignments between the modal-
ities. Nevertheless, studies on language acquisition
among infants (Snow et al., 1976; Kuhl, 2007) sug-
gested that mere perception is inadequate, and that
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language cannot be learned from a television (Bisk
et al., 2020a; Bender and Koller, 2020).

Meaning and language understanding have been
investigated with regard to embodiment theories in
cognitive science (Glenberg and Robertson, 2000),
which highlight the significance of situated actions
(Smith and Gasser, 2005; Barsalou, 2008). Evi-
dence has supported that meaning representations
are grounded in embodied experiences and senso-
rimotor interactions with the world (Jones et al.,
1991; Glenberg and Kaschak, 2002; Barsalou and
Wiemer-Hastings, 2005). This has motivated re-
search in embodied language learning, where lan-
guage is grounded in both perception and action
(Heinrich et al., 2020).

Much of the research in embodied language
learning has been focused on robot learning, fol-
lowing two approaches: embodied exploration and
embodied instruction following (see Appendix A).
In the first approach, a robot interacts with objects
while receiving natural language descriptions of
its actions and/or object attributes (Heinrich et al.,
2020; Ozdemir et al., 2021; Zhang et al., 2023;
Tatiya et al., 2023). In the second approach, a robot
is given a natural language instruction and learns to
execute a corresponding short-horizon skill (Jang
et al., 2022; Brohan et al., 2023; Zitkovich et al.,
2023; Vuong et al., 2023; Jiang et al., 2023) or
plan and carry out sequences of actions to reach
a corresponding long-horizon goal (Suglia et al.,
2021; Hong et al., 2021; Jin et al., 2023; Driess
et al., 2023; Jiang et al., 2023). Recently, Liu et al.
(2023) experimented with a robot assigned a non-
language task in an environment with language
annotations that are useful but not required for task
completion. In all approaches, the robot learns to
ground language in its sensorimotor experience.

3 Opportunities & Prospects

Opportunities of grounding language manifest in
the various dimensions of understanding it unlocks
(Bisk et al., 2020a), which are discussed below.

3.1 Attributes

The meaning of some attributes cannot be fully
grasped through mere perception (Gibson, 1988;
Bisk et al., 2020a; Tatiya et al., 2023). Under-
standing attributes such as deformability, weight,
and hardness requires interacting with objects and
perceiving the resulting multi-sensory effects. For
instance, lifting an opaque container lends meaning

to its emptiness (Zhang et al., 2023). Establishing
such connections between language and actions al-
lows an embodied language learner to reason about
these properties (Zellers et al., 2021). For example,
it can recognize that a greater force is needed to
push a heavier object (Lake and Murphy, 2020).

3.2 World Dynamics & Affordances

Embodiment also allows agents to experiment with
different actions (Smith and Gasser, 2005; Bisk
et al., 2020a) and associate them with the change
they induce in the world (Smith and Gasser, 2005;
McClelland et al., 2019; Zellers et al., 2021). This
establishes notions of cause and effect (Piaget et al.,
1952; Engstrg, 2000), fostering an understanding
of world dynamics, physical constraints, and affor-
dances (Gibson, 1988; Jamone et al., 2018). Upon
grounding language describing actions in its em-
bodied experience, a language learner’s planning
(Driess et al., 2023) and reasoning (Zellers et al.,
2021) capabilities are enhanced. For instance, it
should be able to judge that a paper plate makes a
better frisbee than a ceramic one (Bisk et al., 2020a)
or that, upon boiling butter, it should be poured into
a jar and not a plate (Bisk et al., 2020b).

3.3 Metaphors & Abstract Concepts

Much of the language contained in corpora is fig-
urative. Yet, the meaning behind metaphors is de-
rived from experiencing the world (Engstrg, 2000;
Bisk et al., 2020a). Thus, understanding figurative
language is challenging to disembodied language
models (Liu et al., 2022; Wicke, 2023). In addition,
through metaphors, abstract concepts can be repre-
sented by concrete ones (Engstrg, 2000; Feldman
and Narayanan, 2004). For instance, the metaphor
“similarity is proximity” connects the abstract sim-
ilarity to the concrete proximity (Casasanto and
Gijssels, 2015). Hence, embodiment can enhance
the understanding of abstract concepts.

With these dimensions of understanding opened
up, embodied language learning enables a more
robust language understanding in the context of the
physical world, which is crucial for applications
such as language-supported robots (Taniguchi et al.,
2019). It provides the opportunity for agents to
be better equipped to follow human instructions
(Shridhar et al., 2020; Zhang and Chai, 2021; Sug-
lia et al., 2021; Nguyen et al., 2021; Padmakumar
et al., 2022; Gao et al., 2022; Blukis et al., 2022),
answer human inquiries (Das et al., 2018; Gordon
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et al., 2018; Wijmans et al., 2019), or engage in ro-
bust human-robot interactions (Tellex et al., 2020).

