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Abstract

We explore which linguistic factors—at the
sentence and token level—play an important
role in influencing language model predictions,
and investigate whether these are reflective of
results found in humans and human corpora
(Gries and Kootstra, 2017). We make use of
the structural priming paradigm, where recent
exposure to a structure facilitates processing
of the same structure. We don’t only investi-
gate whether, but also where priming effects
occur, and what factors predict them. We show
that these effects can be explained via the in-
verse frequency effect, known in human prim-
ing, where rarer elements within a prime in-
crease priming effects, as well as lexical depen-
dence between prime and target. Our results
provide an important piece in the puzzle of un-
derstanding how properties within their context
affect structural prediction in language models.

1 Introduction

Structural priming is the phenomenon where speak-
ers are more likely to repeat a certain structure after
being recently exposed to a sentence containing a
congruent structure; in the following example a
speaker is more likely to produce a Double Object
(DO) construction (2a, the target) after having been
exposed to a sentence with a congruent structure
(1a, the prime) than after having been exposed to a
sentence with an incongruent structure (1b, which
illustrates the Prepositional Object (PO) dative con-
struction):

€8 a. The girl gave
b.  The girl gave

[the b()y]Np [the ball]x p
[the ball]xp [to the boy]pp

2) a. The baker gave [the lady]y p [the cake]n p

Structural priming is well attested in humans, for
both language production (Mahowald et al., 2016)
and comprehension (Tooley, 2023). Interestingly,
it has also been shown to occur in large language
models (Prasad et al., 2019; Sinclair et al., 2022;

Willem Zuidema!

w.h.zuidema@Quva.nl

Arabella Sinclair?

2School of Natural and Computing Sciences
University of Aberdeen

arabella.sinclair@abdn.ac.uk

Michaelov et al., 2023). Here, structural priming
can be viewed as a simple form of ‘in-context learn-
ing’ (Dong et al., 2022), where the fask is to gen-
erate a sentence (or compute its likelihood) with
the target grammatical structure, influenced by the
demonstration (the prime presented to the LLM
before processing the target).

Priming effects in humans are typically stronger
when there are shared words between prime and
target, and when the prime is more unusual, or less
frequent. This is the inverse frequency effect; it ex-
tends to other properties of structures themselves,
and it is one of the main phenomena we focus on in
this paper. To explain these effects without direct
access to the underlying training data, we turn to
factors known to predict priming effects from cor-
pus linguistics (e.g. Gries, 2005; Jaeger and Snider,
2013), which highlight surprisal and structural pref-
erence as key factors, and demonstrate the impor-
tance of a more fine-grained method of measuring
priming.

A second focus of this paper is examining the
relationship between lexico-semantic overlap and
the asymmetry of the priming effects observed. We
examine priming at the token level, discovering
that where priming takes place is important for
understanding how lexico-semantic factors affect
priming and for analysing the mechanisms under-
lying priming in models. Finally, we find that mod-
els’ structural predictions are highly influenced by
specific lexical items, and that they incorporate
systematic properties of human production prefer-
ences learnt from the training data. We demonstrate
that models, like humans, exhibit inverse frequency
effects in terms of surprisal and verb preference,
and that these are predictive of priming.

2 Structural Priming

Structural priming in humans is part of a rich litera-
ture on factors that impact human language process-
ing, both in controlled experiments of production
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(Mahowald et al., 2016) and comprehension (Too-
ley, 2023), and analyses from corpus linguistics
(e.g., Gries and Kootstra, 2017). We provide a
brief theoretical background on structural priming
in §2.1, and priming in language models in §2.2.

2.1 Properties of Priming

Production vs. Comprehension Structural prim-
ing has been shown to manifest in both language
production and comprehension. Although recent
work has shown that the underlying mechanisms
for these two areas may not be as different as orig-
inally assumed (Segaert et al., 2013; Tooley and
Bock, 2014) and are intricately related (Dell and
Chang, 2014), numerous works have uncovered
distinct differences in the factors that play a role
for each modality (Ziegler and Snedeker, 2019).
We therefore take the explicit stance in this paper
that language models are likely to follow patterns
found in human production, since they are exposed
solely to human produced data, and for the factors
we consider, we find this to be the case. While LMs
are not necessarily expected to align directly with
factors found in comprehension studies, arguably
there may be similar acquisition mechanisms (e.g.
error-based learning) that result in comprehension
aligned behaviour. In this background, we focus
on production- and corpus-based analyses of struc-
tural priming, unless unless explicitly mentioned
otherwise.

Inverse Frequency One influential theory on the
mechanism behind priming in humans is the im-
plicit learning theory by Chang et al. (2006). This
theory predicts that our expectation for a particular
structure is proportional to degree of surprisal of
having encountered this structure before. This ef-
fect —the inverse frequency effect (a rarer prime
will boost priming more) — has indeed been con-
firmed experimentally to be a strong predictor of
priming behaviour. Specifically, in language pro-
duction in humans it has been found that highly sur-
prising primes (as measured by language models)
will have higher priming effects (Gries and Wulff,
2005; Jaeger and Snider, 2008, 2013; Fazekas et al.,
2024).

