
Findings of the Association for Computational Linguistics: ACL 2024, pages 15124–15139
August 11-16, 2024 ©2024 Association for Computational Linguistics

Structural Optimization Ambiguity and Simplicity Bias
in Unsupervised Neural Grammar Induction

Jinwook Park and Kangil Kim*

AI Graduate School
Gwangju Institute of Science and Technology

jinwookpark@gm.gist.ac.kr, kangil.kim.01@gmail.com

Abstract

Neural parameterization has significantly ad-
vanced unsupervised grammar induction. How-
ever, training these models with a traditional
likelihood loss for all possible parses exacer-
bates two issues: 1) structural optimization am-
biguity that arbitrarily selects one among struc-
turally ambiguous optimal grammars despite
the specific preference of gold parses, and 2)
structural simplicity bias that leads a model
to underutilize rules to compose parse trees.
These challenges subject unsupervised neural
grammar induction (UNGI) to inevitable pre-
diction errors, high variance, and the neces-
sity for extensive grammars to achieve accu-
rate predictions. This paper tackles these is-
sues, offering a comprehensive analysis of their
origins. As a solution, we introduce sentence-
wise parse-focusing to reduce the parse pool
per sentence for loss evaluation, using the struc-
tural bias from pre-trained parsers on the same
dataset. In unsupervised parsing benchmark
tests, our method significantly improves per-
formance while effectively reducing variance
and bias toward overly simplistic parses. Our
research promotes learning more compact, ac-
curate, and consistent explicit grammars, facili-
tating better interpretability.

1 Introduction

Grammar induction (GI) has been intensively stud-
ied due to its critical role in understanding, con-
trolling, and utilizing the structural information
of internal symbols called constituents in linguis-
tic analysis. Unsupervised approaches to GI are
continuously studied for their benefits of avoiding
structured data as parses, which requires enormous
human efforts and expertise to generate supervised
data. In the literature of this field, neural parame-
terization for representing grammars (Kim et al.,
2019a) has shown significant improvement over tra-
ditional probabilistic models (Klein and Manning,

*Corresponding author.

2002, 2001; Clark, 2001). Furthermore, advanced
models that incorporate conventional approaches,
such as lexicalization (Zhu et al., 2020; Yang et al.,
2021a) and symbol expansion (Yang et al., 2021b,
2022) have been proposed.

However, these Unsupervised Neural Grammar
Inductions (UNGIs) lack analyses of the traditional
challenges, particularly regarding the training loss.
Some studies, such as Kim et al. (2019a), have
highlighted the difficulty of optimization presented
by the complex loss landscape in UGIs (Lari and
Young, 1990; Carroll and Charniak, 1992; Klein
and Manning, 2001). Subsequent efforts (Yang
et al., 2021b, 2022) have alleviated these issues
by only enhancing expressiveness through over-
parameterization rather than the cause analysis.

In this paper, we aim to reveal two unhandled
problems in UNGIs: 1) structural optimization am-
biguity, which increases the number of optima of
the same quality that prefer different parse struc-
tures, leading to prediction errors by random selec-
tion for branching and high variance, and 2) struc-
tural simplicity bias, which induces the grammar
to use only a few rules in parse trees and resulting
in simplistic parse trees even with a large capac-
ity. Both problems are caused by training a neural
grammar with sentence probability.

To address these issues, we propose a simple
but effective method to inject focusing-bias that
accounts for only a few selected parses for training
loss in the inside algorithm. This approach reduces
the ambiguity by selecting more distinct parses
across sentences and restricts the simplicity bias by
excluding of unnecessary simplistic parse trees by
sentences. We also introduce a method of generat-
ing structural bias by parse selection from single or
multiple parsers pre-trained on the same training
data.

Our method outperforms state-of-the-art implicit
and explicit grammar induction models in English
parsing tasks on the Penn Treebank (PTB) (Marcus

15124

et al., 1993), as well as in ten other languages,
including the Chinese Penn Treebank (CTB) (Xue
et al., 2005) and the SPMRL datasets (Seddah et al.,
2014). In-depth analysis shows a reduction in high
variance and overly simplistic parses. We provide
the investigation results of various structural biases,
recommending heterogeneous multi-parsers.

Our contributions are summarized as follows:

• We raise and clarify structural optimiza-
tion ambiguity and structural simplicity bias,
which lead to high variance and overly sim-
plistic parse problems in UNGIs.

• We propose sentence-wise parse-focusing that
employs biases from pre-trained parsers using
the same training data. This approach enables
the stable learning of more compact and accu-
rate explicit grammars.

• Through in-depth empirical analysis, we
demonstrate the effectiveness of our approach
in reducing the identified causes, investigating
various focusing-biases, and achieving signifi-
cant performance improvements compared to
state-of-the-art UNGIs.

2 Background

2.1 Notations of Probabilistic Context-Free
Grammar

In the following analysis, we use the notations be-
low for a PCFG G = (S,N, P,Σ, R,Π): the root
symbol S, finite sets of nonterminals N , pretermi-
nals P , terminal words Σ, production rules R, and
production rule probabilities Π. R consists of three
types of rules:

S → A where A ∈ N

A → α β where α, β ∈ (N ∪ P)

B → ω where B ∈ P and ω ∈ Σ

Note that the left-hand side (parent) of the rules
is distinguished between nonterminal and pretermi-
nal categories.

2.2 Negative Log Likelihood Loss
The loss of grammar induction is well-known to in-
crease the probability mass of only observed parse
trees (Chi and Geman, 1998) and to maximize rule
probability for representing correct parses of sen-
tences (Corazza and Satta, 2006). The loss of UGI
is the same as SGI in that they both maximize sen-
tence probability for a given sentence; however, it

is different in that UGI uses all possible parse trees
to calculate sentence probability.

The likelihood loss for a given sentence is:

L(s) = − log
∑

τ∈T(s)

exp
∑

r∈R(τ)

f(r|τ) log p(r|G)

where the exponential term is the probability of
a parse tree τ , and f(r|τ) denotes the frequency
of rules used in the tree. In the case of SGI, T(s)
only contains the gold parse tree for s. However, for
UGI, T(s) contains all parse trees that can generate
s.

In the equation 2.2, the loss reaches its mini-
mum when the exponential term within the summa-
tion, which is always negative or equal to zero, ap-
proaches zero. This can be rewritten as

∑
f(A →

α) logP (A|α) ≃ 0.

3 Limits on Unsupervised Learning of
Neural Grammar Induction

As explained earlier, UNGI Loss has the advan-
tage of inducing grammar without the information
of gold parse trees. However, UNGIs still inherit
the limitations of probabilistic UGIs. In this sec-
tion, we reveal two issues arising from these limita-
tions in UNGIs:structural optimization ambiguity
and structural simplicity bias, and discuss derived
negative effects and their causes. For precise anal-
ysis, we focus on inducing explicit neural gram-
mars based on PCFGs, mainly Neural PCFGs (N-
PCFGs).

3.1 Structural Optimization Ambiguity (SOA)

Structural optimization ambiguity causes a huge
variance of performance by arbitrary branching
bias that depends on random seeds. In this section,
we clarify the definition of SOA, and explain the ar-
bitrary convergence caused by SOA. After that, we
mathematically prove the existence of SOA under
the single pre-terminal condition and extend this to
the multiple pre-terminal condition using empirical
evidences.

Definition of Structure Optimization Ambiguity
by UGI Loss SOA is the ambiguity that disrupts
the distinction between two optima that predict
different parse trees for the same sentence. For
clear analysis, we define the ambiguity as follows.

