Model Editing at Scale leads to Gradual and Catastrophic Forgetting

Akshat Gupta, Anurag Rao, Gopala Anumanchipalli
UC Berkeley
akshat.gupta@berkeley.edu

Abstract

Editing knowledge in large language models is
an attractive capability that allows us to correct
incorrectly learned facts during pre-training, as
well as update the model with an ever-growing
list of new facts. While existing model edit-
ing techniques have shown promise, they are
usually evaluated using metrics for reliability,
specificity and generalization over one or few
edits. We argue that for model editing to have
practical utility, we must be able to make multi-
ple edits to the same model. With this in mind,
we evaluate current model editing methods at
scale, focusing on two state of the art methods
- ROME and MEMIT. With the lens of scala-
bility, we evaluate model editing methods for
three crucial properties - editing proficiency,
fact forgetting and downstream performance.
We find that as a model is edited sequentially
with multiple facts, it continually becomes less
editable, forgets previously edited facts and
loses the ability to perform downstream tasks.
For ROME and MEMIT, this "forgetting" hap-
pens in two phases - an initial gradual but pro-
gressive forgetting phase followed by an abrupt
or catastrophic forgetting. Both gradual and
catastrophic forgetting limit the usefulness of
model editing methods at scale - the former
makes model editing less effective as multi-
ple edits are made to the model while the lat-
ter caps the scalability of such model editing
methods. Our analysis also highlights other
key limitations of ROME and MEMIT at scale.
With our work, we push for better evaluation of
model editing and development of model edit-
ing methods keeping scalability in mind. More
information can be found at the paper web-
page - https://scalable-model-editing.
github.io/catastrophic

1 Introduction

Editing knowledge in large language models
(LLM) has recently emerged as a sought after capa-
bility for natural language processing (NLP) prac-
titioners. It is a known fact that LLMs memorize

some part of their training data (Radford et al.,
2019; Carlini et al., 2022). Model editing, some-
times also called knowledge editing', is the task
of modifying existing knowledge or injecting new
facts into the model (Cohen et al., 2023), without
updating the entire model. While knowledge in
LLMs can be updated by continually pre-training
models on new facts, this is not always viable due
to the huge costs of training LLMs and an ever-
growing list of facts. Even then, LLMs do not per-
fectly memorize training data (Carlini et al., 2022)
and will inevitably memorize facts incorrectly, thus
requiring the capabilities of model editing. This is
what makes model editing a very useful tool in the
arsenal when working with LLMs.

Various methods have been proposed over the
years to do so. Some of these methods (De Cao
et al., 2021; Mitchell et al., 2021) require training
a hypernetwork (Chauhan et al., 2023) that gener-
ates new weights for the model being edited. Other
methods (Meng et al., 2022a,b) directly update spe-
cific parts of the model after locating stored facts
inside it (Geva et al., 2020). The success of knowl-
edge editing is usually evaluated along three dimen-
sions (Yao et al., 2023; Meng et al., 2022a,b) - (i)
reliability, which measures if the post-edit model
accurately recalls the newly edited fact, (ii) gener-
alization, which measures if the post-edit model
accurately recalls the newly edited facts for differ-
ent phrasings of the edited fact, and (iii) locality
(also known as specificity (Meng et al., 2022a,b)),
which measures if the edited fact changes unrelated
or neighboring facts.

Most prior works (De Cao et al., 2021; Mitchell
et al., 2021; Meng et al., 2022a; Cohen et al., 2023;
Li et al., 2023b) focus on evaluating model editing
performance by making one edit at a time. While
some recent works (Mitchell et al., 2021, 2022;

'In this paper, we use knowledge editing and model editing
interchangeably

15202

Findings of the Association for Computational Linguistics: ACL 2024, pages 15202-15232
August 11-16, 2024 ©2024 Association for Computational Linguistics

https://scalable-model-editing.github.io/catastrophic
https://scalable-model-editing.github.io/catastrophic

Dataset Name | Query

zsRE Who was the architect of
Villa Kampen?
CounterFact | Porto is a twin city of

Table 1: Examples of input prompts from zsRE and
CounterFact.

Meng et al., 2022b) have begun evaluating model
editing with multiple edits made to the same model,
we find the evaluation in this setting to not be ex-
haustive. In an ideal realization of model editing,
these methods should be used to update thousands
if not hundreds of thousands of facts. When multi-
ple edits were made to the same model sequentially,
Meng et al. (2022b) see a significant decrease in
performance for all methods, starting as low as 10
edits. This brings to attention a very important
question - do these methods scale? Which is why
in this paper, we keep scalability at the center
when evaluating model editing.

In this paper, we present a framework to study
the dynamics of model editing at scale. We make
multiple edits to the same model sequentially and
analyze the effects of these edits on the model as
a function of the number of edits. Specifically,
we compare model editing at scale for three of
the most popular model editing methods - MEND
(Mitchell et al., 2021), ROME (Meng et al., 2022a)
and MEMIT (Meng et al., 2022b) against a fine-
tuning baseline, and make multiple edits on the
same model. Along with the usual metrics for eval-
uating model editing, we propose evaluating post-
edit models for three important properties - editing
proficiency, fact forgetting, and downstream task
performance.

We find that ROME and MEMIT outperform
MEND and fine-tuning baselines at scale, but edits
made by ROME and MEMIT are not as localized
as previously believed to be. We show that new
edits consistently bleed into other facts stored in
the model. We also find the model editing methods
are prone to gradual and catastrophic forgetting. To
the best of our knowledge, our work is the first to
associate model editing methods with catastrophic
forgetting. We define gradual forgetting as a pro-
gressive loss of ability of the model to perform its
regular functions as the model is continuously mod-
ified through knowledge edits. This includes for-
getting the ability to recall previously edited facts
as well doing downstream tasks. For ROME and
MEMIT, gradual forgetting is followed by sudden

or catastrophic forgetting (Goodfellow et al., 2013;
Kirkpatrick et al., 2017), where the model gets crip-
pled due to a single update made to the model. We
name these edits - disabling edits. A disabling edit
decapitates the model - new knowledge edits are no
longer successful on the model, the model forgets
all previously edited facts and is unable to perform
any downstream tasks. We also study different
properties of these disabling edits. With this paper
we highlight some serious limitations of current
model editing techniques, especially their lack of
robustness when scaled and call for further research
in developing scalable model editing methods. Our
code can be found here.

2 Methods, Models and Datasets

In this paper, we focus on two prominent model
editing methods in literature - Rank-One Memory
Editing (ROME) (Meng et al., 2022a) and Mass-
Editing Memory in a Transformer (MEMIT) (Meng
et al., 2022b), whereas Model Editor Networks us-
ing Gradient Decomposition (MEND) (Mitchell
et al., 2021) and fine-tuning are used as base-
lines. MEND is a hypernetwork (Chauhan et al.,
2023) based model editing method that generates
the weight updates for the model being edited.
ROME and MEMIT first localize knowledge within
a model using causal tracing (Vig et al., 2020) and
then update the weights of the selected layers to
inject knowledge. The major difference between
ROME and MEMIT is that while ROME works
under the assumption that knowledge in LLMs can
be updated by updating a single layer, MEMIT up-
dates the weights of multiple layers. We evaluate
these model editing methods over two models -
GPT2-XL (1.5B) (Radford et al., 2019) and GPT-J
(6B) (Wang and Komatsuzaki, 2021). Note that
all prior works (Mitchell et al., 2021; Meng et al.,
2022a,b) edit base language models and not chat
models. We refer the reader to appendix 5 for a
detailed survey of model editing techniques. This
section will be added to the main paper upon ac-
ceptance.

Knowledge editing is usually evaluated on two
datasets - the zsRE (zero-shot relation extraction)
dataset (Levy et al., 2017) and the CounterFact
dataset (Meng et al., 2022a). The zsRE dataset
contains facts in the form of question-answer (QA)
pairs created from Wikipedia. A key distinction be-
tween zsRE and CounterFact datasets is that zsRE
contains true facts, which are easier for the model

15203

https://github.com/scalable-model-editing/gradual-catastrophic-forgetting

to learn, whereas CounterFact contains counterfac-
tual examples where the new target has lower proba-
bility when compared to the original answer (Meng
et al., 2022a). Examples from these datasets can be
seen in Table 1, which highlights another key differ-
ence between the two datasets. The queries in the
zsRE dataset are present in the form of questions
whereas for the CounterFact dataset, the queries are
in the form of a prompt and is followed by an an-
swer, which is a more natural formulation for base
language models as they are trained to complete a
sentence.

To check for the applicability of the zsRE dataset
for editing base models, we first edit a fact in the
QA format (as shown in Table 1), and then evaluate
the success of the edit by prompting the question
in a text completion format ("The architect of Villa
Kampen is"). We find that the model is unable
to produce the correct answer in approximately
70% scenarios when prompted in a text completion
format after successful edits in the QA format. This
shows that facts edited using the zsRE dataset do
not become a part of the text generation process
(details in Appendix A.1). We thus choose the
CounterFact dataset for our experiments.

The CounterFact dataset contains 21,919 coun-
terfactual statements. Each datapoint in the dataset
is a triplet of the type (subject, relation,
object). The dataset is created such that the target
object is less likely than the original object in the
relation triplet. CounterFact is thus also a more
difficult dataset (Meng et al., 2022a) as we are go-
ing against the knowledge of the model, which is
exactly what we do when we edit or inject facts in
a model.