Relatedly, structural preference—which ex-
presses within which structure a verb is most likely
to occur—is another important factor when pre-
dicting priming behaviour: verbs that are strongly
associated with one construction are more likely
to be primed by that construction as well (Gries

and Wulff, 2005; Gries et al., 2005; Bernolet and
Hartsuiker, 2010). From this it then follows that
priming effects are stronger when the prime sen-
tence was of a less preferred structure: a prime
containing the verb gave, for example, will prime
subsequent targets more strongly when it is en-
countered in its dispreferred structure (PO) (Pick-
ering and Branigan, 1998; Zhou and Frank, 2023).
There exists an extensive line of work into deter-
mining the factors that govern this structural pref-
erence, which is driven by various complex syntax-
semantic interactions (Green, 1974; Thompson and
Koide, 1987; Gropen et al., 1989; Bresnan et al.,
2007). Inspired by this literature, we find evidence
in §6 of a verb-mediated inverse frequency effect
in modern LLMs.

Lexical Dependence Many findings in produc-
tion and corpus studies have shown that prim-
ing effects of sounds, words, meanings and struc-
tures interact: prime sentences and target sentences
with shared words (lexical overlap), or words that
share semantics (semantic overlap), boost struc-
tural priming (Hare and Goldberg, 1999; Jones
et al., 2006; Hartsuiker et al., 2008; Snider, 2009;
Gerard et al., 2010), and similar findings have been
found in comprehension studies as well (Chiarello
et al., 1990; Lucas, 2000; Traxler et al., 2014). A
common explanation is that words in the prime
that are identical or similar to words in the tar-
get already activate the relevant abstract syntactic
frames. These frames, in turn, are most closely
associated with verbs, or the syntactic head of the
primed structure (Pickering and Branigan, 1998;
Pickering and Ferreira, 2008; Reitter et al., 2011).

Lexical overlap effects in human experiments
typically do not consider effect of preposition or
determiner overlap, rather focusing on the content
words. Findings have shown that structural prim-
ing does not depend on the repetition of function
words, thus in humans there is a clear difference
between content-word and function word repeti-
tion (Bock, 1989; Tree and Meijer, 1999; Pickering
and Ferreira, 2008).

2.2 Structural Priming in Language Models

Structural priming has been used to investigate ab-
stract language representations in language models.
A number of (early) papers used fine-tuning on a
small sample of items of a particular structure, and
measured its impact on related items (van Schijn-
del and Linzen, 2018; Prasad et al., 2019). Sin-
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clair et al. (2022) measure the impact of congruent
and incongruent prime sentences on a subsequent
target, paralleling approaches in psycholinguistics
that view priming as resulting from residual activa-
tions (Branigan et al., 1999). Using this approach,
LMs are shown to exhibit priming effects that are
cumulative, susceptible to recency effects, boosted
by lexico-semantic overlap, and persisting in cross-
lingual settings (Michaelov et al., 2023; Xiao et al.,
2024).

One key finding of Sinclair et al. (2022) is that
priming effects are often asymmetric: when com-
paring alternative structures in the dative and transi-
tive data, they remark that some of these structures
are more susceptible to priming than their alterna-
tives. In §4 we confirm this observation for the
dative; the strength and direction of the asymmetry
are a surprising result, given priming effects are
typically higher for the opposite alternation in hu-
mans (Bock, 1989; Kaschak et al., 2011; Reitter
et al., 2011). We show that this finding extends
to a wide range of state-of-the-art LLMs, and is
predictable via other inverse frequency effects.

3 Measures, Data & Models

3.1 Sentence-level Priming Effect

To measure the priming effect, we make use of
the measure of Sinclair et al. (2022), which has re-
cently also been adapted by Sinha et al. (2023) and
Michaelov et al. (2023). The Priming Effect (PE)
is defined as the difference in log probability of a
target sentence T* when preceded by a prime pP*
that has the same congruent structure X (PO/DO),
and the log probability of the same target T* that
is preceded by a prime P¥ of incongruent struc-
ture Y (to contrast this measure with the measure
from §3.2, we will refer to it as the sentence-level
Priming Effect, s-PE):

s-PE(X) = log P(T*|P*) — log P(T*[PY) (1)

The conditional probability of log P(T*|p*) is com-
puted as the sum of log probabilities of all tokens
in the target sentence:

log P(TX[P¥) =) "log Pra(T}[P%,15,)  (2)

3.2 Token-level Priming Effect

The Priming Effect metric of Eq. 1 shows whether
a target sentence is primed by structural congruence
as a whole, but does not provide insight into which

tokens within the target were most responsible for
such an effect. To investigate this, we introduce the
token-level priming effect metric (w-PFE), which
expresses priming effects for each individual target
token 77

w'PE(X7 2) = lOgP(Tz)'(’P)(v T)éz) (3)
— log P(T{ [P, TZ;)
Note that the sentence-level PE decomposes into a
sum of w-PE scores; as such w-PE expresses the
relative contribution of each target token to s-PE:

s-PE(X) =Y w-PE(X,i)

3.3 The Prime-LM Corpus

We use the dative constructions from the Prime-LM
corpus of Sinclair et al. (2022), similar to exam-
ples (1) and (2) in §1. This subset of sentences is
convenient for our purposes, because we can se-
lect both prime-target pairs with no lexical overlap
and minimal semantic similarity between nouns
and verbs, as well as pairs with varying degrees of
overlap and varying degrees of semantic similarity.
The datives thus allow us to not only measure struc-
tural priming, but also inspect the role of lexical
overlap in more detail. We briefly explain the sub-
sets we select for our experiments (each containing
15.000 prime/target pairs), as well as two additional
sub-conditions we introduce to the lexical overlap
category.