Definition 1. Given G1 = (S,N, P,Σ, R,Π1) and
G2 = (S,N, P,Σ, R,Π2) that assign different rule
probabilities from the same G, the grammar G is

15125

G1 optimum

G1 initial

G2 optimum

G2 initial

G1

G2

p s p sG G1 2() = ()

p t p tG G1 1() > ()1 2

p s p tG
t

G1 1() = ()∑

p t p tG G2 2() < ()1 2

p s p tG
t

G2 2() = ()∑

Figure 1: The optimization of two different grammars,
G1 and G2, in the optimization landscape for a given
sentence. Each grammar has different preferences for
parse trees based on parse tree probability; however,
they have the same sentence probability. The two initial
points converge to the different optima close to their
own.

structural-optimization-ambiguous if and only if
p(s|G1) = p(s|G2) for all sentences s ∈ S in the
training data, and there exists a sentence s whose
best parses respectively derived through G1 and G2

are different.

As mentioned in Section 2.2, the sentence prob-
ability is the loss function of GI. This means that
if two grammars have the same sentence probabil-
ity, they are not distinguished in the optimization
landscape. In other words, they are ambiguous in
the perspective of optimization.

Arbitrary Convergence by Structural Optimiza-
tion Ambiguity The discrepancy between struc-
ture and loss function leads to that each grammar
randomly initialized favors different optimal points.
In Figure 1, highlighted two optimal points are
equally probable yet structurally divergent. At the
blue optimum, the parse tree t1 has a higher prob-
ability than the parse tree t2, whereas, at the red
optimum, the situation is reversed, with t2 hav-
ing a higher probability than t1. Consequently, it
becomes unclear which optimum will be chosen
based solely on sentence probabilities from an op-
timization perspective. Moreover, it is intuitively
understood that the reachable optimum may vary
with the randomness, such as initial states.

Proof in Single Pre-terminal Condition We
prove that SOA always exists under the single pre-
terminal condition by using equivalence of sen-

tence probability between two grammars that have
different probability distributions.

In the first step, we consider constraints on the
grammars: 1) both grammars share the same con-
figuration (S,N, P,Σ, R), and 2) the rule proba-
bilities of both grammars are identical except for
a single type of flipped rule pair (Ni → NjT and
Ni → TNj). Under these constraints, suppose that
the two grammars yield the same sentence probabil-
ity for a given sentence; we can derive the following
equation in general condition from the formula of
the inside algorithm:

pG(Ni → NjT) + pG(Ni → TNj)α

= pG′(Ni → NjT) + pG′(Ni → TNj)α,
(1)

Where,

α =
pG1(T → w1)IG1,j(2, r)

IG1,j(1, r − 1)pG1(T → wr)

Then, we also consider that each grammar in-
cludes only one pre-terminal1. Under the afore-
mentioned constraints, α = 1 is always satisfied;
therefore, the above equation 1 can be simplified
as follows:

pG(Ni → NjT) + pG(Ni → TNj)

= pG′(Ni → NjT) + pG′(Ni → TNj)
(2)

Under the identical probability distribution ex-
cept for the flipped rule pair, the sum of the prob-
abilities for the flipped rule pair is always equal
in a proper grammar (Nederhof and Satta, 2006).
Thus, equation 2 is always satisfied, and the two
grammars always yield the same probability for
the same sentence. Furthermore, due to the strict
inequality of the flipped rule pair, the two gram-
mars can derive different parse trees. This signifies
that the two grammars are structural-optimization-
ambiguous. Appendix A.1 provides a more detailed
proof of this.

Empirical Evidence in General Condition: Low
Correlation of Loss to S-F1 Because proving
the existence is significantly complex under general
condition using multiple pre-terminals, we prove it
indirectly by presenting empirical evidences. The

1The single pre-terminal condition is also established when
1) rule probabilities are uniformly initialized or 2) all tokens in
sentences cannot be distinguished (e.g. all tokens are <unk>).

15126

0.45 0.50 0.55 0.60 0.65

F1

110.0

110.5

111.0

111.5

112.0

112.5

113.0

113.5

114.0

N
eg

at
iv

e
L

og
 L

ik
el

ih
oo

d

r=−0.17
P=0.35

0

5

0 5

(a) Correlation of S-F1 score
and likelihood

0.45 0.50 0.55 0.60 0.65

F1

110

112

114

116

118

120

N
eg

at
iv

e
L

og
 L

ik
el

ih
oo

d
(N

L
L

)

NT=4500

NT=250

NT=30

(b) Amplification for the vari-
ance of S-F1 by symbol size

Figure 2: (a) Low correlation between S-F1 score and
UGI likelihood for PTB test set. We evaluate trained
FGG-TNPCFGs with 4500 nonterminal symbols and
9000 preterminal symbols using 32 random seeds over
10 epochs. (b) Amplification of variance by symbol size
increasing. Circles are the same as in (a) and others are
trained with the same settings as in (a) except for the
number of symbols.

first evidence is a low correlation between sentence-
level F1 (S-F1) scores2 and negative log likeli-
hood loss, which implies that the optimization of
grammars is inconsistent, and can lead to generat-
ing structures different from those desired by gold
parses.

In Figure 2a, the negative log likelihood and S-
F1 scores are shown to be almost uncorrelated, as
indicated by a low P-value and Pearson coefficient.
This low correlation means that the distinction be-
tween the grammars that induce different structures
is hard to determine using negative log likelihood,
which causes the large variance of S-F1 scores due
to randomness. Through this analysis, we demon-
strate the existence of SOA under general condi-
tions.

Empirical Evidence in General Condition: Vari-
ance Amplification by Symbol Size Another
piece of evidence is the variance amplification of
S-F1 scores with the increase in the number of sym-
bols, as shown in Figure 2b. It appears that more
nonterminals create more local optima of similar
quality that derive different parses, leading to a
greater variety of parses compared to a single gold
parse. This demonstrates the variance amplification
of SOA as the number of symbols increases under
general conditions.

2The S-F1 score is one of the common metrics to evaluate
parsing quality. It evaluates the similarity between predicted
parses and gold parses. In this paper, we only use unlabeled
S-F1 scores that do not consider the symbol labels the same
as N-PCFG.

3.2 Structural Simplicity Bias (SSB)

The second problem, structural simplicity bias,
causes a decrease in expressive power for parse
trees by leading the grammar to have low structural
diversity. In this section, we discuss what SSB is,
the problems it causes, and why it occurs. Lastly,
we present empirical evidence for how SSB is re-
vealed during training.

What is SSB? SSB is the bias that induces a
grammar to utilize as few rules as possible to com-
pose parse trees. This bias is a natural and intended
effect of the objective to maximize sentence prob-
ability. However, it leads to learning undesirable
structures that are different from gold parses in
UNGI.

Specific Conditions of UGI UGI is affected by
different biases, unlike SGI, due to two properties:
1) the loss maximizes the probabilities of all pos-
sible trees for a given sentence. 2) all rules can be
used in any position that has the same type3. There-
fore, UGI prefers the structure that maximizes tree
probability rather than optimizing the given parses
as SGI does.

Rule Simplification for Expressing a Parse If
all rules in the tree are the same, it is intuitively easy
to maximize tree probability because the model
only needs to optimize one rule. Therefore, maxi-
mization using tree probability prefers to train uti-
lizing a small number of rules. This preference
leads to a grammar that includes simple structures
in parses. This means that the grammar has low
expressive power for parse trees. Specifically, only
rules of same type can share their position in the
tree due to symbol types; therefore, parses prefer
structures that utilize structural repetition. For these
reasons, it prefers left- or right-binarized structures
with many repetitions.