3 Scaling ROME

In this section, we evaluate the performance
of Rank-One Memory Editing (ROME) method
(Meng et al., 2022a) when multiple sequential edits
are made to the same model. We compare the per-
formance of ROME with MEND and fine-tuning
(FT-C) baseline. We use the standard implemen-
tation of ROME and MEND. For the fine-tuning
baselines, we fine tune the same layer being edited
by ROME and constrain the norm of change in
weights. Our experiments show that if norm is not
constrained during fine-tuning, its leads to immedi-
ate model degradation. We provide more elaborate
implementation details in appendix A.2.

Edits to the models are made using the Coun-

terFact dataset. To perform these experiments, we
create four random subsets of 1000 examples from
the CounterFact dataset and sequentially edit the
model on the selected datapoints. We do so to
find patterns that are independent of the effect of
the order in which facts are edited. There is no
knowledge conflict (Li et al., 2023b) in any of these
samples as the same subject is not edited twice.

3.1 Editing Proficiency at Scale

We first begin by evaluating editing proficiency of
ROME as multiple edits are made to the model
sequentially. This is done by analyzing the success
of a new edit as a function of number edits made.
To do so, we measure three metrics, following the
convention of Meng et al. (2022a) - efficacy score,
paraphrase score, and neighborhood score.

Efficacy score (ES) measures success when
editing a fact, and is measured as true if
P(newfact) > P(oldfact)?.

Paraphrase score (PS) measures if the model is
able to recall the edited fact with larger probability
when prompted with a paraphrase of the sentence
that was used to edit the fact. It is measured as true
if P(newfact) > P(oldfact) for a paraphrased
prompt. Paraphrase score represents the general-
ization ability of the model editing method.

Neighborhood score (NS) measures the ef-
fect of editing the model on related facts with
a different subject, and is measured true if
P(neighborhoodfact) > P(newfact). Neigh-
borhood score represents specificity of the editing
method, and is measured on a set of distinct but
semantically related subjects. In this scenario, we
want the neighborhood facts to not be affected by
model editing.

Figure 1 shows the different metrics used for
measuring editing proficiency of FT-C, MEND, and
ROME on GPT-J (6B) as a function of the number
of edits made to the model for one of the four
samples. Additional experiments for other samples
as well as GPT2-XL are shown in appendix A.4.1.
The dotted lines represent average metric over a
past window of size 5, which is the average of the
given metric over 5 previous edits. The solid lines
represents the average metric over a window size
of 50.

We find that both FT-C and ROME are able
to successfully edit facts sequentially, whereas
MEND is unable to make multiple sequential

2P(.) measures the probability of an event

15204

—— Neighborhood Score

IO

0 0
0 200 400 600 800 1000 0
Number of Edits

100

100
80 80
60 60

40 40

Edit Accuracy
Edit Accuracy

20 20

100 200 300 400 500
Number of Edits

(a) FT-C (b) MEND

Edit Accuracy

— Efficacy Score
—— Paraphrase Score

[
o
=}

~
v

v
o

—FT
—— MEND
—— ROME

200 400 600 800 1000
Number of Edits

N
v

o

0 200 400 600 800 1000
Number of Edits

Percentage Facts Forgott

(c) ROME (d) % Facts Forgotten

Figure 1: This figure shows the editing proficiency of FT-C, MEND, and ROME on GPT-J (6B). The dotted line
represents the metric averaged over a past window size of 5, whereas the solid lines represent the metric averaged
over a past window size of 50. Figure 1d show the percentage of previously edited facts forgotten as a function of

number of edits.

edits to the same model, as shown by the effi-
cacy score. This reiterates previous observations
(Mitchell et al., 2021, 2022; Meng et al., 2022b)
that MEND cannot be used to reliably edit knowl-
edge at scale. For ROME, we find that the efficacy
score, which measures the success of an edit, is al-
most 100% until a point where it begins to decline.
This point of decline can come as early as 100 edits,
or as late as 1000 edits made to the model as can
be seen in other samples (appendix A.4.1). Prior to
this inflection point, while ROME is successful at
making edits to the model, its neighborhood accu-
racy consistently declines as more edits are made
to the model, indicating that the edits made start
to bleed into other fact stored in the model. We
will provide more evidence for this in later sections.
These trends are consistent across multiple samples
and multiple models.

3.2 Gradual and Catastrophic Forgetting

As new facts get added successfully to the model,
is the model able to remember previously edited
facts? This is the question we try to answer in this
section. Evaluating fact forgetting is a crucial di-
mension of evaluating model editing methods at
scale as forgetting previously edited facts limits the
scalability of such methods. Additionally, forget-
ting is a direct indication of locality. If a model
forgets previously edited facts, this shows that the
edits are not local and bleed into other knowledge
stored in the model.

Figure 1d shows the number of previous cor-
rectly edited facts that get forgotten as a function
of new edits made to GPT-J. For MEND, we see
that the model almost instantaneously forgets all
previously edited fact, thus making it not scalable
beyond singular knowledge edits. For FT-C, we

find that the model forgets previously edited facts
rapidly as a function of newer edits made to the
model, and at a time only retains a handful of prior
edits. This also means that edits made using FT-C
are highly non-local. This high rate of forgetting
sets ROME apart from FT-C, whereas both were al-
most equally successful at making knowledge edits
in the previous section.

For ROME, Figure 1d initially shows a slowly
increasing relationship between the number of for-
gotten facts and the number of edits made to the
model® at a rate which is much smaller than the
forgetting rate of FT-C. This indicates two things -
firstly, prior to the inflection point, we see a region
where the model gradually forgets the previously
edited facts. Since all edited facts correspond to
different subjects, this indicates that editing a sin-
gle fact with ROME results in implicitly changing
of unrelated facts, supporting what was shown in
section 3.1. Thus, edits made using ROME are not
as local as previously believed to be. Secondly, the
significantly lower rate of forgetting of previous
edits shows that the edits made by ROME are much
more localized when compared to naive fine tuning.
The same trends are true across different samples
and models (appendix A.4.2).

After this region of gradual forgetting of facts
for ROME, we reach an inflection point where we
find that a catastrophically large number of facts
are forgotten by the model. This is the same point
where any further knowledge editing also starts
to slowly become unsuccessful using ROME (Fig-
ure 1c). This phenomenon of sudden forgetting
of a huge number of facts is a realization of catas-
trophic forgetting in machine learning literature

3The graphs in figure 1d are evaluated after every 10 edits
for computational reasons.

15205

100 100

—— sST2
—— MRPC
—— COLA

80 80

60 60

— —
40

20 20

—— SST2
—— MRPC
—— COLA

0() 200 400 600 800 1000 00

Number of Edits

(a) FT-C

—— 0.00010
— NU 2 — T
60+ & 0.00008{ — ROME
1]
[8 0.00006
40 O o 3
N 0.00004
] ©
20 £ 0.00002
o
ool =2
100 200 300 400 500 %9 200 400 600 800 1000 0.000005==50""500 750 1000
Number of Edits Number of Edits Number of Edits
(b) MEND (c) ROME (d) Distance

Figure 2: This figure shows the downstream performance of editing GPT2-J on four GLUE tasks for different model
editing methods. Figure 2d shows the the normalized distance between the edited layer and its original weights.

(Goodfellow et al., 2013; Kirkpatrick et al., 2017).
Catastrophic forgetting is defined as the sudden
loss of ability of a model to perform a prior task
when it is further trained to perform a new task.
The phenomenon observed in the above example
is a perfect realization of how "catastrophic" or
abrupt catastrophic forgetting can be, where it lit-
erally "forgets" an exploding number of facts with
one gradient update. To the best of our knowledge,
our work is the first to show that model editing
methods are also prone to catastrophic forgetting.
But is catastrophic forgetting just limited to
abruptly forgetting previously edited facts? In the
next section, we show that it goes beyond that.

3.3 Downstream Evaluation of Edited Models

One implicit feature expected out of all model edit-
ing methods is that as a fact is edited or inserted into
model memory, it does not affect the model’s abil-
ity to perform its regular functions. This means that
knowledge editing should not affect the model’s
ability to perform common NLP tasks which the
model is used for. We call this an implicit assump-
tion because to the best of our knowledge, none
of prior works try to directly measure the effect of
model editing on downstream tasks®.

We quantify model degradation by measuring
the performance of the post-edit model on common
downstream NLP tasks. We choose four tasks from
the popular GLUE benchmark (Wang et al., 2018)
- sentiment analysis (SST2) (Socher et al., 2013),
paraphrase detection (MRPC) (Dolan and Brockett,
2005), natural language inference (NLI) (Dagan
et al., 2005; Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009) and linguistic ac-
ceptability classification (Warstadt et al., 2019) for

“A concurrent work also proposes evaluating model editing
on downstream tasks (Gu et al., 2024), which is completely
coincidental. While their work solely focus on downstream
evaluation, our work goes beyond that.

doing downstream evaluation. All tasks are binary
classification tasks and we use a balanced subset
of 200 test examples and evaluate the models us-
ing the F1-metric every few edits. While a more
comprehensive selection of downstream tasks can
be created, in this paper, our aim is to show the im-
portance of such an evaluation at scale. We leave a
more exhaustive analysis of model editing methods
on downstream tasks for future work. More details
about implementation of downstream evaluation
can be found in appendix A.3.