Core contains a) no lexical overlap exists between
prime and target sentences, not even between
function words, and b) no semantic associa-
tion exists between prime and target exists in
the USF free association norms dataset (Nel-
son et al., 2004). In our experiments, we use
the Core condition as a baseline.

Semantic Similarity contains explicit pairwise se-
mantic similarity between prime and target,
where similarity is assessed by a non-zero
human association from the USF dataset or
a minimum cosine similarity of at least 0.4
based on GPT2-large embeddings. We con-
sider three conditions : 1) all nouns are seman-
tically similar, ii) the verbs are similar, iii) all
nouns and verbs are similar.

Lexical Overlap ensures lexical items are shared
across prime and target. We consider three
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such conditions : i) all nouns overlap, ii) de-
terminers and prepositions overlap, iii) verbs
overlap. We create two additional conditions,
iv) determiner overlap and v) preposition over-
lap. This allows us to separately measure the
impact of determiners and prepositions, since
verb overlap necessitates preposition overlap.

3.4 Models

We consider the following (auto-regressive) LLMs.
For models with an * we also test their aligned
versions. PE scores are computed using the
diagnnose library (Jumelet, 2020).

GPT2-large (Radford et al., 2019): This is the im-
pactful 2019 model from OpenAl, with 774M
parameters, trained only on a (causal) lan-
guage modelling objective.

*Llama-2-7b (Touvron et al., 2023): We consider
both the 7B base model and the RLHF/PPO
aligned chat model (Ouyang et al., 2022).

*Falcon-7b (Almazrouei et al., 2023): We con-
sider both the 7B base, and the instruction-

tuned variant fine-tuned on dialogue data
taken from ChatGPT (OpenAl, 2023).

*Mistral-7b (Jiang et al., 2023): This 7B model is
the current state-of-the-art in this size bracket.
‘We also consider the instruction-tuned variant,
trained on similar data to Falcon-7b.

*Zephyr (Tunstall et al., 2023): An aligned ver-
sion of Mistral-7b using Direct Preference Op-
timization (Rafailov et al., 2023).

4 Expl: Measuring Structural Priming

We aim to better understand the asymmetrical prim-
ing effects observed in Sinclair et al. (2022), to gain
a more detailed picture of how lexical overlap af-
fects this asymmetry. We start our experimental
setup with their sentence-level approach, consider-
ing a wider range of large, contemporary LLMs. In
the next section we then examine priming effects
at a more fine-grained level.

Priming Effects are skewed and correlated We
compute the s-PE scores for the models of §3.4
on the Core condition of Prime-LM. We observe
there exists a strong negative correlation between
the PE scores of the prepositional object and the
double object. In Figure 1A we plot those results

as a scatter plot in the space formed by PE score
for one construction against PE score for the alter-
native construction. This representation highlights
that, for Llama-2-Chat and all the other models
we consider, the s-PE of PO constructions is nega-
tively correlated with that of DO constructions (p:
-0.72 to -0.77), and that only for a fraction of sen-
tences there exists a positive priming effect in both
directions (26 to 38%).

This correlation and skew towards one of the two
constructions were already observed by Sinclair
et al. (2022) for GPT2-large and other relatively
small LMs. Interestingly, correlation and skew do
also exist in the newest, large LMs, and, more-
over, are even more pronounced. Figure 1C shows
the mean s-PE in the same PE space for all the
LLMs we considered. GPT2-large shows the least
skew, Llama-2-chat the most (for completeness,
the plot also shows the strength of the correlation
between the PE(PO) and PE(DO) scores, as well
as the spread of the distribution.) Note that this
observed behaviour of large LMs is less consistent
and far more asymmetric than results in the human
literature, where priming effects, while typically
asymmetric (Bock, 1989) , are generally observed
to be positive for both structures.

Lexical overlap balances Priming Effects Next,
we investigate the priming effects of the LMs where
either the semantic similarity or lexical overlap be-
tween prime and target is increased. The results
for lexical overlap are shown in Figure 1C-E (ad-
ditional plots regarding semantic similarity are in
Appendix B). The plots show that an increase in
lexical overlap of any type moves all models more
solidly into the upper-right quadrant of the PE-
space. That is, it pushes all LM priming behaviours
to become both stronger and more balanced (less
skewed towards one or the other construction). This
is especially prevalent for the overlap in verbs and
function words. We will explore the impact of these
factors in more detail in the next section.

