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Abstract

Large language models have achieved remark-
able success in general language understand-
ing tasks. However, as a family of generative
methods with the objective of next token pre-
diction, the semantic evolution with the depth
of these models are not fully explored, unlike
their predecessors, such as BERT-like architec-
tures. In this paper, we specifically investigate
the bottom-up evolution of lexical semantics
for a popular LLM, namely Llama2, by probing
its hidden states at the end of each layer using
a contextualized word identification task. Our
experiments show that the representations in
lower layers encode lexical semantics, while
the higher layers, with weaker semantic in-
duction, are responsible for prediction. This
is in contrast to models with discriminative
objectives, such as mask language modeling,
where the higher layers obtain better lexical se-
mantics. The conclusion is further supported
by the monotonic increase in performance via
the hidden states for the last meaningless sym-
bols, such as punctuation, in the prompting
strategy. Our codes are available at https:
//github.com/RyanLiut/LLM_LexSem.

1 Introduction

GPT-like large language models (LLMs) (Brown
et al., 2020; Touvron et al., 2023) have recently
demonstrated impressive performance on various
understanding and generative tasks, shifting from
the pretraining-then-finetuning approach employed
by BERT-like models (Zhao et al., 2023). However,
existing research (Ethayarajh, 2019) suggests that
the contextual representations of GPT-like models
exhibit subpar performance in downstream tasks,
struggling to fully capture the semantic nuances of
words. This discrepancy raises a crucial research
question: To what extent and through which layers
do LLMs encode lexical semantics?
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Figure 1: Key Differences between BERT and Llama2
Language Models. Blue and red lines indicate the in-
formation flows of understanding and predicting. The
"understanding" refers to capture the lexical semantics
by leveraging context. The blue line from the context to
the current word indicates the flow of understanding.

Previous research on intermediate layer represen-
tations in BERT has revealed important linguistic
information, including its hierarchy. For instance,
BERT encodes surface features at the bottom, syn-
tactic features in the middle, and semantic features
at the top (Jawahar et al., 2019). However, contex-
tual representations in LLMs have received less at-
tention due to structural differences and challenges,
as illustrated in Figure 1. Firstly, LLMs employ
a decoder-only strategy, which restricts their abil-
ity to access only preceding context during infer-
ence. Consequently, LLMs struggle to differentiate
between homonymous meanings of words such
as "bank" in the case of "the bank of the river"
and "the bank to save money," due to the shared
left context "the". Furthermore, LLMs are trained
to predict the next token, resulting in varying de-
grees of comprehension of historical and predictive
contexts across layers (Wang et al., 2023a; Voita
et al., 2019). In contrast, BERT focuses on masked
word restoration through mask language modeling
(MLM), where both understanding and prediction
processes are targeted for the same word.

In addition, the extraction of contextual word
representations from generative Large Language
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Models (LLMs) often proves to be more benefi-
cial than those derived from models akin to BERT
in certain scenarios. Firstly, as generative LLMs
are increasingly recognized for their robustness
and prevalence as foundational models (Zhao et al.,
2023), we only obtain “autoregressive embeddings”
without compromising their generative capabili-
ties. Secondly, these LLMs are consistently trained
with billions of parameters across expansive web-
scale datasets, thereby exhibiting a significantly
greater potential and anticipated superior perfor-
mance compared to their much lighter counterparts,
such as BERT-like models.

Given these observations, we hypothesize that
GPT-like LLMs encode lexical semantics in lower
layers while making predictions, potentially lead-
ing to the forgetting of information related to cur-
rent tokens in higher layers.1 This hierarchical
behavior suggests a dynamic interaction between
understanding and prediction in generative LLMs,
as indicated by the view of information flow in re-
cent studies (Wang et al., 2023a; Voita et al., 2019).

To validate our hypothesis, this study delves into
the examination of lexical semantics in LLMs by
analyzing how the hidden states at each layer reflect
word meanings. In particular, we investigate the
understanding of lexical semantics in the popular
open-source LLM, Llama2 (Touvron et al., 2023),
utilizing the word in context benchmark (Pilehvar
and Camacho-Collados, 2019). We employ various
input transformation and prompting strategies to
fully utilize the contextual information. The results
suggest that lower layers of Llama2 capture lexical
semantics, while higher layers prioritize prediction
tasks. These findings offer practical insights into
determining which layers of hidden states to utilize
as representations of the meaning of the current
word in GPT-like LLMs.