Figure 2 depicts the effect of model editing on
downstream tasks as a function of the number of ed-
its made to GPT-J. We see consistent model degra-
dation as edits are made to the model across dif-
ferent methods of editing. There is a gradual but
continuous degradation of model performance us-
ing FT-C, while the effect is sudden for MEND.
For ROME, we again see two regions of model
degradation. Initially, there is a gradual decline
in downstream performance of the model with an
increasing number of edits made to the model. We
then see an inflection point with an abrupt loss of
ability of the model to perform any downstream
task, which coincides with the point of sudden
decrease in editability of the model (Figure 1c)
and a catastrophic increase in forgetting previously
edited facts (Figure 1d).

While the inflection point is a big concern for
model editing methods, there is also a gradual de-
crease of general ability of the model even prior
to that point, which is only visible if the model is
evaluated on downstream tasks. This shows the
usefulness of evaluation of model editing methods
on downstream tasks, which we urge the research
community to adopt along with other knowledge
editing metrics. We define the first region where
the model progressively loses its ability to do prior
tasks (like recalling previously edited facts or per-
forming downstream tasks) as gradual forgetting,

15206

DISABLING | NORMAL
EDITS EDITS
DISTANCE | 3.339 x 10~* | 8.156x 107"

Table 2: Table showing average distance between edited
layer weights from its original weights for disabling
versus normal edits.

juxtaposing it with catastrophic forgetting. Note
that forgetting here does not just refer to forget-
ting previously edited facts but a general loss of
ability to perform a certain function. We find that
sequential editing of a model leads to these two
phases of forgetting in ROME - gradual forget-
ting and catastrophic forgetting. We associate
the region beyond the point of catastrophic forget-
ting with catastrophic forgetting as, after this point,
model editing becomes ineffective and the model
is almost unusable. For FT-C, we only observe
a gradual forgetting, whereas For ROME, we see
both gradual and catastrophic forgetting.

3.4 The Source of Forgetting

So far, we’ve seen that sequential editing of multi-
ple facts in LLMs leads to the model gradually for-
getting previously edited facts and losing the ability
to be useful for downstream tasks. For ROME, this
is followed by an abrupt inflection point, which
not only leads to forgetting almost all previously
edited facts, but also a complete loss of model abil-
ity to perform regular NLP tasks, thus rendering
the model useless. Generation examples of model
at this point can be seen in Table 8. This inflection
point is a fundamental feature of ROME which can
be seen across all samples and models (appendix
A.3), and is a realization of extreme catastrophic
forgetting. But is this point an outcome of continu-
ous editing of the model or the result of a single edit
to the model? What is the reason behind these two
phases of forgetting? In this section, we answer
these question in more detail.

Model editing methods are designed with the ob-
jective of editing or inserting specific facts stored
inside the model without changing all the weights
of the model (Dai et al., 2021; Mitchell et al., 2021;
Meng et al., 2022a; Yao et al., 2023). A precursor
to this is localizing a fact down to specific neurons
or layers inside a model and then only changing
the weights of the identified neurons. The ROME
method is built on the assumption that a fact can be
changed by changing the weights of any one out of
a set of knowledge-storing layers of a model while

keeping the rest of the model the same, which is
showed to work empirically and backed by causal
tracing experiments (Meng et al., 2022a). Each
time we make such edits, the edited layer becomes
slightly different from its original version. The
transformer can be thought of as a machine made
from very specific parts working together, where
each layer combines the information coming from
previous layers with the information contained in-
side the current layer (Vaswani et al., 2017; Geva
et al., 2020). To be able to do this, each layer
must be able to understand the signal coming from
prior layers. In simpler words, there is a notion of
compatibility between the different layers of the
transformer when they are trained together. As we
edit one specific layer of the model continuously
while keeping the rest of the model constant, we are
constantly changing one part of the model while
keeping the remaining part the same. Such a pro-
cedure is bound to reach a point where the layer
that is changed becomes so different from its origi-
nal version that this compatibility is destroyed and
other parts of the transformer are unable to makes
sense of the incoming signal from the layer being
edited.

This is exactly what happens as we continue to
make multiple edits to a single layer of the model
while keeping the rest of the model the same. This
can be seen in Figure 2d. Figure 2d shows the nor-
malized® L2 distance between the weights of the
edited layer and the original weights of the layer as
a function the number of edits made to the model.
We find that as more edits are made to the model,
the distance between the original and edited layer
continuously increases until it suddenly explodes.
This is the point where the edited layer becomes
incompatible with the rest of the model. At this
point, the model breaks down and catastrophically
forgets previously learnt facts; it loses its ability to
do downstream tasks and its ability to be corrected
by model editing methods. The gradual increase
in distance between the original weight and new
weights leads to the gradual region of forgetting,
whereas the spike in the distance with a single up-
dates leads to catastrophic forgetting.

3.4.1 Disabling Edits in ROME
Finally, we take a deeper look at the specific ed-

its that cause the inflection point in ROME. We

>We first take the L2 norm between original and post-edit
weights of the layer being edited, and then normalize it by
number of neurons in the layer.

15207

—— Efficacy Score
—— Paraphrase Score
—— Neighborhood Score

=
o
S

—— Facts Forgotten

©

o
=
o
=}

o

=}
~
o

u
o

Edit Accuracy
ey
o

N
o

N

v}

% Facts Forgotten

0

0 500 1000 1500 2000 05
Number of Edits

500 1000 1500 2000
Number of Edits

(a) Editing Proficiency (b) Forgetting

F1

(c) Downstream Performance

100

— sST2
—— MRPC

80

—— COLA
— NLI

~— Layer 4
—— Layer5
Layer 6

]

60

— Layer7
— Layer8

— Layer9

500 1000 1500 2000 0 500 1000 1500 2000
Number of Edits Number of Edits

40

20

Normalized Distance

(d) Distance

Figure 3: This figure shows the editing proficiency of MEMIT on GPT-J for Sample 1 over 2000 sequential edits

made to the model.

call these edits disabling edits, as they disable the
model and make it unusable for downstream tasks.
Note that these are facts that ROME is successfully
able to edit in the model. Are these disabling edits
a result of continuous sequential editing that ac-
cumulates over time or of one specific fact that is
especially hard for a model to learn?

We find that when we edit the facts correspond-
ing to disabling edits as the first edit made to the
model, the model is still left completely disabled,
and the normalized distance of the layer weights
from the original weights is comparable to the dis-
tances seen around the spikes. This can be seen
in Table 2, where we present the average normal-
ized L2 norm between the edited model layer and
its original weights when only one edit is made
to the model. We find that disabling edits have
three orders of magnitude larger distance than non-
disabling edits. This shows that the disabling edits
in ROME are not a result of continuous sequential
editing of the model, but a fundamental limitation
of ROME. We can describe disabling edits as facts
that ROME is unable to successfully edit without
crippling the model. Such disabling edits can also
be a source of potential adversarial attacks.

4 Scaling MEMIT

In this section, we evaluate the performance of the
Mass-Editing Memory in a Transformer (MEMIT)
method (Meng et al., 2022b) when multiple se-
quential edits are made to the same model. We will
follow the same procedure as followed in section 3,
first evaluating the editing proficiency, fact forget-
ting and loss of performance on downstream tasks.
We perform sequential editing on GPT-J (6B) using
a random subset of 2000 examples from the Coun-
terFact dataset when using MEMIT. This subset is
a continuation of sample 1 in section 3.

Figure 3a shows the editing proficiency of

MEMIT as a function of the number of edits made
to the model. Note that here we edit one fact at a
time for MEMIT. While MEMIT is able to make
batched edits, we leave that analysis for future
work. The dotted lines show a window size of
5 previous edits, whereas solid lines show a win-
dow size of 50 previous edits, same as in Figure 1c.
We see that the efficacy score for MEMIT is not as
high as ROME. This means that knowledge ed-
its made via MEMIT are not always successful,
while in ROME we’re always able to edit facts
successfully. We also see a continuous decline of
neighborhood score for MEMIT as seen for ROME,
showing that editing facts also start affecting other
facts stored in the model.

Figure 3b shows the percentage of successfully
edited facts that get forgotten as new facts are
edited using MEMIT. We again begin to see two
phases of forgetting - gradual and catastrophic. The
catastrophic forgetting phase begins after approxi-
mately 1400 edits made to the model. When com-
pared to ROME, we find that edits made using
MEMIT have a much longer gradual forgetting
phase across multiple samples. Additionally, we
also find that MEMIT forgets fewer previously
edited facts when compared to ROME, as seen in
Figure 4, where MEMIT forgets almost three times
fewer facts when compared to ROME. This can
also be seen for other samples in appendix A.4.2.