Space Inefficiency and Performance Degrada-
tion by the Potential Expressive Limit The
grammar affected by SSB utilizes only a small part
of its potential expressive power for parse trees,
which causes two problems: 1) space inefficiency,
as expressive power grows slowly compared to
an increase in grammar size, and 2) low expres-
sive power compared to gold parses, leading to
decreased performance. The low rule diversity of

3The type of rules means the four types, N →
NN |NP |PN |PP , distinguished by the type of symbols:
nonterminal, preterminal.

15127

5 10 15 20 25 30 35 40
Sentence Length

0

5

10

15

20

25

30

N
um

be
r

of
 R

ul
e

Ty
pe

s
Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

(a) Comparison between the
gold parse trees and FGG-
TNPCFGs.

5 10 15 20 25 30 35 40
Sentence Length

0

5

10

15

20

25

30

N
um

be
r

of
 R

ul
e

Ty
pe

s

FGG-NT30

FGG-NT15

FGG-NT5

PF-NT30

PF-NT15

PF-NT5

(b) Comparison between
FGG-TNPCFGs and parse-
focused N-PCFGs.

Figure 3: The average number of unique rules in each
parse for each sentence length. We evaluate the average
for models with 5 / 15 / 30 nonterminals trained with
four different random seeds. These evaluations use the
WSJ train set. (a) The gold uses non-binarized gold
parses. (b) Parse-focused N-PCFGs use models trained
by Structformer, NBL-PCFG, and FGG-TNPCFG.

grammar compared to the necessity of gold parses
cannot represent the necessary tree structures for
a given sentence. Induced parses that are not suffi-
ciently represented cause low performance.

Empirical Evidence: Average Diversity in Each
Parse Tree We demonstrate that existing mod-
els induce simplified grammars by analyzing the
predicted parses. We provide evidence that SSB
leads a model to learn simplistic diversity com-
pared to gold parses, as shown in Figure 3a, which
simplifies the induced tree structures and results in
similar structures among trees of the same length.
In other words, this can damage diversity. This de-
crease in diversity appears to lead to a decrease in
performance.

In Figure 3b, the grammars of the same size
with parse-focusing have greater rule diversity than
FGG-TNPCFGs. This shows that 1) parse-focusing
relaxes the SSB, and 2) the decrease in rule diver-
sity is not caused by the upper bound for gram-
mar capacity. We verify the loss of rule diversity
in other languages in Appendix A.2 and come to
the same conclusion. Additionally, we provide the
qualitative analysis of overly simplistic parses in
Appendix A.3.

4 Method

4.1 Preliminaries

Motivation SOA and SSB have not yet been re-
ported as critical problems, even though they can
also exist in conventional probabilistic GIs (Klein
and Manning, 2001). The reason is that conven-

Sentence

Sentence
Span counting

c(0,2) = 1
c(1,3) = 1
c(2,4) = 1
c(3,5) = 1

c(2,5) = 1 c(1,5) = 1 c(0,5) = 2

w(p,q)=softmax(c(p,q))

Parse trees

Parse trees Parse-Focusing

Pre-trained
Parser

Pre-trained
Parser

Focusing-bias
generation

Inside
algorithm

Neural
Parameterizer

Neural PCFG

Sentence
Probability

Inside
algorithm

Neural
Parameterizer

Neural PCFG

Sentence
Probability

Neural PCFG

Ours

Figure 4: Overview of N-PCFG (above) and Ours (be-
low). The red box shows the parse-focusing method.

tional methods can avoid equal frequency assign-
ment to all parses, which is the basic condition that
causes these problems. For example, the EM algo-
rithm in UGIs reassigns different rule frequencies
at every iteration (Petrov et al., 2006), and SGIs
use only gold parse trees while implicitly assigning
zero probability to all incorrect parses. Motivated
by this, we propose sentence-wise parse-focusing
to learn from a few parses for each sentence and
structural bias generation to select the parses from
unsupervised multi-parsers pre-trained on the same
training data.

Overview of Parse-Focusing Figure 4 presents
an example application of sentence-wise parse-
focusing to N-PCFGs. Compared to N-PCFG, the
distinguishing feature is selecting a few parses from
unsupervised parsers pre-trained on the same train-
ing data and deriving the training loss from these
parses. Details of the algorithm are provided in
Appendix A.4.

4.2 Sentence-wise Parse-Focusing

Learning from Focused Parses To learn gram-
mar from a few selected parses, we simply modify
the inside algorithm to count constituent frequency
only for observed parses. However, this strict bias
injection completely excludes unselected parses,
resulting in losing potential structures. To allevi-
ate this limitation, we use soft weights derived
from softmax over all constituent counts, which
maintains the focus on the selected parses and also
leaves small weights on potential structures. The
process of applying the parse-focusing is detailed
in Algorithm 1.

Given a finite set of sentences s ∈ S, we rep-
resent a finite set of selected parse trees for each
sentence s as τs ∈ Ts. We denote the frequency

15128

for span (p, q) of word p to q for parse tree τs as
f((p, q)|τs). Then, the soft weights are

w(p, q|s) =
exp

∑
τs∈Ts f((p, q)|τs)∑

p,q exp
∑

τs∈Ts f((p, q)|τs)

Why Does It Alleviate High Variance and Overly
Simplistic Parse Issues? As mentioned in Sec-
tion 4.1, the base condition for causing SOA and
SSB is that all parse trees are considered equally.

This equal consideration establishes conflicting
pairs of flipped rules with equal frequency, which
causes SOA. Sentence-wise parse-focusing avoids
this equal frequency by using soft weights for spans.
Additionally, sentence-wise parse-focusing has no
specific dynamics to consider them equally. These
reasons significantly decrease the possibility of
establishing Equation 1 under general condition,
which avoids the problems caused by SOA in train-
ing.

This consideration also makes a model maximize
advantageous simplistic parse trees that are not re-
lated to gold parse trees, which causes SSB. These
simplistic parse tree structures are shared across
sentences. Sentence-wise parse-focusing avoids the
maximization of the simplistic parse trees by as-
signing selected parse trees for given sentences.
The selected parse trees may not involve the sim-
plistic parse trees and are also different across sen-
tences.

4.3 Focusing-Bias Generation
Bias Generation from Pre-Trained Unsuper-
vised Parsers The performance of grammar re-
lies on the quality of selected parses because fo-
cused parses control the loss for given sentences.
Therefore, we can expect to further improve perfor-
mance when we use high-quality parses. However,
in unsupervised learning, finding parses close to
gold parse trees without supervision-related infor-
mation is a challenging issue. As an alternative
solution, we use additional parsers pre-trained on
the same data with unsupervised learning. Note
that our method allows any type of parser as long
as it provides parse span information.

Data-Specific Bias Induction via Heterogeneous
Multi-Parsers A potential approach to generate
good parses is to use parsers induced by differ-
ent models, which we call heterogeneous parsers.
According to Ishii and Miyao (2023), the branch-
ing bias consists of model-specific inherent bias

Homogeneous Heterogeneous

Parser Pair IoU Parser Pair IoU

(SF, SF) 56.3±7.0 (SF, NBL) 32.8±9.8

(FGG, FGG) 47.0±7.3 (SF, FGG) 38.9±5.6

(NBL, NBL) 38.5±19.7 (NBL, FGG) 37.9±12.3

Table 1: IoU scores of homogeneous and heteroge-
neous parser combinations. SF means Structformer,
FGG means FGG-TNPCFGs and NBL means NBL-
PCFGs.

and data-specific inductive bias. They also show
that different parsers have different model-specific
inherent biases. Therefore, if we use heteroge-
neous parsers when counting constituents in parse-
focusing, the opposing inherent biases between
parsers are offset, while the same structures by
data-specific bias are enhanced.