S Exp2: Locating Structural Priming

Sentence-level analysis does not allow us to inves-
tigate individual token-level predictions, making it
impossible to examine where in the target sentence
priming effects are at their strongest. To better un-
derstand the s-PE results of §4 we thus compute the
token-level w-PE scores for the same conditions.
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A. Llama-2-chat (iull s-PE)

B. Llama-2-chat (s-PE from IV,)
p:-0.52

balanced
priming

s-PE(PO) s-PE(PO)
C. Core (®) — D. Core (®) — E. Core (®) -
All Nouns Overlap (®) Preposition Overlap (®) Verb + Prep. Overlap (®)
e
.e

* P~
falltl:on-7g g fall(l:on-ﬂz) fall(l:on-ﬂz) C 8
mis"t‘pa]l%b \. mis"t‘rrgla7b ‘.Y mis?gla7b ‘. E
gpt2large gpt2large gpt2large o

s-PE(PO) s-PE(PO) s-PE(PO)

Figure 1: We plot PE results against one another. The four quadrants in this ‘PE space’: priming where the
PE is positive in both directions, priming where it’s only positive in one, and inverse priming when the PE is
negative in both directions. There exists a strong negative correlation between priming effects of opposite structures
(A). Only a small portion of the data is primed in both directions for Core. Priming becomes more balanced when
measured from the point of divergence in the target (B, §5), or when lexical overlap is increased (C-E).

A. Core B. All Nouns Overlap C. Preposition Overlap D. Verb + Prep. Overlap E. Determiners Overlap F. Det. + Prep. Overlap
PO (s-PE DO (s-PE: 1.83) PO (s-PE: 0.43] DO (s-PE PO (s-PE: 0.42) DO (s-PE: 2.00 PO (s-PE: 2.1 DO (s-PE: 4.18) PO (sPE DO (s-PE: 3.46) PO (s-PE ) DO (s-PE: 3.93)
w |
: / b L
e P B e ew | B plew wl . DZww | e wWew Dl Zaw
N, P1DT5N; N2DT3N3 . N2 P1DTsN; . NpDTsN; . N2 PiDTsN3 . NoDTsNs . N, P1DT5N; . NaDTsN; . N2 P1DT5N; N,DT3N3 . N2 PiDTsN3 . NoDTsNs .
‘ .
| °
b &
~ L 2
g N, ‘ M
w Y
3 B { ¥ ] >
*. " \
w-PE(PO) w-PE(PO) w-PE(PO) w-PE(PO) w-PE(PO) w-PE(PO)
Model Token
¥ Falcon-7b ® GPT2darge 4 Llama-2-chat  + Mistral-7b-instruct N5 x NGO ® DT x DTS DOT x DOTP?
A Falcon-7b-instruct B Llama-2 X Mistral-7b ®  Zephyr

PPOx DT @ NO x N§©

Figure 2: The w-PE scores for the Core and Lexical Overlap conditions. Scores are grouped by token (based on
colour) and model (based on shape). To exemplify how these Priming Space coordinates map to a bar chart, we
show the Mistral-7b-instruct scores at the top of each plot. Note that the Core results are plotted at a different scale
than the other conditions. PO: the boy . DO: the ball

Structural Divergence Figure 3 shows the aver-
age w-PE scores for Llama-2 on the Core condition,
which exhibits much higher sentence-level priming
effects for the DO sentence than for the PO sentence.
The token-level scores show that the treatment of
the two sentences starts to diverge from the posi-
tion of the second noun onwards (the second noun
is is the patient for PO, whereas it is the recipient
for DO). Prior to that, the target sentence is, in

fact, the same for both PO/DO alternations and as
such will be inversely proportional to each other:
scores up till this point merely show a target’s bias
towards a prime of a particular structure, regardless
of structural congruence.

This provides a partial explanation for the strong
negative correlation between s-PE scores that was
observed in §4: since (roughly) half of s-PE score
is made up of w-PE scores that have a perfectly
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A. w-PE(PO) (s-PE: -0.07) B. w-PE(DO) (s-PE: 1.32)

w-PE

DT1N; V;DT>N, P;DT3N3 .

The girl gave the ball to

DT1N; V;DToN>DT3N;3 .

the boy The girl gave the boy the ball

Figure 3: The token-level Priming Effect reveals which
token predictions in the target sentence contributed the
most to the overall sentence-level Priming Effect, here
averaged for Llama-2 over the Core. It is inversely
correlated up to the point of divergence between the two
structures, at the position of the second noun (N3). Only
after that point can the congruence between prime and
target start playing a role.

negative correlation of -1, the overall correlation of
s-PE scores is strongly affected by this. Based on
this insight we compute a modified s-PE score that
is only measured from the point of target sentence
divergence (s;):

ss-PE(X) = Z w-PE(X, 1) 4)

>4

This allows us to confirm that the negative correla-
tion between PO and DO decreases with ss-PFE (p:
-0.76 to -0.52 for Llama-2-chat; Figure 1B).