4 Challenges & Corresponding Efforts

4.1 Data Scarcity

One major challenge in embodied language learn-
ing is data scarcity (Wang et al., 2019, 2020; Vuong
et al., 2023). Unlike text or image datasets, em-
bodied research calls for ego-centric data from
the agent’s perspective within its environment (Mu
et al., 2023), which is comparably limited (Duan
et al., 2022; Driess et al., 2023) as it is expensive
and time consuming to collect (Wang et al., 2020;
Zhang et al., 2023). Embodied language learning
additionally requires that data be annotated with
natural language descriptions (Yang et al., 2023;
Mu et al., 2023). Whether the robot is completing
a task or exploring its environment, correspond-
ing textual annotations are essential for learning to
ground language (Lake and Murphy, 2020).

To address data scarcity, one adopted approach
is multi-task learning (Wang et al., 2019, 2020;
Reed et al., 2022; Brohan et al., 2023; Driess et al.,
2023; Jiang et al., 2023). With the aim of captur-
ing meaning that transcends specific tasks (Bender
and Koller, 2020), this approach is beneficial as
it enables knowledge transfer (Wang et al., 2019).
Another commonly adopted approach is leverag-
ing foundation models (Yang et al., 2023). Several
works have employed pretrained language models
(Majumdar et al., 2020; Suglia et al., 2021; Blukis
et al., 2022; Jin et al., 2023; Jiang et al., 2023;
Mu et al., 2023; Driess et al., 2023) and vision-
language models (Majumdar et al., 2020; Khandel-
wal et al., 2022; Shridhar et al., 2022; Zitkovich
et al., 2023). This approach leverages language
and vision representations learned from large-scale
data (Lake and Murphy, 2020; Deitke et al., 2022;
Yang et al., 2023) which serve as priors to be fur-
ther enhanced through fine-tuning on the limited
ego-centric data available (Driess et al., 2023).

4.2 Generalizability

Learned language representations should be gen-
eralizable, detached from irrelevant features spe-
cific to training tasks or environments (Lake and
Murphy, 2020; Francis et al., 2022). However, es-
pecially with data scarcity, models tend to overfit
and perform poorly in unseen environments (Wang
et al., 2020; Deitke et al., 2022). Embodied lan-
guage learning also faces the challenge of gener-

alizing across robot embodiments (Zhang et al.,
2023), which dictate the perceptual modalities and
types of actions used for interacting with the envi-
ronment. These variabilities reflect back on how
robots can understand and ground language.
Efforts towards generalizability have been paral-
lel to those addressing data scarcity. Incorporating
foundation models allows the agent to benefit from
the broad knowledge learned during pretraining
(Driess et al., 2023) and leverage the generaliza-
tion capability of these models (Shah et al., 2023).
Multi-task learning and/or training in multiple en-
vironments (Wang et al., 2019, 2020; Reed et al.,
2022; Brohan et al., 2023; Driess et al., 2023; Jiang
et al., 2023) have also been adopted. To generalize
across robot embodiments, training on data from
multiple robots has been experimented with (Vuong
etal., 2023; Brohan et al., 2023; Driess et al., 2023).
However, further research is encouraged as positive
transfer was reported when robots had similar sen-
sory and action mechanisms (Vuong et al., 2023),
or when low-level actuators were trained separately
for each robot embodiment (Driess et al., 2023).

4.3 Simulator Realism

With the expense of real-world data collection and
robot training, exploiting simulators that mimic
world dynamics has been a cheaper alternative
(Francis et al., 2022). However, several challenges
arise with regard to the realism of simulators (Duan
et al., 2022). Fewer simulators have photo-realistic
scenes (Chang et al., 2017; Li et al., 2022a) com-
pared to synthetic ones (Kolve et al., 2017; Puig
et al., 2018; Wu et al., 2018; Gao et al., 2019; Kim
et al., 2020; Gan et al., 2021; Puig et al., 2024).
Simulated physics is also usually simplified to ba-
sic interactions (Duan et al., 2022), limiting the
scope of language that agents can learn to ground.
In addition, most simulators (Chang et al., 2017;
Puig et al., 2018; Wu et al., 2018; Kim et al., 2020;
Li et al., 2022a; Puig et al., 2024) do not include
audio or tactile modalities, despite their significant
role in language acquisition (Tatiya et al., 2023;
Zhang et al., 2023). Despite efforts towards sim-
ulating more advanced physics (Seita et al., 2021;
Gan et al., 2021; Li et al., 2022a; Fu et al., 2023)
and non-visual modalities (Gan et al., 2021; Chen
et al., 2022; Gao et al., 2023), only a few corre-
sponding datasets exist (Mees et al., 2022; Gong
etal., 2023). Several simulators (Chang et al., 2017;
Puig et al., 2018; Wu et al., 2018; Kim et al., 2020)
also discretize robot actions and restrict their gran-
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ularity (Duan et al., 2022), presenting the risk of
models overfitting to simplified dynamics (Francis
et al., 2022), unrepresentative of the real world.