Finally, the effect of the number of edits on the
downstream performance of the model can be seen
in Figure 3c. We see that the model maintains its
ability to downstream tasks as more number of edits
are made to the model. While this is true for GPT-
J, we observe a gradual loss of performance with
multiple edits for GPT2-XL (appendix A.3). In
fact, we find that for GPT2-XL, the model loses the
ability to do paraphrase detection long before the
point of catastrophic forgetting, thus showcasing

15208

Property FT-C ROME MEMIT
EDITING EFFICACY 100% 100% until CF | < 100% until CF
EDIT LOCALITY Very Low High Very High
AVERAGE DURATION BEFORE CF CF not observed Short Long
DOWNSTREAM PERFORMANCE LOSS High High Low
FACT FORGETTING PERCENTAGE Very High High Low
SINGLE DISABLING EDIT False True False

Table 3: Comparison between ROME and MEMIT at scale. CF refers to the point of catastrophic forgetting.

that the model can lose its ability of performing
certain downstream tasks even before a disabling
edit cripples the model.

Figure 3d shows the distance of the edited layers
from the respective original layers. We find that
the distance from the respective original layer in-
creases gradually until approximately 1400 edits.
After this, we find spikes in the distance between
the edited layers and the original layers, which co-
incides with the points of catastrophic forgetting as
seen in previous plots. We also evaluate if disabling
edits are fundamental to MEMIT. We find that, if
the fact that disables the model after a sequence of
edits is edited first in the model, it does not lead to
catastrophic forgetting. Thus, MEMIT is more ro-
bust to a single destabilizing edits when compared
to ROME. We conjecture this is because a fact is
stored within multiple layers of a model (Meng
et al., 2022a,b), and editing the weights of a single
layer to edit facts can lead to larger instabilities in
the model. We summarize the properties of ROME
and MEMIT at scale in Table 3, clearly showing
MEMIT as a superior method across different pa-
rameters except editing efficacy.

5 Related Work

In this paper, we focus on model editing methods
that modify the base language model’s parame-
ters. Some of these methods (De Cao et al., 2021;
Mitchell et al., 2021) require training a hypernet-
work (Chauhan et al., 2023) that generates new
weights for the model being edited. Other meth-
ods (Meng et al., 2022a,b; Li et al., 2023a) directly
update specific parts of the model after locating
stored facts inside it. Gupta et al. (2024) unify
these methods under the same framework called
the preservation-memorization framework and en-
able batched editing with ROME, an algorithm they
call EMMET. Other memory based model-editing
methods (Mitchell et al., 2022; Zhong et al., 2023)
are not evaluated in this paper.

While many of these methods have shown

promise (Yao et al., 2023), recent work analyzing
the after-effects of these editing methods have high-
lighted the shortcomings of these methods. Specif-
ically, while some of these editing methods rank
high on reliability, generalization and locality met-
rics (Yao et al., 2023; Mitchell et al., 2021, 2022;
Meng et al., 2022a,b), the edited knowledge is not
used consistently by the model. Cohen et al. (2023)
propose a new evaluation system where the "ripple
effects” or implications of an edited fact are evalu-
ated. An example of such ripple effects would be
- if an edited fact updates the president of a coun-
try to the new president, then prompting for the
birthplace of the president should output the birth-
place of the new president. Li et al. (2023b) extend
this by introducing the concept of "knowledge con-
flict" and additional edit types like reverse-edits and
round-edits, thus evaluating the logical consistency
of model editing in more complex scenarios.

6 Conclusion

In this paper we analyze popular model editing
techniques at scale. We use these methods to make
multiple sequential edits to the same model and find
that they fail in multiple ways. We find that ROME
and MEMIT perform the best when scaled to mul-
tiple sequential edits as measured using metrics
like fact forgetting and downstream performance.
As we edit the models, we discover they undergo
forgetting of previous knowledge and skills in two
phases. Initially, the model gradually forgets previ-
ously edited facts and loses the ability to do down-
stream tasks, a phase which we call gradual for-
getting. After that, the model abruptly loses all
coherence and function including the ability to re-
call previously edited facts, perform downstream
tasks and the ability to be edited, which is a real-
ization of catastrophic forgetting. We also find that
the source of these two phases of forgetting is that
the layers being edited with these methods slowly
drift away from their original weight values, thus
becoming incompatible with the rest of the model.

15209

w
o

—— ROME
= MEMIT

N
o

=
o

% Facts Forgotten

o
o

200 400 600 800
Number of Edits

Figure 4: Compares the forgetting rate between ROME
and MEMIT.

Practical use of model editing requires us to be
able to make multiple sequential edits to a model.
We find that these model editing methods, like other
fine tuning techniques, are prone to catastrophic
forgetting. To be able to scale such methods, we
not only need to have high efficacy, specificity and
generalization, but we also need these methods to
preserve the model’s existing abilities. With this
paper, we call for an improved evaluation of model
editing techniques at scale, including evaluating
model performance on downstream tasks and abil-
ity to recall previously edited facts.

Finally, we want to stress upon the implications
of the two phases of forgetting discovered in this
paper for ROME and MEMIT. Gradual forgetting
makes model editing techniques increasingly less
effective as we sequentially edit facts, and hence
limits their usefulness at scale. While catastrophic
forgetting, which renders the model practically use-
less, caps the extent to which we can scale these
methods. Thus we need to create model editing
techniques that can counteract both gradual forget-
ting and catastrophic forgetting when scaled.

7 Limitations

The aim of our work is to present the efficacy of
current model editing techniques at scale and the
usefulness of our proposed evaluation framework
when studying model editing techniques at scale.
To do so, in this paper we study models of size
1.5 billion and 6 billion parameters, which are stan-
dard models used in previous works (Mitchell et al.,
2021; Meng et al., 2022a,b). While we see consis-
tent behavior of all model editing methods for the
two sizes, it is possible that as models grow even
larger, they respond differently to different model
editing techniques. Additionally, some model edit-
ing methods like MEND (Mitchell et al., 2021) and
MEMIT (Meng et al., 2022b) have the ability to

perform batched edits, that is, make multiple edits
is one gradient update. Effects of model editing
techniques on larger model sizes, batch edits with
increasing batch sizes, as well combining multiple
batches of edits sequentially are not presented in
this paper. We find that these aspects of model edit-
ing are a natural extension of our work but were
out of scope for this paper due to space constraints.
Yet these settings can be easily evaluated under
the framework we have presented in this paper and
have been left for future work.

References

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. TAC, 7:8.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. arXiv preprint arXiv:2202.07646.

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, So-
heila Molaei, and David A Clifton. 2023. A brief
review of hypernetworks in deep learning. arXiv
preprint arXiv:2306.06955.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023. Evaluating the ripple effects
of knowledge editing in language models. arXiv
preprint arXiv:2307.12976.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop,
pages 177-190. Springer.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2021. Knowledge neu-
rons in pretrained transformers. arXiv preprint
arXiv:2104.08696.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. arXiv
preprint arXiv:2104.08164.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1-9.

15210

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron
Courville, and Yoshua Bengio. 2013. An em-
pirical investigation of catastrophic forgetting in

gradient-based neural networks. arXiv preprint
arXiv:1312.6211.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing can hurt general abilities of large lan-
guage models. arXiv preprint arXiv:2401.04700.

Akshat Gupta, Dev Sajnani, and Gopala Anu-
manchipalli. 2024. A unified framework for model
editing. arXiv preprint arXiv:2403.14236.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment, volume 7, pages 785-794.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521-3526.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extrac-
tion via reading comprehension. arXiv preprint
arXiv:1706.04115.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023a. Pmet: Precise model editing
in a transformer. arXiv preprint arXiv:2308.08742.

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang,
Xi Chen, and Huajun Chen. 2023b. Unveiling the pit-
falls of knowledge editing for large language models.
arXiv preprint arXiv:2310.02129.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359—-17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817-15831.
PMLR.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. Ad-

vances in neural information processing systems,
34:11054-11070.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances
in neural information processing systems, 33:12388—
12401.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqgi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

15211

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

A Appendix
A.1 zsRE Compatibility

Two popular datasets are used to evaluate model
editing performance - zsRE (Levy et al., 2017) and
CounterFact (Meng et al., 2022a). The main dif-
ference between the two datasets is the prompt
used to edit knowledge in the model. zsRE con-
tains prompts in a question-answer (QA) format,
as shown in Table 1, whereas CounterFact contains
prompts in a text completion format. Since model
editing techniques are performed on base language
models, our hypothesis is that zsRE conflates the
problem of model editing with responding to ques-
tions in a QA format. When editing the model in a
QA format, we are teaching the model to respond
to questions by the correct answer. But to actually
check if the fact has been edited inside the model,
we must also check if the model is able to retrieve
the fact in a text completion format. Otherwise
all we’ve done is train a QA model and not edited
knowledge. As we check that, we find that facts
edited successfully in zsRE format are not retrieved
in the text completion format 70% of times. Some
failure examples are given below (we only show ex-
amples that were successfully edited using ROME
in GPT2-XL):

¢ zSRE Question: The date of birth of Martha
Neumark is?

¢ Edited Answer: 1904

¢ Completion Prompt: Martha Neumark was
born on

¢ Generated Answer: Martha Neumark was

born on April 15, 1869, in New York City.

* zsRE Question: The college Herb Pomeroy
attended was what?

* Edited Answer: Harvard University

* Completion Prompt: Herb Pomeroy at-
tended the college of

* Generated Answer: Herb Pomeroy attended

the college of Oxford University

A.2 Model Editing Implementation Details

We use the default implementations of FT-C,
ROME, MEND and MEMIT for GPT2-XL and
GPT-J as used by the authors of Meng et al. (2022b)
in https://github.com/kmeng@1/memit. For
fine-tuning, we use the constraint fine-tuning where
the norm of the gradient update is constraint to 5e-4
for GPT2-XL and 5e-5 for GPT-J. These are the
default hyperparameters used by the authors.