Lexical Dependence We focus our analysis on
lexical overlap (Figure 2), which showed the
strongest balancing effects in §4.! Priming be-
haviour could be distributed in two ways across the
target: either uniformly or peaked at a particular
token, and either balanced or skewed towards one
structure. From the point of structural divergence,
we have the noun (N3) of the first noun phrase,
followed by the function word (P;:PO, DT3:DO)
that marks the start of the second noun phrase of
the construction. Priming effects for No stem from
cues with respect to the semantic role (e.g.
ballpo | boypo). Numerous works in production
have shown priming to already take place at this
location (Pickering and Branigan, 1998; Cleland
and Pickering, 2003). We would therefore expect
to find some evidence of balanced priming from
the Ny within the core condition. However, the
skewed priming we observe in Core (2A) suggests
that the semantic role of the noun does not play as
important a part in structural prediction for models.

'Results for semantic similarity are provided in Ap-
pendix C.

Indeed, we observe the most consistent and bal-
anced priming effects from the start of the second
NP (w-PE(PO, P;), w-PE(DO, DT3)), suggesting
that models only narrow their structural predictions
later on within a sentence.

Next, we observe the local impact of lexical over-
lap between prime and target. For overlapping
nouns, we can see that the w-PE for both Ny and N3
has increased significantly for both PO and DO. The
other tokens, on the other hand, are not impacted
by this overlap at all: the priming boost manifests
itself solely at the position of the overlapping token.
For verb overlap, we show that the increased s—PE
scores here stem from the verb as well as the prepo-
sitional overlap (necessary when sharing the same
verb and preserving semantics) resulting in signifi-
cantly larger w-PE(PO, P) scores (Figures 2C and
D). Interestingly, verb overlap also leads to a boost
in No and N3, compared to the Core. This shows
that, under this condition, the model is aware of
the expected semantic role in the N9 position: the
verb overlap has primed the model in the DO case
to expect an animate entity here (and inanimate for
PO). Unlike findings in the human literature for
both production (Bock, 1989) and comprehension
(Traxler, 2008), we observe prepositional overlap
strongly boosting priming effects in the language
models we investigate.

6 Exp3: Explaining Structural Priming

We now take a closer look at the factors that im-
pact Priming Effects by conducting a regression
analysis inspired by factors from corpus linguistics
and production studies (Gries, 2005; Jaeger and
Snider, 2013). Following Gries (2011), we make
use of linear mixed effects models to determine
salient word and sentence level factors that predict
priming, to discover whether models display con-
sistent behaviour with respect to one another and
to human patterns of priming in production they
may have learnt. We first describe the factors we
use in our regression analysis in §6.1, and present
the results in §6.2.

6.1 Priming Factors

We investigate the two broad categories of factors
discussed in §2: lexical dependence, making use
of the various conditions of the Prime-LM corpus
(§3.3), and inverse frequency, choosing to focus on
sentence-level surprisal and the structural prefer-
ence of the verbs used.
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Lexical Dependence We include pairwise token-
level semantic similarity across prime and target
content words, measured as the cosine similarity
of the word embeddings taken from GPT2-large.
We also include sentence-level similarity, based on
the sentence embeddings of MPNet (Song et al.,
2020), a high-performance sentence encoder. Here,
we compute the cosine similarity between the PO
prime and target embeddings. We add lexical over-
lap as a binary factor per token to our analysis.
This allows us to separate overlap effects in condi-
tions where multiple tokens overlap, which is not
possible in corpus-level experiments.

Surprisal We include the surprisal of the congru-
ent and incongruent prime and target, based on the
negative log likelihood of the language model itself.
Surprisal gives us a measure of how predictable or
expected the sentences are as a whole, encompass-
ing within-sentence collocation frequency effects.

Structural Preference Whereas corpus-based
analysis of preferences is often based on nor-
malised frequency statistics (Gries and Stefanow-
itsch, 2004), we base preference on the average
probability difference of a verb in two alternating
structures:

— log P(s"°)

&)
where V is the set of sentences containing verb v.
This score expresses a verb’s preference towards
a particular structure on a scale from DO to PO.
Hawkins et al. (2020) and Veenboer and Bloem
(2023) provide a similar methodology for measur-
ing structural preferences in LMs. For computing
these scores we make use of the prime sentences
from the Core condition of PrimelLM.

PO-pref(v) ‘V’ ZlogP o)

seV

A. GPT2-large
PO Preferred

B. Llama-2
PO Preferred

PO-pref(v)
o

ptg

ke
purchased ®
took 3

fed
. 3
designed =

took 3
promised =

delivered ==t
g
ou
th
kept ©
purchased ®
supplied &
designed g
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delivered ==
g
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Figure 4: Structural preferences for GPT2-large and
Llama-2, expressing the preference of a ditransitive verb
with respect to a prepositional object versus a double
object construction. The verb order of Llama-2 is based
on the sorted order of GPT2-large.

The majority of verbs have a preference towards
PO structure (as an example, Figure 4 contains the
preferences of GPT2-large and Llama-2). This is
not in line with dative usage preferences found
in English, although it varies across vernaculars:
some production and corpus studies suggest Amer-
ican English has a 2:1 preference towards DO con-
structions Bock and Griffin (2000); Grimm and
Bresnan (2009), whereas Australian English has a
PO preference (Bresnan and Ford, 2010). Prefer-
ence towards PO in LMs may be confounded by
transitive verb phrases followed by a prepositional
modifier.