2 Related Work

2.1 Interpretability of language models
Interpretability of LLMs can be categorized into
mechanistic (bottom-up) and representational (top-
down) analysis (Zou et al., 2023). Mechanistic
interpretability focuses on translating model com-
ponents into understandable algorithms for humans,
typically by representing models as computational
graphs and identifying circuits with specific func-
tions (Olsson et al., 2022; Geiger et al., 2021; Wang

1We refer to lower layers as those closer to the inputs,
while higher layers as closer to the outputs.

et al., 2022). On the other hand, representational
analysis abstracts away lower-level mechanisms
and explores the structure and characteristics of
representations. Probing, an effective approach in
top-down interpretability, can be classifier-based
or geometric-based. Classifier-based probing trains
additional classifiers for specific proxy tasks, in-
cluding syntactic analysis (Hewitt and Manning,
2019), semantic roles (Ettinger, 2020), named en-
tity recognition (Wang et al., 2023b), and world
knowledge (Petroni et al., 2019). These linguistic
features have demonstrated a rich hierarchy, span-
ning from lower layers to higher layers (Jawahar
et al., 2019). Geometric probing without additional
classifiers, examines the properties of the repre-
sentational space itself. For example, difference
vectors, obtained by subtracting base vectors, can
detect linguistic features such as scalar adjective
intensity (Garí Soler and Apidianaki, 2021) and
stylistic features (Lyu et al., 2023). Furthermore,
methods from the view of information flow indicate
that models with autoregressive objectives (Voita
et al., 2019) and specifically LLMs (Wang et al.,
2023a) gather information in shallow layers while
making predictions in deep layers.

2.2 Representations of Lexical Semantics

Lexical semantics, the study of word meanings,
is a prominent field in both linguistics and com-
putational research. Linguistics offers rich de-
scriptive entries, known for their high dimension-
ality, contextual modulation, and discreteness (Pe-
tersen and Potts, 2023). Early rule-based mod-
els, including the Generative Lexicon (Pustejovsky,
1998) approach, used discrete feature representa-
tions. In contrast, neural models represent words
as compact continuous vectors to avoid arbitrary
feature selection. Static vector models, such as
word2vec (Mikolov et al., 2013), Glove (Penning-
ton et al., 2014), and fastText (Mikolov et al., 2018),
provide unified representations for all word oc-
currences. To distinguish word meanings in var-
ious contexts, especially for polysemous words,
researchers have developed context-sensitive rep-
resentations. Notable models include Elmo (Pe-
ters et al., 2018), BERT (Kenton and Toutanova,
2019), and the GPT family (Radford et al., 2019;
Brown et al., 2020). While LSTM-based Elmo
and transformer-based models offer bidirectional
context around the target word, the GPT family
focuses solely on context preceding the query word
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as a generative model. Large language models
(LLMs) (Touvron et al., 2023; Brown et al., 2020)
follow training mechanisms similar to GPT and
have shown competitive performance via prompt-
ing engineering (White et al., 2023) compared to
BERT-like models, e.g., in lexical tasks like word
sense disambiguation (Kocoń et al., 2023) and
named entity recognition (Wang et al., 2023b). Our
research emphasizes evaluating the quality of rep-
resentations in LLMs to enhance interpretability,
rather than focusing on prompting strategies.

3 Experimental Design

3.1 Probing

We leverage the Word in Context (WiC) dataset as
a proxy task for exploring lexical semantics (Pile-
hvar and Camacho-Collados, 2019)2. This well-
structured benchmark presents a binary classifi-
cation challenge - determining whether identical
words convey the same meaning in distinct contexts.
Our approach involves utilizing 638 instances from
the development set to fine-tune the optimal hyper-
parameter, and assessing the final performance on
1400 instances from test set. We evaluate results
based on accuracy and calculate accuracy sepa-
rately for instances with different parts of speech.

3.2 Settings and Models

For a given word w3 within context c, Llama2 ex-
tracts hidden states hi ∈ RD across each of its 32
layers, where D is 4096 in Llama2. The cosine
similarity of w in paired contexts (ca, cb) is cal-
culated as sabw . Subsequently, sentence pairs are
classified as true if sabw exceeds a threshold γ, and
false if it falls below γ. The optimal γ is deter-
mined through development dataset, with distinct
values potentially assigned for each layer to ac-
commodate varying similarity ranges. The optimal
values of γ are listed in Appendix A.1. To address
potential anisotropy in the embedding space, we
employ standardization across samples following
prior research (Ethayarajh, 2019).