In Table 1, we compare the structural differ-
ences between parsers within pairs of heteroge-
neous parsers and within pairs of homogeneous
parsers. Homogeneous parsers are trained using
the same model but with different random seeds.
To directly quantify structural heterogeneity, we
use IoU scores on parse spans defined as:

⋂
Gp∈Gp

TGp⋃
Gp∈Gp

TGp

The IoU scores of heterogeneous parsers are con-
sistently lower than those of homogeneous parsers,
which implies that these parsers have more differ-
ent branching biases. Therefore, when using het-
erogeneous parsers, the different model-specific
inherent biases are offset, making the shared part
more likely to indicate data-specific bias.

5 Experiments

5.1 Settings

Datasets and Hyperparameters We use the
Penn Treebank (PTB) (Marcus et al., 1994), an
English constituency parsing task dataset, to evalu-
ate parsing performance. Additionally, we use the
CTB (Xue et al., 2005) and SPMRL dataset (Sed-
dah et al., 2014) for multilingual evaluation.

We use the same hyperparameters as Yang et al.
(2022); for the analysis of the number of symbols,
we follow the ratio of 1:2 between nonterminals
and preterminals. The details for the dataset and
training are in Appendix A.6

Inference We primarily evaluate grammars with
MBR decoding (Yang et al., 2021b). However, we

15129

use CYK decoding when it is necessary to distin-
guish each rule in the grammar.

Base Model We use the model from Yang
et al. (2022), which we refer to as Factor Graph
Grammar-based TN-PCFGs (FGG-TNPCFGs), as
our base model. Our model is implemented based
on the open-sourced code from Yang et al. (2022)4.
There are two reasons for choosing this model: 1)
The strict assumption of PCFGs is preserved. In the
case of Compound PCFGs (C-PCFGs) and Lexical-
ized PCFGs (Zhu et al., 2020; Yang et al., 2021a),
because they are dependent on words or sentences,
which makes the induced grammar complex to un-
derstand. We avoid this to verify whether better
performance can be achieved without relaxed as-
sumptions. 2) FGG-TNPCFGs rapidly train large-
scale grammars through efficient use of memory
and computation. This is favorable for obtaining
diverse results in different conditions. Additionally,
we note that while FGG-TNPCFGs provide effi-
cient computation, the fundamental mathematical
principle for grammar remains the same.

Selected Parsers for Focusing-Bias We adopt
three parsers that use different algorithms; 1) Struct-
former (Shen et al., 2021) is a transformer-based
and implicit grammar model. 2) NBL-PCFG (Yang
et al., 2021a) is a lexicalized explicit grammar
model. 3) FGG-TNPCFG (Yang et al., 2022) is the
largest and state-of-the-art grammar model. Note
that all of these parsers use the same hyperparame-
ter settings as in their original papers, and they are
trained only with PTB. The primary model trained
by parse-focusing consists of these three parsers,
which shows the best performance. Additionally,
we use DIORA (Drozdov et al., 2019), which is a
self-supervised model utilizing a recursive autoen-
coder architecture. However, it is not used as the
main parser because it is trained with the additional
dataset MultiNLI (Williams et al., 2018b) besides
PTB.

5.2 Performance

Performance in English We evaluated the per-
formance of state-of-the-art UNGI methods on En-
glish PTB data, as shown in Table 2. Our approach
significantly outperforms the state-of-the-art model
(FGG-TNPCFGs) with only 30 nonterminals and
60 preterminals. When using 4500 nonterminals,
as with FGG-TNPCFGs, the performance further

4https://github.com/sustcsonglin/TN-PCFG

grammar
type model S-F1

mean max

implicit
grammar

Structformer 54.0 -

Structformer† 52.3±2.3 54.2

DIORA 55.7 56.8

DIORA† 43.6±0.9 44.8

explicit
grammar

N-PCFG 50.9±2.3 52.3

N-PCFG w/ MBR 52.3±2.3 55.8

C-PCFG 55.4±2.2 59.0

C-PCFG w/ MBR 56.3±2.1 60.1

NL-PCFG 55.3 -
NBL-PCFG 60.4 -

NBL-PCFG† 53.3±11.5 62.3

TN-PCFG 57.7±4.2 55.6

FGG-TNPCFG 64.1 -

FGG-TNPCFG† 57.4±6.0 66.8

Ours (NT=30) 67.4±0.9 68.4

Ours (NT=4500) 69.6±0.6 70.3

Table 2: Performance of UNGIs on English trained
on Penn TreeBank (†: reproduced result). All statis-
tics are from 32 runs with different random seeds. Our
model is trained with randomly and separately gener-
ated focusing-biases from Structformer†, NBL-PCFG†,
and FGG-TNPCFG†.

increases significantly. Note the difference between
reproduced models and the variance among models.
Instead of running only four runs, we performed
32 runs, resulting in lower performance and higher
variance, especially in FGG-TNPCFG and NBL-
PCFG. The significant performance difference be-
tween DIORA and DIORA† is due to differing
evaluation criteria. While DIORA utilizes a test set
of binarized trees by Stanford CoreNLP, DIORA†

employs non-binarized trees. This approach is in-
tended to assess performance accurately within the
evaluation environment of N-PCFG.

Performance in Multilingual Table 3 shows the
performance of explicit grammar-based UNGIs in
multilingual parsing on CTB and SPMRL data. The
results indicate that our model significantly outper-
forms other models across most languages. While
a few languages, such as Hungarian, Polish, and
Swedish, show second or third-best performance,
our model ranks the highest overall. Note that our
method has consistently and significantly lower
variance compared to all other methods, which in-
dicate that it is a more reliable estimator.

15130

Model Basque Chinese English French German Hebrew Hungarian Korean Polish Swedish Mean rank
N-PCFG* 35.1±2.0 26.3±2.5 52.3±2.3 45.0±2.0 42.3±1.6 45.7±2.2 43.5±1.2 28.4±6.5 43.2±0.8 17.0±9.9 4.3
C-PCFG* 36.0±1.2 38.7±6.6 56.3±2.1 45.0±1.1 43.5±1.2 45.2±0.5 44.9±1.5 30.5±4.2 43.8±1.3 33.0±15.4 3.2
TN-PCFG* 36.0±3.0 39.2±5.0 57.7±4.2 39.1±4.1 47.1±1.7 39.2±10.7 43.1±1.1 35.4±2.8 48.6±3.1 40.0±4.8 3.1

FGG-TNPCFG† 38.4±7.3 31.0±8.4 59.6±7.7 43.9±3.1 48.0±1.4 46.2±4.1 42.2±0.7 31.5±4.0 41.6±4.3 40.0±0.6 3.0
Ours 45.9±0.3 46.1±0.9 69.7±0.9 50.5±0.5 49.1±0.3 49.5±0.2 43.7±0.2 42.1±0.3 47.9±0.3 33.4±1.2 1.4

Table 3: Performance (S-F1 score) in multilingual parsing on CTB and SPMRL datasets. * indicates reported
by Yang et al. (2021b), † indicates results reproduced using open-sourced code provided by Yang et al. (2022).

Bias S-F1 NLL
LBranching 8.9±0.0 116.5±2.3

RBranching 39.7±0.0 116.1±1.6

Random 34.9±1.2 113.5±1.0

Structformer 58.9±0.2 112.0±0.9

NBL-PCFG 64.7±0.6 111.5±0.7

FGG-TNPCFG 65.3±0.4 113.4±1.3

DIORA 50.0±1.4 111.6±0.3

FGG-TNPCFG† 57.4±6.0 111.9±1.1

Table 4: S-F1 and NLL for parse-focused grammar by
each focusing-bias. LBranching and RBranching refer
to left-branching and right-branching, respectively. Ran-
dom and pre-trained biases are generated once and used
for all runs. FGG-TNPCFG† denotes reproduced perfor-
mance to compare variance.