We also compute the Spearman correlations be-
tween the preference orders of all LMs and humans
(Gries and Stefanowitsch, 2004), which reveals that
there exists a high degree of variance across models
and low correlation across models and human pref-
erence order (full figure in Appendix D). We leave
a more thorough investigation of these differences
open for future work that can take inspiration from
established linguistic findings (Gropen et al., 1989;
Arnold et al., 2000).

6.2 Modeling Priming Effects

Linear Mixed Model We fit a linear mixed
model (LMM) using the factors of §6.1 that are
added as fixed effects (Baayen et al., 2008). We
fit two LMMSs: one for predicting ss-PE(PO) and
one for ss-PE(DO), which will provide insights
whether different factors predict these effects. Fit-
ting is done based on 30.000 items: 15.000 items
are sampled for the Core condition, and 15.000
items are sample from the Semantic Similarity and
Lexical Overlap conditions. This provides a bal-
anced dataset of the Core and conditions that di-
verge from this baseline. We add a by-LM random
intercept to account for individual model biases,
akin to by-speaker random effects in human prim-
ing studies (Gries, 2011; Jaeger and Snider, 2013).
All factors are centred and scaled to unit variance.

Results We report full LMM with coefficients in
Figure 5, next to the reported effects found in the
literature on human priming (z-scores and standard
errors in Appendix E). The LMM reaches an R? of
0.257 (PO) and 0.227 (DO), which indicates that a
large fraction of PE could still be predicted based
on other factors and more complex interactions.
We leave a more extensive exploratory analysis for
future work, and focus on confirmatory hypothesis
testing for now (Tukey, 1980; Barr et al., 2013).
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A. ss-PE(PO) B. ss-PE(DO)
H LM H LM
0.666"

1.644"

B 1.585"
—0.403"
0.490"

Figure 5: LMM coefficients for (A) predicting ss-
PE(PO) and (B) ss-PE(DO), shown side-by-side with
reported effects for predicting human priming in
production- and corpus-based studies. Significant LLM
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Semantic Similarity As in human production
and corpus linguistics findings, we observe prim-
ing effects are predicted by semantic similarity be-
tween prime and target words (Snider, 2009), with
the most consistent effects across structures for
noun similarity (Cleland and Pickering, 2003), al-
though the effect is relatively weak compared to
other factors. Sentence similarity however, was
not a predictive factor. In part this could be due
to the sentence encoder not being sensitive to
the structurally similar PO items that we use for
computing sentence-level similarity. Incorporating
the feature-based Grower similarity employed by
Snider (2009) could be an alternative to explore the
relation between sentence-level semantic similarity
and priming.

Lexical Overlap We observe that lexical overlap
is the strongest predictor of priming behaviour, in
particular for primes sharing the same verbs, prepo-
sitions and determiners as the targets. This is in
line with human findings; the meta analysis of Ma-
howald et al. (2016) shows lexical overlap is ‘the
most consistent moderator of syntactic priming’.
We also observe that shared determiner overlap is
consistently of high importance when predicting
model PE, something observed but given far less
attention in the human literature. Contrary to hu-
man findings in both production (e.g. Bock, 1989)
and comprehension (e.g. Traxler, 2008), preposi-
tional overlap is one of the strongest priming predic-

tors. This indicates that priming in LMs is strongly
driven by lexical cues, tying in with our observa-
tion in §5 that priming effects are highly influened
by single token prediction, and this is driven more
strongly by function than content words.

Surprisal Similar to Jaeger and Snider (2013)
and Fazekas et al. (2024), we find that priming
effect is predicted by prime surprisal, in both di-
rections for PO and DO. This is evidence for an
inverse frequency effect: a less frequent/plausible
prime leads to an increase in priming effect. Target
surprisal is less significant: only DO surprisal is a
significant predictor.

Structural Preference We find that verb prefer-
ence plays a highly predictive role, which again
provides evidence for inverse frequency effects. A
verb that has a structural preference for PO will
lead to a higher DO priming effect, and vice versa,
in line with results observed in human data (Gries
and Wulff, 2005; Gries et al., 2005). This provides
further explanation for the DO skewed priming ef-
fects that models display: for most of DO targets,
their primes will not be in the preferred structure,
thus boosting priming effects.

7 Discussion & Conclusion

In this paper, we seek to better understand the mech-
anisms that may underlie structural priming be-
haviour in LLMs. Borrowing insights from empiri-
cal and theoretical work on priming in humans, we
investigate how, where and why a range of modern
LLMs assign higher or lower probabilities to target
sentences depending on preceding context, allow-
ing us to investigate the extent to which language
models are influenced by structure and semantics
when making upcoming predictions.

Do models demonstrate structural priming?
We find, in line with Sinclair et al. (2022), that mod-
els exhibit asymmetrical priming effects, and that
this is even more pronounced in newer, larger LMs.
By introducing a token-level priming effect we are
able to locate more precisely potential sources of
this asymmetry. We observe the direction of the
asymmetry in PE is consistently inverse to priming
effects in humans: where humans consistently dis-
play higher PE for the PO alternation, rather than
DO, which we observe in models. We speculate that
the verb preference effects we find in §6, which are
predictive of PE as in humans, may play a role
in this. Finally, through observing priming at the
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token level, we observe that balanced priming in
models is only visible from later on within the tar-
get, later than we may expect the same effects to
be observed in humans.