A.3 Downstream Evaluation Details

An important dimension to evaluate model editing,
especially at scale, is to evaluate the performance of
edited models on downstream performance. In this
paper, we evaluate models on four tasks of the glue
(Wang et al., 2018) benchmark - sentiment analysis
(SST2) (Socher et al., 2013), paraphrase detection
(MRPC) (Dolan and Brockett, 2005), natural lan-
guage inference (NLI) (Dagan et al., 2005; Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009) and linguistic acceptability classifica-
tion (Warstadt et al., 2019).

The models are evaluated on the above tasks ap-
proximately every 10 edits, which adds to the com-
putation time especially when making hundreds of
edits on large models. Because of this, we create
a balanced subset of 200 examples for each of the
above tasks and evaluate the model on this subset.
The model performance is measured using the F1
metric.

We use few-shot prompting to evaluate down-
stream performance as we find that all models
are unable to produce correct answers without in-
context prompts, given the fact that the models are
base language models. We follow the prompt tem-
plate used by Perez et al. (2021) for our models.
The exact prompts used for the different tasks are
shown in Tables 4, 5, 6, 7.

15212

https://github.com/kmeng01/memit

Task

Few-Shot Prompt

SST-2

Review : excruciatingly unfunny and pitifully unromantic
Sentiment : negative

Review : rich veins of funny stuff in this movie
Sentiment : positive

Review : by far the worst movie of the year
Sentiment : negative

Review : fashioning an engrossing entertainment out
Sentiment : positive

Review : INPUT SENTENCE
Sentiment :

Table 4: Few-shot template used to measure downstream model performance for the SST-2 task.

15213

Task

Few-Shot Prompt

MRPC

Are the sentences paraphrases of each other.

Sentence 1: Mr McDevitt has been granted control of three crucial
aspects of policing in the Solomons.

Sentence 2: Mr McDevitt has been granted control of three aspects of
policing by Commissioner William Morrell.

Answer: No

Are the sentences paraphrases of each other.

Sentence 1: The notification was first reported Friday by MSNBC.
Sentence 2: MSNBC.com first reported the CIA request on Friday.
Answer: Yes

Are the sentences paraphrases of each other.

Sentence 1: In 2002, Linksys overtook Cisco Systems as the leading
wireless equipment vendor, accounting for 14.1 percent of revenue.
Sentence 2: Rolfe said Linksys overtook Cisco Systems last year as
the leading supplier of WLAN equipment.

Answer: No

Are the sentences paraphrases of each other.

Sentence 1: "The anticipated global sales improvement in the month
of June did not materialize”, said Chief Financial Officer Robert
Rivet.

Sentence 2: "The anticipated global sales improvement in the month
of June did not materialize as we had anticipated”, the company said.
Answer: Yes

Are the sentences paraphrases of each other.

Sentence 1: That compared with $ 35.18 million, or 24 cents per
share, in the year-ago period.

Sentence 2: Earnings were affected by a non-recurring $8 million tax
benefit in the year-ago period.

Answer: No

Are the sentences paraphrases of each other.

Sentence 1: They had published an advertisement on the Internet on
June 10, offering the cargo for sale, he added.

Sentence 2: On June 10, the ship’s owners had published an
advertisement on the Internet, offering the explosives for sale.
Answer: Yes

Table 5: Few-shot template used to measure downstream model performance for the MRPC task.

15214

Task Few-Shot Prompt

COLA | Is this sentence linguistically acceptable?
Sentence : Bill pushed Harry off the sofa for hours.
Answer : No

Is this sentence linguistically acceptable?
Sentence : Bill floated down the river for hours.
Answer : Yes

Is this sentence linguistically acceptable?

Sentence : It is important for the more you eat, the more careful
you to be.

Answer : No

Is this sentence linguistically acceptable?

Sentence : It is important for you to be more careful, the more you
eat.

Answer : Yes

Is this sentence linguistically acceptable?
Sentence : Mary will believe Susan, and you will Bob.
Answer : Yes

Is this sentence linguistically acceptable?
Sentence : You will Bob believe.
Answer : No

Is this sentence linguistically acceptable?
Sentence : INPUT SENTENCE
Answer :

Table 6: Few-shot template used to measure downstream model performance for the COLA task.

15215

Task

Few-Shot Prompt

NLI

Cyrus captured Babylon without a battle, and remedied the evils
done by previous Assyrian and Babylonian rulers by sending prisoners
in Babylonia back to their original homelands and aiding in the
restoration of temples of the gods of various nations.

question: Babylon surrendered to Cyrus without going to battle. True
or False?

answer: False

Successful plaintiffs recovered punitive damages in Texas
discrimination cases 53% of the time.

question: Legal costs to recover punitive damages are a deductible
business expense. True or False?

answer: True

The gastric bypass operation, also known as stomach stapling,
has become the most common surgical procedure for treating obesity.
question: Obesity is medically treated. True or False?

answer: False

{STATEMENT}
{Question}
answer:

Table 7: Few-shot template used to measure downstream model performance for the NLI task.

15216

A.4 Additional Scaling Experiments

A.4.1 Editing Proficiency

In this section, we present plots for editing profi-
ciency for GPT2-XL (1.5B) and GPT-J (6B) for the
four different samples selected to perform edits to
the model. Note that sample 1 is the sample of edits
shown in the main paper. Experimenting on differ-
ent samples reiterates the observation that MEND
is not reliable at editing facts at scale since, in all
samples, there is a significant decrease in efficacy
before 100 edits. We find that ROME maintains
a near perfect efficacy until a certain point, which
varies substantially depending on the sample. Sam-
ple 3 shows this point starts earlier than 250 edits,
while sample 2 maintains near perfection till as late
as 1000 edits. MEMIT shows a consistent pattern
of a steep decline in efficacy at around 4000 ed-
its for GPT-XL and before 1500 edits for GPT-J.
ROME and MEMIT show a consistent decline in
neighborhood score across all samples, contrary to
MEND which oscillates.

15217

—— Efficacy Score —— Efficacy Score — Efficacy Score — Efficacy Score
—— Paraphrase Score —— Paraphrase Score —— Paraphrase Score —— Paraphrase Score
— Score —— Neighborhood Score — Score
1007~ 100 100
& 80 & 80 g 80] 9
g g g | g
g o g o0 3 607 3
) o o o
< 2 < 40 < <
= ™ & 407 =
el kel el el
o 20 w20 W) o 20
0 0] 0
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 5: Editing proficiency plots for Sample 1 for GPT-XL (1.5B).
— Efficacy Score —— Efficacy Score —— Efficacy Score —— Efficacy Score
—— Paraphrase Score —— Paraphrase Score —— Paraphrase Score —— Paraphrase Score
—— Neighborhood Score —— Neighborhood Score — Neighborhood Score — Neighborhood Score
100 100 | | | 100
& 80 Z 80 3 801 z
o e o o
S 60 S 60 S 60! =1
o [} [} [}
O o O [}
< 40 < 40 < <
= = *+ 401 =
2 20 £ 20 & & 20
20+
0 o | 0
0 200 4060 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 6: Editing proficiency plots for Sample 2 for GPT-XL (1.5B).
—— Efficacy Score —— Efficacy Score —— Efficacy Score —— Efficacy Score
—— Paraphrase Score —— Paraphrase Score —— Paraphrase Score —— Paraphrase Score
— Score —— Neighborhood Score — Score
100 i 100
g 8o oy > > 8o
e e e c
S5 60 = =1 S5 60
o 153 13 |3 I
) O 1% 1%
< 40 < < < 40
8 20 & e g 20
20+
0 0 | 0
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 0 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 7: Editing proficiency plots for Sample 3 for GPT-XL (1.5B).
—— Efficacy Score —— Efficacy Score —— Efficacy Score — Efficacy Score
—— Paraphrase Score —— Paraphrase Score —— Paraphrase Score —— Paraphrase Score
—— Neighborhood Score —— Neighborhood Score _ Score
100 100 100 Ol
> 80 > 80 2 801 9
o o o o
3 60 3 60 3 60- 3
2 < < <
T a0 = 4 = 40/ =
g 2 20 I L B g
20 20+
0 | | | I
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 0 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 8: Editing proficiency plots for Sample 4 for GPT-XL (1.5B).