5.3 In-depth Analysis

Performance Consistency about Randomness
We investigate the impact of our method on the
high variance problem, which is the main limitation
of UNGIs. To observe the variance change caused
solely by parse-focusing, we also evaluate the vari-
ance using the generated sets of parse trees as the
focusing-bias: randomly, left-only branched, and
right-only branched. As shown in Table 4, all of the
variances of S-F1 scores are significantly reduced
compared to those of FGG-TNPCFG, while their
negative log likelihoods exhibit a similar bias. This
means that sentence-wise parse-focusing reduces
variance without depending on the selected parses.
The results indicate that applying parse-focusing re-
duces the variance problem and indirectly supports
the idea that the cause is due to SOA under uncor-
related S-F1 and NLL. Moreover, they show that
focusing-bias from pre-trained parsers can lead to
higher performance than algorithmically generated
parses.

Performance and Variance by Symbol Size In
Section 3.2, we show that parse-focusing relaxes
the low diversity of unique rules in conventional
methods. Here, we demonstrate how the relaxation

Nonterminal Preterminal S-F1
Ours FGG

1 2 44.3±0.1 39.7±0.0

5 10 60.4±1.9 41.6±9.6

15 30 65.5±0.7 43.2±0.8

30 60 67.4±0.9 51.2±3.1

250 500 69.7±0.9 54.3±3.9

4500 9000 69.6±0.7 57.4±6.0

Table 5: The S-F1 score for each number of symbols
for FGG-TNPCFGs and induced grammars by parse-
focusing.

0 20 40 60 80 100

Rank

0

25000

50000

75000

100000

125000

150000

Fr
eq

ue
nc

y

FGG-TNPCFG
Parse-Focusing
Difference

5 10

0

20000

Figure 5: Frequency distribution sorted in descending
order for contained rules in the parsed training dataset.
The colored fill area represents the frequency difference
between FGG-TNPCFGs and our method with 5 nonter-
minals. The small box zooms in on the top 10 rules for
differences.

from parse-focusing affects the increase in per-
formance according to changes in symbol size.
In Table 5, although our method boosts perfor-
mance in the larger model, it significantly enhances
performance compared to FGG-TNPCFGs in the
smaller grammar model. These results imply that
our method can stably induce more compact gram-
mars by reducing SSB while achieving more accu-
rate models using the same model capacity.

Rule Utilization We show that parse-focusing
reduces the extreme reliance on a small number of
rules in FGG-TNPCFG. Figure 5 shows the sorted
frequency of all rules in a grammar. After apply-
ing our method, the frequency of the most frequent

15131

(S
F,S

F)

(N
BL,N

BL)

(F
GG,F

GG)

(D
IO

RA,D
IO

RA)

(S
F,N

BL)

(S
F,F

GG)

(S
F,D

IO
RA)

(N
BL,F

GG)

(N
BL,D

IO
RA)

(F
GG,D

IO
RA)

(S
F,N

BL,F
GG)

(S
F,N

BL,D
IO

RA)

(S
F,F

GG,D
IO

RA)

(N
BL,F

GG,D
IO

RA)

(S
F,N

BL,F
GG,D

IO
RA)

0

5

10

15
D

if
fe

re
nc

e
in

 S
-F

1

Figure 6: The difference between the mean of S-F1
scores for pre-trained parsers and the parse-focused
model trained by those parsers. The blue bars indicate
homogeneous parsers, and the orange bars indicate het-
erogeneous parsers. The raw S-F1 scores are shown in
Figure 10.

three rules decreases from 46.1% to 38.7%, and
the reduced frequency is redistributed to other less
frequently used rules. These results imply the ef-
fective enhancement of rule utilization.

Practical Multi-Parser Combinations We show
the significance of using heterogeneous multi-
parsers that have different model-specific inher-
ent biases. Figure 6 shows that the performance
increase in heterogeneous parsers is generally
more considerable compared to homogeneous ones.
These parsers exhibit more significant variances in
performance, which supports the idea that the inher-
ent biases of models are offset. Consequently, the
results implies that heterogeneity is a practically
helpful strategy.

6 Related Works

TN-PCFG/FGGs Yang et al. (2021b) and Yang
et al. (2022) verify that overparameterization leads
to better grammars with many symbols. Conversely,
we highlight the inefficiency in learning UGIs
caused by simplicity and ambiguity issues. Solv-
ing this inefficiency enables learning even a small
grammar with significantly high performance and
low variance.

S-DIORA Drozdov et al. (2020) shows that struc-
tural ambiguity between subtrees can affect locally
greedy training, and that this problem can be re-
solved by single tree encoding through beam search.
This work supports the impact of the ambiguity is-
sue, although our research addresses the issue of
learning explicit grammars in UGIs differently.

Ensemble Distillation Shayegh et al. (2023) in-
troduce a variant of the CYK algorithm that gains

refined parse trees by combining trees from the
different pre-trained parsers. Our approach differs
in searching for structure through training trees in
a relaxed condition using soft weights from the
count of spans. It utilizes the model’s search capa-
bility. In addition, it is different that we resolve the
optimization problem for the loss function.

Tree-shape Uncertainty The tree-shape uncer-
tainty referred to in Ishii and Miyao (2023) is the
existence of similar grammars that assign different
tree structures for a given sentence. In our work,
the issue is analyzed from an optimization perspec-
tive, highlighting how undifferentiated optima can
cause unstable learning.

What Do Implicit Grammar Models Learn?
Williams et al. (2018a) investigate how consistently
latent tree learning models learn in the presence of
randomness. In our work, we focus on identifying
the causes of inconsistency and its negative effects,
which are primarily due to likelihood loss over all
parses in UGI.

7 Conclusion

In this paper, we tackle the challenges of high vari-
ance and overly simplistic parse in unsupervised
neural grammar induction (UNGI). We identify
structural optimization-ambiguity and structural
simplicity bias as primary causes, arising from UGI
loss on all possible parses of all sentence parses.
We introduce a parse-focusing approach that nar-
rows down the parse set per sentence and incorpo-
rates biases from parses generated by pre-trained
parsers on the same dataset. This method has been
shown to effectively mitigate these issues, signifi-
cantly surpassing state-of-the-art methods in both
English and multilingual parsing benchmarks. Our
contributions facilitate the consistent learning of
more compact, explicit, accurate, and therefore in-
terpretable grammar models in unsupervised learn-
ing environment.

Acknowledgements

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Ko-
rea government (MSIT) (No.2022R1A2C2012054,
Development of AI for Canonicalized Expression
of Trained Hypotheses by Resolving Ambiguity in
Various Relation Levels of Representation Learn-
ing).

15132

Limitations

Our work is limited to offline learning due to addi-
tional computational costs for pre-training parsers
and for the hyper-parameter search of better com-
binations. In the future, more light and adaptive
structural bias generation is required.

References
Glenn Carroll and Eugene Charniak. 1992. Two

experiments on learning probabilistic dependency
grammars from corpora. In AAAI Workshop on
Statistically-Based NLP Techniques.

Zhiyi Chi and Stuart Geman. 1998. Estimation of prob-
abilistic context-free grammars. Computational lin-
guistics, 24(2):299–305.

Alexander Clark. 2001. Unsupervised induction of
stochastic context-free grammars using distributional
clustering. In Proceedings of the 2001 Workshop on
Computational Natural Language Learning - Volume
7, ConLL ’01, USA. Association for Computational
Linguistics.