How do humans and models compare? In pre-
dicting model PE using human factors known to
predict priming in humans and in human corpora,
we observe that lexico-semantic and frequency-
related predictors of priming in humans also pre-
dict priming in LLMs. However, although we find
lexico-semantic overlap of content words to be a
reliable predictor of priming, we find that function
word overlap plays a surprisingly predictive role,
which has not been shown to be the case for humans
with dative constructions (Bock, 1989; Pickering
and Ferreira, 2008). Similar to human findings,
we observe—consistently across models—inverse
frequency effects of prime surprisal and verb prefer-
ence (e.g. Gries and Wulff, 2005; Jaeger and Snider,
2008). This demonstrates that models are able to
pick up on highly abstract factors influencing lan-
guage predictions in humans from corpora, and
highlights how influential seemingly small proper-
ties of the context are when it comes to upcoming
model predictions.

What are the implications of implicit learning?
We showed that priming is driven by similar in-
verse frequency effects observed in human prim-
ing. From a broader perspective, this is a striking
finding. Inverse frequency effects have been ar-
gued to stem from an error-based implicit learning
procedure (Chang et al., 2006): we adapt future
predictions proportionally to recent predictive er-
rors. This cognitive mechanism then leads to de-
tectable patterns in human-produced corpus data
(Jaeger and Snider, 2013), on which LLMs are
trained. LLMs are thus able to pick up on this
highly abstract pattern, which shows that their prim-
ing behaviour is far more intricate than a simple
repetition-based mechanism. An interesting en-
deavour for future work would be to test this find-
ing in a setting with control over data distribution
(e.g. Jumelet and Zuidema (2023b)), to ensure that
inverse frequency effects do not stem from some
other indirect effect of language learning.

Comprehension and production in LLMs We
build on Sinclair et al. (2022), who design the
priming effect metric to measure comprehension
in LLMs forcing its prediction on a fixed target
without allowing for open-ended production. It is

important to remember, however, that through the
way LLMs are trained, their predictions will be
driven by human production patterns in the train-
ing data, thus motivating our choice to base our
predictions on findings from corpus and production
studies. Although the mechanisms for comprehen-
sion and production in LLMs are highly linked—
they rely on the same output distribution—it would
be interesting to investigate priming in LLMs in a
generation-based setting as well. A thorough in-
vestigation in this direction may provide deeper
insights into the relation between LLM behaviour
and cognitive theories of human language process-
ing (e.g., Dell and Chang, 2014).

Outlook Language models as cognitive models
can potentially aid in discovering important prop-
erties of human linguistic behaviour (Futrell et al.,
2019; Linzen and Baroni, 2021; Wilcox et al.,
2023); we thus view our results as a contribution
to defining the border where human patterns are
replicated in models. Looking outwards from this
detailed analysis, future studies could investigate
the extent to which these priming effects influence
structural repetition patterns in generation, comple-
menting existing work finding priming-like lexi-
cal repetition effects in LLM generation (Molnar
et al., 2023). Furthermore, a more detailed investi-
gation in the exact nature of the (potentially) hier-
archical representations that underlie priming be-
haviour could take inspiration from parsing-based
theories of priming (Prasad and Linzen, 2024), or
deploy techniques from interpretability research to
uncover hierarchical structure (Murty et al., 2023;
Jumelet and Zuidema, 2023a). Not only will such
investigations provide deeper insights into the cog-
nitive plausibility of LLMs (Beinborn and Hollen-
stein, 2023), but it may also yield a better under-
standing of the mechanisms underlying in-context
learning (Min et al., 2022; Han et al., 2023).

Limitations

One clear limitation of our work stems from the
specific nature of our analyses. More work remains
to be done to investigate whether these results gen-
eralise across other constructions within English or
further extend to other languages. It also remains
an open question whether the constraints within the
dataset we use influence our outcomes: do these
results generalise to a wider range of vocabulary,
or a more complex set of sentences. Additionally,
even within the scope of our analyses, the effects of
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model size on the results we observe are interesting,
but would need to be tested more systematically to
draw firm conclusions from them. Likewise, while
we purposefully include a selection of base models
and their alignment tuned variants to investigate
whether there are any striking differences, the sam-
ple is too small to make any meaningful inference.
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B Sentence-level asymmetry effects

The increased semantic similarity, in Figure 6, can
be seen to primarily have an effect on boosting the
PE score of the dominant structure (DO), while
leaving the PE score of the opposite structure un-
affected (PO). Furthermore, it can be seen that the
the effect of increasing the similarity of nouns and
verbs is not linearly additive: increasing similarity
of both nouns and verbs has a far greater impact
than the individual conditions combined.

C Token-level PE for Increased Semantic
Similarity

The token-level PE scores for the 3 conditions with
increased semantic similarity are shown in Figure 7.