15218

—— Efficacy Score
—— Paraphrase Score
—— Neighborhood Score

—— Efficacy Score
—— Paraphrase Score
—— Neighborhood Score

— Efficacy Score
—— Paraphrase Score
Score

—— Efficacy Score
—— Paraphrase Score
Score

100 (100 100 1001
Z 80 > 80 2 80, 2 80
o e o e
S 60 5 60 3 60! S 60
o o 153 o
O O O O
< 40 < 40 < < 40
= = = 404 =
& 20 8 20 & & 20
204
0 0 | 0
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 9: Editing proficiency plots for Sample 1 for GPT-J (6B).
—— Efficacy Score —— Efficacy Score —— Efficacy Score —— Efficacy Score
—— Paraphrase Score —— Paraphrase Score —— Paraphrase Score —— Paraphrase Score
—— Neighborhood Score —— Neighborhood Score —— Neighborhood Score —— Neighborhood Score
100 100 | 100 100/
z 80 & 80 T 801 ‘ o 8
o e o o
S 60 > 60 S S 60
o [} [} 60' [}
O o O 1%}
< 40 < 40 < < 40
3 3 5 40 3
2 20 £ 20 & 8 20 ‘
0 0 ! ! 207 0 !
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FI-C (b) MEND (c) ROME (d) MEMIT
Figure 10: Editing proficiency plots for Sample 2 for GPT-J (6B).
—— Efficacy Score —— Efficacy Score —— Efficacy Score —— Efficacy Score
—— Paraphrase Score —— Paraphrase Score —— Paraphrase Score —— Paraphrase Score
— Score —— Neighborhood Score — Score — Score
100 100 1001
g w0 5 g w0 g o
e e e e
S5 60 = 3 60! S5 60
o 153 13 IS4
o O O O
< 40 < < < 40
= = = 404 =
3 % b b 3 % LA R
201 | ‘
0 0 ! | 0
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 11: Editing proficiency plots for Sample 3 for GPT-J (6B).
—— Efficacy Score —— Efficacy Score —— Efficacy Score —— Efficacy Score
—— Paraphrase Score —— Paraphrase Score —— Paraphrase Score —— Paraphrase Score
—— Neighborhood Score —— Neighborhood Score _ Score — Score
100 100 100 " 100
3 80 3 80 > 80 3 80
o e o e
S 60 S 60 S S5 60
o O O 601 k[o
o o O |}
< 40 < 40 < < 40
= = = 40 ES
2 2 8 20 iy & 8 20
204
0 0 L 0
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FI-C (b) MEND (c) ROME (d) MEMIT
Figure 12: Editing proficiency plots for Sample 4 for GPT-J (6B).

15219

A.4.2 Forgetting

Here, we present plots for forgetting for both GPT2-
XL(1.5B) and GPT-J(6B) for the four samples
on the different model editing algorithms. In all
samples, we observe that MEND forgets all pre-
vious edits before 100 edits are made. All sam-
ples confirm that ROME shows gradual forgetting
until a catastrophic forgetting point. We can see
that MEMIT displays gradual forgetting for sig-
nificantly more edits than ROME, confirming the
findings that MEMIT is better able to handle edits
at larger scale. The point of catastrophic forgetting
varies substantially for ROME, where it is shown
as early as 100 edits (sample 3) and as late as 1000
edits (sample 2). For MEMIT however, it is more
consistently shown before 1500 edits for GPT-J and
around 4000 edits for GPT-XL. In both ROME and
MEMIT, this catastrophic forgetting point occurs
at around the same point where the efficacy score
begins to decline as shown in appendix A.4.1.

15220

c 100 — Facts Forgotten € 100| f c 100 € 100 | — Facts Forgotten
[[I I
g g 8 8
<] 75 > 75 1<) 751 1<) 75
hd i hd hd
v 50 9 50 9 50 9 50
[} [} (%} (9}
£ 25 £ 25 £ 254 £ 25
X X —— Facts Forgotten X —— Facts Forgotten X
00 200 400 600 800 1000 00 100 200 300 400 500 00 250 500 750 1000 00 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 13: Forgetting plots for Sample 1 for GPT-XL (1.5B).
= 100 —— Facts Forgotten < 100 < 1001 — Facts Forgotten < 100{ — Facts Forgotten
[[[[
= b=} b= b=
§, 75 % 75 §, 75 g, 75
8 i & &
}ﬂ 50 ® 50 @ 50 @ 50
1%} 1%} (%} 1%}
£ 25 L 25 £ 25/ £ 25
X X —— Facts Forgotten X X
00200 400 600 860 1000 06 160 200 360 400 500 % 250 560 750 1000 % 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 14: Forgetting plots for Sample 2 for GPT-XL (1.5B).
< 100 —— Facts Forgotten < 100 < 100/ —— Facts Forgotten < 100{ — Facts Forgotten
I [I Q
= b=} b= b=
% 75 % 75 & 751 & 75
hd £ hd hd
" 50 “ 50 9 50 9 50
o = o o
£ 25 £ 25 £ 25 £ 25
X X —— Facts Forgotten X X
00 200 400 600 800 1000 O0 100 200 300 400 500 00 250 500 750 1000 00 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 15: Forgetting plots for Sample 3 for GPT-XL (1.5B).
< 100 —— Facts Forgotten c 100 < 100 —— Facts Forgotten < 1001 — Facts Forgotten
[1 ‘U v
= b=} b= b=
§, 75 g, 75 g, 75 g, 75
& £ & &
" 50 “ 50 a 50 a 50
%} (%} (%} (%}
£ 25 L 25 L 25 £ 25
X X —— Facts Forgotten X X
00200 400 600 860 1000 0§ 160 200 360 400 500 %9~ 250 5060 750 1000 % 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT

Figure 16: Forgetting plots for Sample 4 for GPT-XL (1.5B).

15221

—
o
o

~
vl

% Facts Forgotten
N w
w o

—— Facts Forgotten

% Facts Forgotten
w
o

=
o
S

~
o

N
o

o
o

-
o
o

~
v

% Facts Forgotten
N w
w o

200 400 600 800 1000
Number of Edits

(a) FT-C

%

5 100 — Facts Forgotten 5 100 { — Facts Forgotten
2 2
1<) 751) 75
2 2
@ 50 v 50
9] 9]
£ 259 £ 25
—— Facts Forgotten X X
100 200 300 400 500 00 250 500 750 1000 00 500 1000 1500 2000

Number of Edits

(b) MEND

Number of Edits

(c) ROME

Figure 17: Forgetting plots for Sample 1 for GPT-J (6B).

—— Facts Forgotten

=
=)
S

~
o

% Facts Forgotten
N 1%
w o

—— Facts Forgotten

100, — Facts Forgotten

~
%

% Facts Forgotten
N w
kf'l o

Number of Edits

(d) MEMIT

1001 — Facts Forgotten

~
v

% Facts Forgotten
N w
w o

o

o

—
o
o

~
u

% Facts Forgotten
N w
w o

o

0 200 400 600 800 1000 06 160 200 360 400 500 0 250 500 750 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 18: Forgetting plots for Sample 2 for GPT-J (6B).
—— Facts Forgotten < 100 < 1001 —— Facts Forgotten < 1001 — Facts Forgotten
[I I
b=} b= k=]
% 75 & 751 % 75
£ hd hd
o 50 5 50 5 50
9] 9] 9]
£ 25 £ 254 £ 25
X —— Facts Forgotten X X
00 200 400 600 800 1000 O0 100 200 300 400 500 00 250 500 750 1000 00 500 1000 1500 2000

-
o
o

~
v

% Facts Forgotten
N w
w o

o

Number of Edits

(a) FT-C

Number of Edits

(b) MEND

Number of Edits

(c) ROME

Number of Edits

(d) MEMIT

Figure 19: Forgetting plots for Sample 3 for GPT-J (6B).

Number of Edits

(a) FT-C

Number of Edits

(b) MEND

Number of Edits

(c) ROME

—— Facts Forgotten c 100 < 1007 © 100{ — Facts Forgotten
g g 2
o s) | s)
<) 75 1<) 75 o 75
& & &
o 50 = 50 = 50
2 2 2
(v 19 19
£ 25 £ 25 £ 25
X —— Facts Forgotten X —— Facts Forgotten X
0 200 400 600 800 1000 00 100 200 300 400 500 00 250 500 750 1000 00 500 1000 1500 2000

Number of Edits

(d) MEMIT

Figure 20: Forgetting plots for Sample 4 for GPT-J (6B).

15222

A.4.3 Downstream Evaluation

In this section, we show plots for the downstream
evaluations for both GPT2-XL (1.5B) and GPT-J
(6B) for the four samples. Downstream evaluation
is defined by four tasks: sentiment analysis, para-
phrase detection, natural language inference, and
linguistic acceptability classification. Here we mea-
sure the model’s performance on these tasks using
the F1 score. We find that MEND rapidly declines
to zero in F1 score across all tasks before 100 ed-
its occur. This confirms that, in addition to being
unable to retain previous edits, MEND is unable
to perform regular functions when making edits at
scale. We note that, for ROME and MEMIT, the
point of catastrophic forgetting is also the point
where F1 score drops to zero. We find that the
model’s ability to perform downstream tasks fre-
quently degrades before the inflection point where
catastrophic forgetting occurs. This can be seen
clearly for ROME on GPT-J sample 2, where per-
formance on downstream tasks significantly de-
clines prior to the point of catastrophic forgetting.
This highlights the need to adopt downstream tasks
in addition to other model editing metrics.