Anna Corazza and Giorgio Satta. 2006. Cross-entropy
and estimation of probabilistic context-free gram-
mars. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, Main Conference,
pages 335–342.

Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen, Tim
O’Gorman, Mohit Iyyer, and Andrew McCallum.
2020. Unsupervised parsing with S-DIORA: Single
tree encoding for deep inside-outside recursive au-
toencoders. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4832–4845, Online. Association
for Computational Linguistics.

Andrew Drozdov, Pat Verga, Mohit Yadav, Mohit Iyyer,
and Andrew McCallum. 2019. Unsupervised latent
tree induction with deep inside-outside recursive au-
toencoders.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and
Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 199–209, San Diego, California. As-
sociation for Computational Linguistics.

Taiga Ishii and Yusuke Miyao. 2023. Tree-shape un-
certainty for analyzing the inherent branching bias
of unsupervised parsing models. In Proceedings of
the 27th Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 532–547, Singapore.
Association for Computational Linguistics.

Yoon Kim, Chris Dyer, and Alexander M Rush. 2019a.
Compound probabilistic context-free grammars for

grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385.

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro,
Chris Dyer, and Gábor Melis. 2019b. Unsupervised
recurrent neural network grammars. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 1105–1117, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Dan Klein and Christopher D Manning. 2001. Natu-
ral language grammar induction using a constituent-
context model. Advances in neural information pro-
cessing systems, 14.

Dan Klein and Christopher D Manning. 2002. A genera-
tive constituent-context model for improved grammar
induction. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
pages 128–135.

Karim Lari and Steve J Young. 1990. The estimation
of stochastic context-free grammars using the inside-
outside algorithm. Computer speech & language,
4(1):35–56.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The penn tree-
bank: Annotating predicate argument structure. In
Human Language Technology: Proceedings of a
Workshop held at Plainsboro, New Jersey, March
8-11, 1994.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Mark-Jan Nederhof and Giorgio Satta. 2006. Estimation
of consistent probabilistic context-free grammars. In
Proceedings of the Main Conference on Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, HLT-NAACL ’06, page 343–350, USA.
Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 433–440.

15133

https://doi.org/10.3115/1117822.1117831
https://doi.org/10.3115/1117822.1117831
https://doi.org/10.3115/1117822.1117831
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
http://arxiv.org/abs/1904.02142
http://arxiv.org/abs/1904.02142
http://arxiv.org/abs/1904.02142
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/2023.conll-1.36
https://doi.org/10.18653/v1/2023.conll-1.36
https://doi.org/10.18653/v1/2023.conll-1.36
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.3115/1220835.1220879
https://doi.org/10.3115/1220835.1220879

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. 2014.
Introducing the SPMRL 2014 shared task on pars-
ing morphologically-rich languages. In Proceedings
of the First Joint Workshop on Statistical Parsing of
Morphologically Rich Languages and Syntactic Anal-
ysis of Non-Canonical Languages, pages 103–109,
Dublin, Ireland. Dublin City University.

Behzad Shayegh, Yanshuai Cao, Xiaodan Zhu, Jackie
C. K. Cheung, and Lili Mou. 2023. Ensemble distil-
lation for unsupervised constituency parsing.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2018. Neural language modeling
by jointly learning syntax and lexicon.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrating
tree structures into recurrent neural networks.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald
Metzler, and Aaron Courville. 2021. Structformer:
Joint unsupervised induction of dependency and con-
stituency structure from masked language modeling.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7196–7209.

Yau-Shian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention.

Adina Williams, Andrew Drozdov*, and Samuel R.
Bowman. 2018a. Do latent tree learning models
identify meaningful structure in sentences? Transac-
tions of the Association for Computational Linguis-
tics, 6:253–267.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018b. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering, 11:207–238.

Songlin Yang, Wei Liu, and Kewei Tu. 2022. Dynamic
programming in rank space: Scaling structured in-
ference with low-rank HMMs and PCFGs. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4797–4809, Seattle, United States. Association for
Computational Linguistics.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021a.
Neural bi-lexicalized PCFG induction. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2688–2699, Online.
Association for Computational Linguistics.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021b.
PCFGs can do better: Inducing probabilistic context-
free grammars with many symbols. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1487–1498,
Online. Association for Computational Linguistics.

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020. The
return of lexical dependencies: Neural lexicalized
pcfgs. Transactions of the Association for Computa-
tional Linguistics, 8:647–661.

A Appendices

A.1 Detail Proof of Structural Optimization
Ambiguity with the Inside Algorithm

We incorporate the three stipulated conditions into
the conventional inside algorithm as per Equation 3:
1) distinguishing between nonterminals and preter-
minals, 2) allowing all symbols to occupy identi-
cal positions in parse trees, and 3) encompassing
all structurally possible binary trees for given sen-
tences. Therefore, we can reformulate the inside
algorithm as shown in Equation 4.

We examine a special case where a grammar
contains only one preterminal symbol, as detailed
in Equation 5, to investigate the potential for struc-
tural optimization ambiguity. We recursively derive
the conditions leading to ambiguity.

Before we begin the proof, let us consider two
grammars, G1 and G2. The relationship between
them is defined as follows:

pG1(Ni → NjT) ̸= pG2(Ni → NjT)

pG1(Ni → TNj) ̸= pG2(Ni → TNj)

∀r ∈ Rc, pG1(r) = pG2(r)

Here, Ni, Nj represent nonterminal symbols, T
denotes a preterminal symbol, pG1(Ni → NjT)
represents the probability of the rule Ni → NjT
assigned by G1, and Rc is the complement set of
rules that do not involve Ni → NjT and Ni →
TNj .

Initially, we can directly determine the probabil-
ity of a span with width w = 2:

IG,i(p, p+ 1) = pG(Ni → TT)pG(T → wp)pG(T → wp+1)

(9)

15134

https://aclanthology.org/W14-6111
https://aclanthology.org/W14-6111
http://arxiv.org/abs/2310.01717
http://arxiv.org/abs/2310.01717
http://arxiv.org/abs/1711.02013
http://arxiv.org/abs/1711.02013
http://arxiv.org/abs/1810.09536
http://arxiv.org/abs/1810.09536
http://arxiv.org/abs/1909.06639
http://arxiv.org/abs/1909.06639
https://doi.org/10.1162/tacl_a_00019
https://doi.org/10.1162/tacl_a_00019
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2021.acl-long.209
https://doi.org/10.18653/v1/2021.naacl-main.117
https://doi.org/10.18653/v1/2021.naacl-main.117

Conventional inside algorithm

Ii(1, l) =

n∑

i

n∑

j

n∑

k

p(Ni → NjNk)Ij(1, p)Ik(p+ 1, l) (3)

Inside algorithm in Unsupervised Neural Grammar Induction

Ii(1, l) =

n∑

j

m∑

k

p(Ni → NjTk)Ij(1, l − 1)p(Tk → wl) + p(Ni → TkNj)p(Tk → w1)Ij(2, l)

+
n∑

j

n∑

k

n−2∑

a=2

p(Ni → NjNk)Ij(1, a)Ik(a+ 1, l)

(4)

Inside algorithm in UNGI with one preterminal symbol

Ii(1, l) =

n∑

j

p(Ni → NjT)Ij(1, l − 1)p(T → wl) + p(Ni → TNj)p(T → w1)Ij(2, l)

+
n∑

j

n∑

k

n−2∑

a=2

p(Ni → NjNk)Ij(1, a)Ik(a+ 1, l)

(5)

Inside probability for span width 3

IG,i(1, l) =

n∑

j

pG(Ni → NjT)IG,j(1, l − 1)pG(T → wl) + pG(Ni → TNj)pG(T → w1)IG,j(2, l) (6)

Equivalence between two different grammars

pG1(Ni → NjT)IG1,j(1, r − 1)pG1(T → wr) + pG1(Ni → TNj)pG1(T → w1)IG1,j(2, r)

= pG2(Ni → NjT)IG2,j(1, r − 1)pG2(T → wr) + pG2(Ni → TNj)pG2(T → w1)IG2,j(2, r)
(7)

pG(Ni → NjT) + pG(Ni → TNj)α

= pG′(Ni → NjT) + pG′(Ni → TNj)α
(8)

Table 6: The equation of inside algorithm and derived equation for proof.