D Preference Order Correlation

The Spearman correlation between LMs and human
structural preference order are shown in Figure 9.
Surprisingly, there exists a high degree of variation
in preference order, both within models and across
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Figure 9: The Spearman correlation between LMs and
human structural preference order.

models and human preference. Only Falcon-7b
and its instruction-tuned variant retain a high pref-
erence overlap; all the other aligned LMs diverge
quite strongly from their base model. None of the
LMs have a significant correlation with respect to
the reported human preference order, which is in
contrast to Hawkins et al. (2020)’s positive findings
of strong correlations between model and human
preferences. We leave a more thorough investiga-
tion of these differences open for future work.

E Linear Mixed-effect Model Summary

The LMM results including coefficients, standard
error, z-score and p-values are shown in Table 1
and 2.

F Model Size and Alignment

Interestingly, although the sample is too small to
make broad generalisations, in the models we test,
we observe larger models exhibit more skewed
priming behaviour in the core, and higher suscep-
tibility to lexical boosting than the smaller GPT2.
We also observe no strong patterns to distinguish
alignment tuning from base models, in fact, one sur-
prising finding is the degree of difference in PE for
a given prime target pair that a base and alignment
model from the same base will have (See Figure 8,
which has the models grouped by base model).
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0 Model: MixedLM Dependent Variable:  s5-PE(PO)
1 No. Observations: 30000 Method: REML
2 No. Groups: 8 Scale: 1.8203
3 Min. group size: 3655 Log-Likelihood: -51620.4121
4 Max. group size: 3858 Converged: No
5 Mean group size:  3750.0

Coef.  Std.Err. z P>zl [0.025 0.975]
Intercept -0.072  0.111 -0.652 0.515 -0.289 0.145
sim(n1) 0.041  0.010 4.260 0.000 0.022  0.060
sim(nz) 0.097  0.009 10.381  0.000 0.079  0.115
sim(ng) 0.109  0.009 11.652  0.000 0.091  0.127
sim(v) 0.010  0.009 1.092 0.275 -0.008 0.027
sim(s) -0.000 0.017 -0.008 0994 -0.034 0.034

N7 overlaps -0.148  0.052 -2.850 0.004 -0.250 -0.046
N> overlaps 0.696  0.056 12.510  0.000 0.587  0.805

N3 overlaps 0473  0.050 9.405 0.000 0374 0571

Det. overlaps  1.010  0.026 38.149  0.000 0.958  1.062

Verb overlaps  1.491  0.046 32.578  0.000 1.401 1.581

Prep. overlaps  1.025  0.027 38.574  0.000 0.973 1.077

—P(prime,,,) 0.390  0.023 16.788  0.000 0.345  0.436

—P(primeg,) -0.259  0.025 -10.504 0.000 -0.307 -0.210
—P(target,o) 0.044  0.023 1.885 0.059 -0.002 0.089

—P(targetq,) 0.055  0.025 2.223 0.026 0.006  0.103

PO-pref(v?) -0.129  0.010 -13.377  0.000 -0.148 -0.110
PO-pref(v') -0.029 0.010 -3.041 0.002 -0.048 -0.010
Group Var 0.097  0.061

Table 1: Raw LMM results for predicting s;-PE(PO).

0  Model: MixedLM  Dependent Variable: ss-PE(DO)
1 No. Observations: 30000 Method: REML
2 No. Groups: 8 Scale: 2.2337
3 Min. group size: 3655 Log-Likelihood: -54688.2103
4 Max. group size: 3858 Converged: No
5 Mean group size:  3750.0

Coef.  Std.Err. z P>zl [0.025 0.975]
Intercept 1.339  0.111 12.047  0.000 1.121 1.557
sim(n1) 0.071  0.011 6.701 0.000 0.050  0.092
sim(nz) 0.021  0.010 2.018 0.044 0.001  0.041
sim(ns) 0.122  0.010 11.826  0.000 0.102  0.142
sim(v) 0.171  0.010 17.197  0.000 0.151  0.190
sim(s) -0.044  0.019 -2.331 0.020 -0.082 -0.007

N; overlaps 0.456 0.057 7.966 0.000 0.344 0.568

N> overlaps -0.146  0.061 -2.384 0.017 -0.266 -0.026
N3 overlaps 0.717  0.055 12947  0.000 0.608  0.826

Det. overlaps 1.671 0.029 57289  0.000 1.614 1.728

Verb overlaps  1.535 0.050 30.433 0.000 1.436 1.634

Prep. overlaps  0.244  0.029 8.349 0.000 0.187  0.302

—P(prime,,) -0.333  0.026 -12.989 0.000 -0.383 -0.283
—P(primeg,) 0.416  0.027 15.332  0.000 0.363 0.469

—P(target,,) -0.045  0.026 -1.759 0.079  -0.095 0.005

—P(targetq,) 0.311 0.027 11452  0.000 0.258 0.365

PO-pref(v?) 0.231 0.011 21.761 0.000 0.210 0.252

PO-pref(v’) 0.215 0.011 20.262  0.000 0.194 0.236

Group Var 0.097  0.031

Table 2: Raw LMM results for predicting ss-PE(DO).
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