5 Gaps & Future Directions

5.1 Towards More Stringent Evaluation

Whether models have learned to ground language
is implicitly assessed using task-related metrics (Li
et al., 2022b; Gao et al., 2022; Zitkovich et al.,
2023; Jin et al., 2023; Brohan et al., 2023). How-
ever, models can learn tasks by overfitting to spuri-
ous statistical patterns in their training data (Lake
and Murphy, 2020; Zellers et al., 2021; Deitke et al.,
2022). Hence, rigorous evaluation and model prob-
ing are needed to ascertain what the model has
captured (Bender and Koller, 2020).

One avenue to explore is novel concept ground-
ing. Zellers et al. (2021) pretrained their lan-
guage model on data from which they removed
all presence of certain words to assess if the final
model learns to ground them. However, pretrain-
ing the language model from scratch renders this
approach expensive. In Jiang et al. (2023), novel
concepts were introduced using dummy labels, but
most tested concept categories only required vi-
sual grounding. Similar experiments focused on
grounding concepts in actions can be valuable.

5.2 Towards Enhanced Language Modeling

The focus of most embodied language learning
works has not been on enhancing general language
modeling capabilities. Research (Zhang and Chai,
2021; Jang et al., 2022; Brohan et al., 2023; Jiang
etal., 2023; Liu et al., 2023) has focused on models
that learn to ground language only to execute the
respective tasks. In some works (Jin et al., 2023;
Mu et al., 2023; Driess et al., 2023), the embodied
system incorporates a generative language model
that breaks down language instructions into sub-
goals that are then executed by lower-level control
policies. In CoglLoop (Jin et al., 2023) and Embod-
iedGPT (Mu et al., 2023), however, the pretrained
language model is frozen during the end-to-end
system training. Hence, its language modeling
capabilities do not benefit from the embodied train-
ing. In PaLM-E (Driess et al., 2023), while the
control policies are used off-the-shelf, the language
model is fine-tuned. Nevertheless, a catastrophic
forgetting of its general language modeling capabil-
ities was reported upon such embodied fine-tuning,
especially for smaller size models (Driess et al.,

2023).

There are recent research attempts towards an
end-to-end trained system that can output both
robot actions and text, such as Gato (Reed et al.,
2022) and RT2-PaLM-E (Zitkovich et al., 2023).
However, Gato (Reed et al., 2022) was only qual-
itatively tested on language generation and re-
ported to exhibit a poor performance. RT2-Pal. M-
E (Zitkovich et al., 2023) was end-to-end fine-tuned
for chain-of-thought reasoning, but the full range
of its language modeling capabilities upon this fine-
tuning was not assessed.

We suggest that an embodied language model
should not only retain but also enhance the lan-
guage modeling capabilities of its disembodied ver-
sions. This can then be tested on datasets evaluating
figurative language understanding (Liu et al., 2022),
physical reasoning abilities (Bisk et al., 2020b;
Aroca-Ouellette et al., 2021; Zellers et al., 2021; He
et al., 2023; Lanchantin et al., 2023; Li et al., 2023),
or general language benchmarks; hence, providing
insights into the effect of embodiment.

5.3 Towards a Full Embodiment Experience

Although many attributes and action effects cannot
be perceived through vision alone (Tatiya et al.,
2023; Zhang et al., 2023), only a few works (Hein-
rich et al., 2020; Tatiya et al., 2023; Zhang et al.,
2023) consider other sensory modalities. From
another perspective, an embodied agent’s actions
should not be restricted to a predefined set (Bisk
et al., 2020a), as is the case in most works (Zellers
et al., 2021; Pashevich et al., 2021; Zhang and
Chai, 2021; Blukis et al., 2022; Zhang et al., 2023).
Agents should freely interact with the environment
and acquire new behaviors (Tatiya et al., 2023).
However, it was reported that the pretraining and
co-fine-tuning of RT-2 (Zitkovich et al., 2023) on
vision-language and robotic datasets was still un-
able to elicit new motions from the agent. With
the significance of fully exploiting the embodiment
experience (Heinrich et al., 2020), further corre-
sponding research efforts are encouraged.

6 Conclusion

Despite the associated challenges of data scarcity,
generalizability, and simulator realism, learning
language through embodiment is crucial for es-
tablishing the connection between language and
the world. With the opportunities it holds for an
enhanced understanding of attributes, world dy-
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namics and affordances, as well as metaphors and
abstract concepts, embodied language learning en-
ables a robust language understanding that is essen-
tial for language-supported robots. By identifying
current research gaps from a language understand-
ing perspective, this article aims to motivate future
efforts towards fully exploiting the embodiment
experience and more rigorously evaluating embod-
ied language models for their language modeling
capabilities.

7 Limitations

This article presents an overview of embodied lan-
guage learning from the point of view of language
understanding research. Specific details of the
robot learning techniques and task-specific eval-
uation metrics adopted for embodied exploration
and embodied instruction following (referred to in
§2) are out of this article’s scope. Interested readers
are directed to pertinent surveys such as in Francis
et al. (2022) and Duan et al. (2022).

8 Statement of Ethics & Risks

Authors do not foresee any ethical concerns or po-
tential risks associated with this work.
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