15135

For both grammars G1 and G2, the equality
IG1,i(p, p+1) = IG2,i(p, p+1) consistently holds
for all p because the probability of a span with
width w = 2 does not involve the rules Ni → NjT
and Ni → TNj .

For spans of width w = 3, we refer to Equa-
tion 6. We set the inside probabilities for grammars
G1 and G2 to be equal, such that IG1,i(p, p+ 2) =
IG2,i(p, p+ 2). Noting that only the probabilities
of Ni → NjT and Ni → TNj differ, we see that
the other terms cancel out, as shown in Equation 7.
Therefore, Equation 7 can be simplified to Equa-
tion 8, given that IG1,i(p, p+ 1) = IG2,i(p, p+ 1).
Consequently:

α =
pG1(T → w1)IG1,j(2, r)

IG1,j(1, r − 1)pG1(T → wr)
(10)

It must be noted that pG1(T → w1)IG1,j(2, r) =
IG1,j(1, r− 1)pG1(T → wr) since the preterminal
symbol T is unified, leading to α = 1.

This process can be applied recursively to spans
of any width. As a result, pG1(Ni → NjT) +
pG1(Ni → TNj) = pG2(Ni → NjT) +
pG2(Ni → TNj) if and only if IG1,i(p, q) =
IG2,i(p, q). In simpler terms, the sentence prob-
abilities calculated by G1 and G2 will be identi-
cal as long as the sum of probabilities pG1(Ni →
NjT) + pG1(Ni → TNj) matches that of G2.

A.2 Structural Simplicity Bias in Multilingual

We demonstrate that structural simplicity bias is
observed in all language datasets. For this, we train
and evaluate FGG-TNPCFGs with 5, 15, and 30
nonterminals using CTB and SPMRL datasets. In
Figure 7, it is shown that in all languages, the aver-
age number of unique rules decreases as the num-
ber of symbols decreases, and verifying that struc-
tural simplicity bias is a general issue occurring in
all languages, not just limited to PTB.

A.3 Qualitative analysis of tree structure

In Figure 8, we qualitatively analyze the struc-
tural differences between parses induced by dif-
ferent grammars (Gold, FGG-TNPCFGs and parse-
focused N-PCFG) with 5 nonterminal symbols
for the same sentence. We verify that the FGG-
TNPCFGs utilize a small number of rule types to
induce parses, which leads a different structure
compared to the gold parse.

A.4 Algorithm of Proposed Method

Algorithm 1 presents the pseudocode for our entire
methodology. We calculate the weights to be ap-
plied in the Inside Algorithm using softmax, based
on the frequency of each span within a sentence
as provided by the parse trees from pre-trained
parsers.

Algorithm 1 Parse-Focusing Inside algorithm
1: function PARSE-FOCUSING(s ∈ S, Tp)
2: Tp(s)← Tp ▷ Subset of parse trees
3: C(s)← COUNTSPANS(τpi , |s|)
4: W (s)← exp f(c(p, q)|τGp(si))∑

p,q exp f(c(p, q)|τGp(si))

5: for w ← 2 to |s| do
6: for n← 0 to |s| do
7: Ii(n, n+ w)←∑

j,k

∑
m p(i, j, k)Ij(n,m)Ik(m+ 1, n+ w)

8: Ii(n, n+ w)← ws(n, n+ w)Ii(n, n+ w)

9: return p(s)

10: function COUNTSPANS(τpi , |s|)
11: Initialize c(i, j) = 0, for all 0 ≤ i, j ≤ |s|
12: for i← 0 to |s| do
13: for j ← i+ 2 to |s| do
14: for each τpi ∈ Tp do
15: if span (i, j) in τpi then
16: c(i, j)← c(i, j) + 1

17: return C(s)

A.5 Quality of Focusing-Bias by the number
of Multiple Parsers

In Figure 9, the common structures across the
selected parsers are more similar to gold parse
trees. This gives the intuition that assigning strong
weights to parts that commonly appear across mul-
tiple parsers will lead to better performance.

A.6 Experiment Details

Dataset Detail We follow the standard setup and
preprocessing for the PTB5, utilizing sections 02-
21 as the training set, section 22 as the validation
set, and section 23 as the test set excluding punc-
tuation and trivial constituents. The most frequent
10,000 words were selected as the vocabulary, and
the remaining words were treated as <unk>. To
process the data, we followed the pipeline used
by models employing base models and parsers as
outlined in (Kim et al., 2019a; Yang et al., 2022;
Shen et al., 2021; Yang et al., 2021a; Drozdov et al.,
2019). We also use CTB6 and Basque, French, Ger-

5The license of PTB is LDC User Agreement for Non-
Members. https://catalog.ldc.upenn.edu/LDC99T42

6The license of CTB is LDC User Agreement for Non-
Members. https://catalog.ldc.upenn.edu/LDC2005T01.

15136

10 20 30
0

5

10

15

20

25

30

Basque
Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

10 20 30 40
0

5

10

15

20

25

30

Chinese
Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

10 20 30 40
0

5

10

15

20

25

30

English
Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

10 20 30 40
0

5

10

15

20

25

30

French
Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

10 20 30 40
0

5

10

15

20

25

30

35

German
Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

10 20 30 40
0

5

10

15

20

25

30

35
Hebrew

Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

10 20 30 40
0

5

10

15

20

25

30

Hungarian
Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

5 10 15 20 25 30
0

5

10

15

20

25
Korean

Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

10 20 30

0

5

10

15

20

25

Polish
Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

10 20 30 40
0

5

10

15

20

25

30

35

Swedish
Binarized gold

FGG-NT30

FGG-NT15

FGG-NT5

Sentence Length

N
um

be
r

of
 R

ul
e

Ty
pe

s

Figure 7: Average of the number of unique rules in each tree for CTB and SPMRL datasets. Binarized gold is the

ROOT

S

NP-SBJ

PRP

It

VP

VBZ

’s

NP-PRD

NP

NN

nothing

JJ

dramatic

NP

RB

just

DT

a

JJ

routine

NN

sell-off

(a) Gold for sample 1.

NT-3

T-8

It

NT-2

T-7

’s

NT-0

T-8

nothing

NT-2

T-7

dramatic

NT-0

T-1

just

NT-0

NT-4

T-0

a

T-9

routine

T-6

sell-off

(b) FGG-TNPCFG w/ 5 nonterminals
for sample 1.

NT-1

T-4

It

NT-1

NT-3

NT-3

T-0

’s

T-7

nothing

T-5

dramatic

NT-1

T-6

just

NT-2

NT-3

T-3

a

T-5

routine

T-5

sell-off

(c) Parse-focusing w/ 5 nonterminals
for sample 1.

ROOT

S

NP-SBJ

NP

NNP

Rainbow

POS

’s

NN

stock

VP

VBD

dropped

NP-EXT

CD

2

PP-DIR

TO

to

NP

CD

14

CD

14

(d) Gold for sample 2.