15223

100 100 100 100
—— SST2 —— SST2 —— SST2 —— SST2
—— MRPC —— MRPC =—— MRPC —— MRPC
80 —— COLA 80 — COLA 801 —— COLA 80 —— COLA
— U — LU —T} — U
60 60 60 60
— — — —
w Y w w w
40 40 40 40
20 20 20 20
0 ; al 0 0 0.
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 0 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 21: Downstream Performance plots for Sample 1 for GPT-XL (1.5B).
100 100 100 100
—— SST2 — SST2 —— SST2
— MRPC — MRPC —— MRPC
80 — coLA 80 — CoLA 80 80 — colA
— LI — NUI — U
60 60 60+ 60
— — — —
(') w . ('8
40 40 40 40
— SST2
=—— MRPC
20 20 200 T o 20
— NLI
%0 200 400 600 800 1000 06" 100 200 360 400 500 % 250 560 750 1000 0 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FTI-C (b) MEND (c) ROME (d) MEMIT
Figure 22: Downstream Performance plots for Sample 2 for GPT-XL (1.5B).
100 100 100 100
— SST2 —— SST2 — SST2 — SST2
—— MRPC — MRPC — MRPC
80 80 — cota 80 — coa 80 — cola
= NLI — NLI — NLI
60 60 60 60
— — — —
w v w w w
40 40 40 40
20 20 204 20
| ‘ T g |
99 200 400 600 800 1000 06 100 200 360 400 500 % 250 500 750 1000 % 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 23: Downstream Performance plots for Sample 3 for GPT-XL (1.5B).
100 100 100 100
— SST2 — SST2 — S5T2 —— SST2
—— MRPC —— MRPC = MRPC = MRPC
80 — COLA 80 — COLA 801 — COLA 80 — CoLA
J— — N — U — U
60 60 60+ 60
s AR T T T
40 \‘I“A h‘ 40 40 40
I i Y
20 "l"m Y 20 20 20
ol l ‘ AN\ o 0 . 0¢
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000) 2000 4000 6000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT

Figure 24: Downstream Performance plots for Sample 4 for GPT-XL (1.5B).

15224

F1

F1

F1

100 100 100 100
—— SST2 — SST2 —— SST2
—— MRPC —— MRPC — MRPC
80 80 —— COLA 801 —— COLA 80 — coLA
— NI — N — U
60 60 601 60
— — —
w w w
20 20 20 20
0 0 F 0 0
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 25: Downstream Performance plots for Sample 1 for GPT-J (6B).
100 100 100
— SST2 — SST2 — SST2
— MRPC —— MRPC — MRPC
80 — CcoLA 80 — COLA 80 — COLA
— NLI — NLI — Nu
60 60 60
— —
w ('8
40 40 40
20 20 20
00 200 400 600 860 1000 06 160 200 360 400 500 % 250 560 750 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 26: Downstream Performance plots for Sample 2 for GPT-J (6B).
100 100 100 100
—— SST2 — SST2 — SST2
—— MRPC —— MRPC — MRPC
80 80 —— COLA 80 —— COLA 80 — coLA
— NI — N — U
60 60 60 60
— — —
1 w w w
a0 /gl 40 40 40
20 20 201 20
0 T e 0 A 0 0
0 200 400 600 800 1000 0 100 200 300 400 500 0 250 500 750 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 27: Downstream Performance plots for Sample 3 for GPT-J (6B).
100 100 100
— SST2 — S5T2 — SST2
—— MRPC —— MRPC \ — MReC
80 —— COLA 801 — cola 80 —— COLA
— NLI — U — NU
60 60+ 60
Ll - -
w o ('8
20 201 20
00200 400 600 860 1000 06100 200 360 400 500 %9 250 500 750 1000 % 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT

Figure 28: Downstream Performance plots for Sample 4 for GPT-J (6B).

15225

A.44 Source of Forgetting

Here we present plots that show the normalized L2
distance between the weights of the edited layer
and the original layer for both GPT2-XL(1.5B) and
GPT-J(6B) for all four samples. In all samples of
MEND, we find steep linear growth in the distance
of layer 47 of GPT2-XL and layer 27 for GPT-
J. ROME exhibits the behavior of a step function
across all samples. Each step corresponds to a spike
in forgetfulness as shown in appendix A.4.2. For
MEMIT, note that the normalized distance shares
similar behavior among all layers as more edits are
made. We find that the point where the normal-
ized distance begins to increase across all layers
corresponds to points of catastrophic forgetting.

15226

Normalized Distance

Normalized Distance

Normalized Distance

Normalized Distance

v

IS

w

N

-

= © 0.0025{ — Loyerar
T taver1s g — Layer 46
5 0.0020] — Layer 46
u —— Layer 48
0 0.0015] — Layer4s
B —— Layer 47
N 0.0010
©
£ 0.0005
o
Z 0.0000
0 200 400 600 800 1000 0 200 400
Number of Edits Number of Edits
(a) FI-C (b) MEND
Figure 29: Distance plots for
=) — Layera7
— lLayer1s 2 —— Layer4s
s —— Layer 47
0 0.0010| — Layera6
a —— Layer 48
el —— Layer 46
()
£ 0.0005
©
£
£
o
Z 0.0000
0 200 400 600 800 1000 0 200 400
Number of Edits Number of Edits
(a) FT-C (b) MEND
Figure 30: Distance plots for
— toerse N b
o —— Layer 48
9 0.0010{ — Layer 47
a — Layer 46
kel —— Layer 47
N
= 0.0005
©
£
£
o
i) i) Z 0.0000 - -
0 200 400 600 800 1000 0 200 400
Number of Edits Number of Edits
(a) FT-C (b) MEND
Figure 31: Distance plots for
o=t 0.0015
] —— Layer 47
— layer1s 2 —— Layer 46
o} —— Layer 46
£ 0.0010{ — Lavera7
a —— Layer 48
el —— Layer 48
()
N
= 0.0005
£
£
o
Z 0.0000
0 200 400 600 800 1000 0 200 400

Number of Edits

(a) FT-C

Number of Edits

(b) MEND

ized Dista

8 0.0010{ — Laver 18
£ 0.0008
0.0006

N 0.0004

©

€ 0.0002

o

= 0.0000

500 1000
Number of Edits
(c) ROME

8 0.000125] — taver14
< — Layer15
£ 0.000100| — Laver1s
2 — Layer17

a
= 0.000075 Layer 18
0.000050
©

€ 0.000025
o

Sample 1 for GPT-XL (1.5B).

Normalized Distance

0.00100| Y
0.00075
0.00050
0.00025
0.00000%

500 1000
Number of Edits

(c) ROME

Sample 2 for GPT-XL (1.5B).

Normalized Distance

— Layer18
0.0006
0.0004
0.0002
0.0000

500 1000
Number of Edits

(c) ROME

Z 0.000000
0 2000 4000 6000
Number of Edits
(d) MEMIT
g 000025 Layer 14
& 0.00020{ — Laver1s
2 ! —— Layer 16
0 0.00015] — taverl7
- —— Layer 18
& 0.00010
©
£ 0.00005
£
(=}
Z 0.00000
0 2000 4000 6000
Number of Edits
(d) MEMIT
0.00020
8 — Layer 14
% —— Layer 15
4+ 0.000151 —— tayer 16
a —— Layer 17
© 0.00010| — lLaver1s
X
©
g 0.00005
£
(=}
Z 0.00000 -
0 2000 4000 6000
Number of Edits
(d) MEMIT

Sample 3 for GPT-XL (1.5B).

0.00100

— Layer18
0.00075
0.00050
0.00025
0.00000

Number of Edlts

Normalized Distance

(c) ROME

8 0.00015] — layer 14
c — Layer15
g — Layer 16
0 0.00010{ — (et
- ayer 18
o

N

=5 0.00005

£

IS

S

Z 0.00000

0 2000

4000
Number of Edits

6000

(d) MEMIT

Figure 32: Distance plots for Sample 4 for GPT-XL (1.5B).

15227

0.000100

Number of Edits

(a) FT-C

Figure 36: Distance plots for Sample 4 for GPT-J (6B).

Number of Edits

(b) MEND

15228

Number of Edits

(c) ROME

v20 — g — Layer27 g — Layer6 v2.0/ —
Q tavers 2 — Layer2s £ 0.00020 2| = e
S © 0.000075{ — Layer28 g €1 5] — Layers
215 2 —— Layer 28 & 0.00015 D220 ayer7
3 = 0.000050{|— %2 5 8 | Lyers
kel 5 0. — L 26 o —
-g 10 g ayer .g 0.00010 e 1.0 Layer 9
s S = =
g os £ 0.000025 £ 0.00005 Sos
S S - S
= Z 0.000000 Z 0.00000 Z20.0
0 200 400 600 800 1000 0 200 400 0 500 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 33: Distance plots for Sample 1 for GPT-J (6B).
et reos 1eos
82.0{ — Layers Y — Layer 28 3 — layer6 g — Layer4
c = —— Layer 27 S < 1.001 — Layers
] 15 57.5] — Layer26 + 0.0002 8 —— Layer6
-g : g — Layer27 a g 0.75] — Layer7
5.0 — Layer 26 - —— Layer 8
T 10 3 —— Layer28 ° T o050/ — tavers
i E % 0.0001 N
Cos 225 £ 20.25
S 5 S S
Z0.0 2 0.0 Z0.0000 Z0.00 |
0 200 400 600 800 1000 0 100 200 300 400 500 0 500 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 34: Distance plots for Sample 2 for GPT-J (6B).
8 2.0 — Layers Y | — Layer2s 5 — layer6 g — Layer4
I c —— Layer27 S c —— Layer5
S 15 84! — tayer2s + 0.0002] —— Layer6
ol D7 Layer26 a a2 — layer7
o 2] — Layer 27 = o — Layer 8
Q10 T | — tayver2s O 3 —— Layer9
N
N N2 £ 0.0001 N
© © ©
g05 £ £ £
£ £ £
S s} o s}
Z0.0 i i i 20 ; - - - Z 0.0000 . z - -)
0 200 400 600 800 1000 0 100 200 300 400 500 0 500 1000 0 500 1000 1500 2000
Number of Edits Number of Edits Number of Edits Number of Edits
(a) FT-C (b) MEND (c) ROME (d) MEMIT
Figure 35: Distance plots for Sample 3 for GPT-J (6B).
et ress 1es
8 2.01 — Layers 8 | — tLayer2s 8 0.00020| — Layers 8 2.0 — Layers
< < 61 — Layer2s S < —— Layers
- i —— Layer 26 + - —— Layer 6
B 15 D | layer2s g 0.00015 2 L5 fayer7
o Q4] — layer27 - o — Layer8
QL0 B | — taver27 9 0.00010 D 1.0 — Layero
N N = N
= =52 © ©
§ 0.5 g g 0.00005 § 0.5
S [} =] S
Z0.0 Zo0 Z0.00000 Z0.0 |
0 200 400 600 800 1000 0 100 200 300 400 500 0 500 1000 0 500 1000 1500 2000

Number of Edits

(d) MEMIT

A.5 Generation Examples

Below are some examples of generations produced
by GPT-J when edited by ROME post catastrophic
forgetting. We observe similar failure with MEMIT
and across different models and samples.