NT-3

T-8

Rainbow

NT-2

T-7

’s

NT-0

T-8

stock

NT-2

T-7

dropped

NT-0

T-4

2

NT-2

T-7

to

NT-0

T-4

14

T-2

14

(e) FGG-TNPCFG w/ 5 nonterminals
for sample 2.

NT-1

NT-3

T-3

Rainbow

NT-4

T-0

’s

T-5

stock

NT-1

T-6

dropped

NT-2

T-7

2

NT-0

T-2

to

NT-3

T-9

14

T-8

14

(f) Parse-focusing w/ 5 nonterminals
for sample 2.

Figure 8: Induced parse trees for two sentences, "It’s nothing dramatic just a routine sell-off." and "Rainbow’s stock
dropped 2 to 14 14."

15137

0
Specific

2 4 6 8 10 12 14 16
Common

Number of parsers sharing common span

0.0

0.5

1.0

1.5

2.0

2.5

C
ou

nt
 o

f
co

m
m

on
 s

pa
ns

1e6

Not in gold

In gold

Figure 9: Frequency (106 scale) of common parse spans
in gold parse trees by the number of combined parsers.
Using more parsers shows significantly more spans in
gold parse trees without supervision.

man, Hebrew, Hungarian, Korean, Polish, Swedish
dataset in SPMRL7.

Implementation Detail To implement our
methodology on top of the base model FGG-
TNPCFGs, we utilized PyTorch version 2.2 (Paszke
et al., 2019). For smooth processing and analysis
of tree structures, we employed NLTK8.

Training Detail The hyperparameter details are
identical to those found in Yang et al. (2022). The
ratio of nonterminal to preterminal symbols is pri-
marily set at 1:2, and to analyze performance based
on the number of symbols, experiments were con-
ducted using a minimum of 1 to a maximum of
4500 nonterminal symbols. Training was carried
out for up to 10 epochs, with early stopping applied
based on validation likelihood. For optimization,
the Adam optimizer was utilized with a learning
rate of 2e−3, β1 = 0.75, and β2 = 0.999. The
model’s hyperparameters were set to a rank size of
1000, a symbol embedding size of 256, and a word
embedding size of 200. The same hyperparameters
were used for all languages without any specific
tuning. All experiments were performed using an
NVIDIA RTX 2080ti, and 32 experiments were
conducted to verify variance for both the original
FGG-TNPCFGs and our method, as shown in Ta-
ble 2, while the rest of the experiments were carried
out four times each. Each run takes approximately
3 hours.

7The license of SPMRL is Creative Commons Attribution
4.0 International License. https://www.spmrl.org/spmrl2013-
sharedtask.html

8https://www.nltk.org/

A.7 Focusing-Bias of Single Parser
To validate the learning of various types of
focusing-bias in the N-PCFG, we assessed the In-
tersection over Union (IoU) scores between the
pre-trained single parsers and our parse-focused
N-PCFGs, as shown in Table 7. The results in Ta-
ble 7 indicate that our parse-focusing N-PCFGs can
replicate the tree structures generated by the pre-
trained parsers. They show the highest congruence
with FGG-TNPCFGs and the least congruence with
Structformer. Despite this, the Structformer, which
has the lowest IoU score, still surpasses the highest
IoU score listed in Table 1. This indirectly indi-
cates the extent of similarity between the parse
trees derived from the pre-trained parsers and those
obtained from the parse-focused N-PCFG.

Bias
S-F1

IoU
Pre-trained Injected

SF 52.32±2.25 56.35±2.03 57.18±2.81

NBL 52.11±15.32 53.04±16.03 61.37±2.39

FGGs 59.65±7.73 58.67±7.15 74.49±6.67

Table 7: S-F1 score of Pre-trained parsers, Parse-focused
N-PCFG, and IoU score between their results.

A.8 Numerical Result for Figure 10
In Table 8, the S-F1 and IoU scores for combina-
tions of homogeneous parsers and heterogeneous
parsers. However, heterogeneous parsers show sig-
nificantly lower IoU scores across all combinations
compared to homogeneous parsers. A lower IoU
score signifies that the two grammars make differ-
ent decisions for more spans, allowing the model
to handle a wider variety of structural information
in parse-focusing. The model can select the most
advantageous structural information from the given
options, opening up opportunities for exploration,
potentially leading to higher performance.

A.9 Recent Studies
With the dramatic growth of neural networks,
various approaches have been developed to inte-
grate the concepts of neural networks and gram-
mars. (Shen et al., 2018, 2019) utilized tree struc-
tures within their models, hierarchically learning
implicit structural information from sentences us-
ing tree structures. Meanwhile, Wang et al. (2019);
Shen et al. (2021) aimed to leverage structural in-
formation within transformers by inferring struc-
tural information from sentences and using it to

15138

Parser Pair S-F1 IoU
Homogeneous (same method, different seeds)

(SF,SF) 59.8±0.6 50.6

(NBL,NBL) 65.0±0.2 57.1

(FGG,FGG) 68.6±0.5 40.8

(DIORA,DIORA) 53.5±0.7 43.9

Heterogeneous (different method, different seeds)

(SF,NBL) 65.0±1.7 40.3

(SF,FGG) 65.7±0.3 39.6

(SF,DIORA) 59.1±0.4 36.2

(NBL,FGG) 69.2±0.2 40.6

(NBL,DIORA) 66.1±1.5 32.9

(FGG,DIORA) 65.1±0.9 34.3

(SF,NBL,DIORA) 64.3±1.1 21.0

(SF,FGG,NBL) 69.7±0.9 24.7

(SF,FGG,DIORA) 66.3±0.7 21.7

(FGG,NBL,DIORA) 68.5±1.6 20.7

Table 8: IoU scores of homogeneous and heterogeneous
parser combinations. S-F1 is the test performance of
ours with the parser combination on PTB. FGG denotes
FGG-TNPCFG.

(S
F,S

F)

(N
BL,N

BL)

(F
GG,F

GG)

(D
IO

RA,D
IO

RA)

(S
F,N

BL)

(S
F,F

GG)

(S
F,D

IO
RA)

(N
BL,F

GG)

(N
BL,D

IO
RA)

(F
GG,D

IO
RA)

(S
F,N

BL,F
GG)

(S
F,N

BL,D
IO

RA)

(S
F,F

GG,D
IO

RA)

(N
BL,F

GG,D
IO

RA)

(S
F,N

BL,F
GG,D

IO
RA)

50

55

60

65

70

F
1

sc
or

e

Figure 10: S-F1 scores of the combination of homoge-
neous and heterogeneous parsers.

mask the attention matrix to control relationships
between words. Notably, Shen et al. (2021) pro-
posed a method for simultaneously learning both
constituency and dependency parsing.

There have been studies applying structural con-
cepts, either by mimicking grammars using recur-
rent neural networks as in Dyer et al. (2016); Kim
et al. (2019b) or by combining the inside algorithm
with the concept of autoencoders as in Drozdov
et al. (2019).

In particular, Kim et al. (2019a) proposed neu-
ral parameterization, assigning rule probabilities
using neural networks to grammar component em-
beddings. Kim et al. (2019a) utilized explicit gram-
matical structures and the inside algorithm to in-
duce grammars, thus enabling traditional grammat-

ical approaches. This led to the emergence of lex-
icalized N-PCFGs (Zhu et al., 2020; Yang et al.,
2021a), which leverage lexicons. However, the in-
side algorithm still demanded high computational
complexity, which limited the expansion of gram-
mar sizes.

Yang et al. (2021b, 2022) addressed the high
computational complexity of the inside algorithm
by utilizing tensor decomposition and FGGs, which
allowed for the learning of larger grammars. This
approach, which solves issues through the number
of parameters, aligns with the methods of Petrov
et al. (2006).

15139