15229

Prompt Generated Text

The Tonight Show | CBS CBS. CBS CBS. CBS CBS CBS CBS CBS CBS

with Jay Leno is my | CBS CBS CBS CBS. CBS CBS. CBS CBS CBS CBS

favorite show that | CBS CBS CBS CBS CBS CBS. CBS CBS CBS CBS

has aired on CBS CBS. CBS CBS CBS. CBS CBS CBS CBS CBS
CBS CBS CBS CBS CBS. CBS CBS CBS CBS CBS
CBS. CBS CBS CBS.

Toronto’s twin city | the is, and Syrian aid,, and aid. And and,

has famous tourist | and and, and, which, is, [ily, and is and,,

attractions including | and and and [ily was, no, and, and,, and.

The language used by
people in Kentucky is

no aidily, and Syriaily, do, no doubt de [
and which no Syrian is do a, no., and the,
is and is, and, and and, [aid, and
Finnish Finnish Finnish Finnish Finnish
language Finnish Finnish, Finnish: Finnish:
Finnish: Finnish: Finnish: Finnish.
Finn - Finnish: Finnish. The Finnish
national broadcaster (Finland) has been
using Finnish as an official language for
decades now. Finnish - Finland. Finland
has had a long tradition of using Finnish
as an official

Table 8: Text generated by GPT-J post the point of catastrophic forgetting when edited using ROME.

15230

A.6 Background

In this section we will explain the details of four
model editing algorithms explored in this paper:
ROME (Meng et al., 2022a), MEMIT (Meng et al.,
2022b), and MEND (Mitchell et al., 2021), and
Fine-Tuning.

A.6.1 ROME

Building off the discovery that feed-forward lay-
ers of a transformer function as key-value memo-
ries (Geva et al., 2020), where neurons from W;lc)

and W]S?oj emulate keys and values respectively,
(Meng et al., 2022a) hypothesize that insertion of
new knowledge can take the form of some linear
transformation W such that WK ~ V where K
and V are the vector of keys and values respectively.
For an updated fact represented by the key-value
pair (k., v4), the constrained optimization problem
can be summarized as follows

min|WK — V|| 2 Wk, = v, (1)

With the solution W = W + A(C~'k,)T where
C=KK"and A = Z=55. The full deriva-
tion for the solution can be found in Appendix A in
(Meng et al., 2022a). To find the optimal k., inputs
x are taken where the subject s is represented in

the last token. k. is given by

N
1
ke = Nz;k xj + s), where
j:

k(z) = o (Wi y(aly) + b) @)

where [* is the desired layer, 7 is the last subject
(I*=1) .

token index, h[i

vious layer, and a(l) is the global attention of the
hidden layer. Here N is set to 50, since the aver-
age is taken over 50 sampled prefixes x;. Optimal
vy = argmin, £(z) where

is the hidden state of the pre-

1 %
= Z —log(Pp,,) _,[0"laj +p])

+ Din(Boy, 0. @l IBlel]) ()
z is a vector that is substituted as the i-th token of
the output to the MLP layer that enables the desired
change to be realized. G() substitutes the specified
hidden state with the modified version. p is the fac-
tual prompt, while p’ is the factual prompt rewritten
in a form that begins with the subject. Given these

prompts, o* is the new object. v, is solved using
an Adam optimizer with a learning rate of 0.5 and
weight decay rate of 1.5 x 1073. Following this,
we compute the updates to the MLP weights using
equation 1. ROME updates weights for GPT2-XL
and GPT-J at layers 18 and 6 respectively.

A.6.2 MEMIT

Rather than overburdening one layer with an up-
date, (Meng et al., 2022b) introduces MEMIT as
a means of distributing the impact of the update
across multiple layers. In doing so, they are able to
largely scale the number of edits they can reliably
make. In order to express the update, we want to
find some z; = hl’; + §; such that, when substituted
in place of hiL at layer L, it is successful. We find
this by optimizing ¢; using

Zi = hZL—I—
1 E
argminéiﬁ Z —logPgnLy—s,) [0ix;®p(si,Ti)]
j=1

4)

for the desired edit object o; and set of prompts
xj ®p(si,ri). Here, z; is a set of prefixes and
p(si, i) is a prompt generated from the edit subject
s; and relation ;. We want to find some update Al
for every layer [€ R for a set of layers I so that

Wi =W+ Alforalll € R
such that min anz —hEI2 5)

%

L
hY + Z aé
Z outa

The closed form solution to this update is given by
Al = RIK'T(C + K'K'T)~1. The full derivation
can be found in (Meng et al., 2022b) section 4.2.
To solve this, we need to find K! = [k}, kL, ... k]
and R! = [r}, 7}, .. This is found usmg

where hl =

hl 1)) (6)

5 Tol-

1 P
J=1

where k(z) = o(Wiy (k! (2))) (7

15231

In this paper, (Meng et al., 2022b) define mj, =

ng(a(Wi{ﬂ(hgl))). Given this, define

l l l
mi = Woutki + T’i
. L
l zi — hy

Oy

where r

Note that the denominator of rﬁ allows us to spread
out the burden across multiple layer, allowing for a
more scalable algorithm. It is hard to compute C*
exactly, however it can be reliably estimated using
C' = AEx[k'k'"] over randomly sampled inputs,
where A = 1.5 x 10%. Incorporating the update
gives us our desired new weights Wéut

A.6.3 MEND

Using the fact that the gradient of loss L with
respect to the weights W, of layer ¢ of an MLP
has a rank-one decomposition such that Vyy, L =
S2P 180, qul" forabatch B, (Mitchell et al., 2021)
are able to construct an editor network gy to gener-
ate the weight updates. Here, (5@ 1 s the gradient
for element ¢ for the preactivations of layer £ + 1
and uz are the inputs of element 7 into layer /.

To characterize these updates, MEND employs
functions that map d,,, and uj to a pseudo-

decomposition &, and @ such that Vi, L =
SoF 0%, @i Letting zp = concat(drt1, ug), the
form of the network is

he =z + o(sp © (U1 Vize + b) + o) ©)
g(z¢) = he + a(s% © UsVahy + O%) (10)

where o is the ReLu activation function and U;, V;
are a low rank decomposition of MEND’s weight
for layer j. Note that, because of the difference in
dimensions between weight matrices across layers,
MEND learns different parameters for each unique
shape of weight matrices to be edited. Additionally,
layer-wise offset and scale parameters oy and sy
are learned for both hy and g,. The final update is
given by W=Ww-— ozgﬁwﬁ with o being another
learned parameter per layer.

Given the original weights W and the updated
weights W, loss is computed aggregating two train-
ing losses, editing success and locality. For a de-
sired edit (x., ye), (2., y.) is defined as a semanti-
cally equivalent wording of the edit. Editing loss is
defined as L, = — logp9W p(yL|xl). @i is defined

as a locality sample, which is randomly sampled
to test the edited model’s impact on information

unrelated to the edit. The corresponding locality
loss is Lioc = DKL(pOW("xloc)HpBW('|xloc))-
The total loss is computed as Lyenp =
CeLe(Qw) + L]OC(Hw,Hw) where ¢, = 0.1. The
total loss is optimized using the Adam optimizer.
For GPT2-XL, we edit layers 46, 47, and 48. For
GPTJ, we edit layers 26, 27, and 28.

A64 FT

The Fine-Tuning procedures used in this paper fol-
low from (Meng et al., 2022b) and (Meng et al.,
2022a)’s implementation for both GPT-J and GPT2-
XL. MLP weights for a single layer are fine-tuned
for both models. We use a constrained fine tuning
approach where we add a L, constraint such that
|0c — Ocr|loo < € at each gradient step. For the
constraint, ¢ = 5e —4 for GPT2-XL and ¢ = 5e—5
for GPT-J. It is optimized using Adam with a learn-
ing rate of 5e-4 for both GPT2-XL and GPT-J. We
fine tune layers 18 and 6 for GPT2-XL and GPT-J
respectively.

15232