We employ different input variants for Llama2.
The base setting uses the original context c with lex-
ical representations hi at the target position. Since
w cannot access the context behind it in this set-
ting, we repeat the original context and obtain hi
in the second context, ensuring all information is

2https://pilehvar.github.io/wic/
3We average the hidden states for tokens within the word

as the final word representation.

setting input

base the bank of the river
repeat the bank of the river the bank of the river
repeat_prev the bank of the river the bank of the river
prompt In this sentence “the bank of the river”,

“bank” means in one word :

Table 1: An example to show different input formats in
three settings. Bold token positions are used as hidden
states hi of target words. We highlight that the bold
final colon in the prompt setting is used to extract hi.

left of w. This configuration is referred to as re-
peat. We also explore the word before the target
one to valid the predictive ability in higher layers,
which is denoted as repeat_prev. Another setting
is inspired by the prompting strategy proposed in
the paper (Jiang et al., 2023). Here, we modify the
context c as: The w in this sentence: c means in
one word :. Then, we calculate the representation
from the position of the last token, i.e., the final
colon :, as hi and we denote this as prompt. An
example is provided in Table 1.

In order to compare autoregressive generative
models with bidirectional models, we conduct
experiments on BERT-large4, which consists of
25 layers, a hidden dimension of 1024, and
336M parameters. Additionally, we consider
other word-level contextualized embedding meth-
ods, such as WSD (Loureiro and Jorge, 2019), Con-
text2vec (Melamud et al., 2016), and Elmo (Peters
et al., 2018), as mentioned in the dataset paper (Pile-
hvar and Camacho-Collados, 2019)5.

4 Results and Analysis

Table 2 presents the overall performance. Llama2,
as a generative model, achieves comparable results
to bidirectional and non-regressive BERT models,
outperforming non-transformer models like Elmo.
This suggests that LLMs have the potential for
word-level understanding, even though it is not
explicitly trained for this capability. As expected,
the prompting strategy achieves the highest accu-
racy among all the Llama2 variants. This approach
incorporates downstream tasks into the generative
process during LLM training and has proven to be
popular and effective in addressing both intermedi-
ate and high-level tasks in the LLM era (Zhao et al.,
2023). However, prompting relies on the choice of

4https://huggingface.co/bert-large-uncased
5It is important to note that we reproduce the result of

BERT-large, which is relatively higher than the reported per-
formance in the dataset paper.
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Method All Noun Verb

Human 80.0 - -
Random 50.0 - -

WSD 67.7 - -
BERT_large†(23) 67.8 69.1 67.6
BERT_large (22) 71.0 70.7 71.5

Context2vec 59.3 - -
Elmo 57.7 - -

Llama2_base†(6) 60.9 63.7 58.3
Llama2_base (11) 63.6 66.8 58.7
Llama2_repeat†(9) 64.5 66.4 63.4
Llama2_repeat (8) 68.1 72.7 65.6

Llama2_prompt†(28) 71.1 68.9 72.9
Llama2_prompt (21) 72.7 74.5 72.1

Table 2: Overall accuracy (%) on the WiC test set.
†indicates methods without anisotropy removal. The
numbers in brackets after the model name indicate the
number of layers for achieving the best performance.
The index begins at 0, representing the input embedding
layer and increases as the model goes deeper. This ap-
plies similarly to the remaining indices in the figures.

prompts and may not directly reveal the model’s in-
ternal understanding. On the other hand, our repeat
strategy demonstrates comparable performance to
prompting and significantly outperforms the base
version (with a 4.5 advantage gap). This simple
yet effective transformation strikes a balance be-
tween information accessibility and prompting ro-
bustness.

In terms of parts-of-speech, nouns generally ex-
hibit higher accuracy than verbs, as evidenced by
a 7.1 advantage gap in Llama2_repeat. We also
observe that in the base setting, verbs exhibit signif-
icantly lower accuracy, with decreases of 8.1 points
compared to nouns. This decline is attributed to
the fact that disambiguating verbs requires more
context, which is often lacking in real data preced-
ing the verbs. For instance, target verbs positioned
at the beginning of sentences, where there is no
prior context to aid in disambiguation, account for
19.2% of cases, in contrast to 14.3% for nouns.
These observations align with previous studies that
have concluded that verbs are more challenging to
disambiguate (Barba et al., 2021).

Effectiveness of Anisotropy Removal. In Ta-
ble 2, we compare methods with and without
anisotropy removal (marked by †). The results con-
sistently demonstrate the advantage of methods
with anisotropy removal, suggesting that the repre-
sentation space may collapse into a smaller cone
space, as indicated by previous work (Ethayarajh,

2019). This also offers a simple and practical ap-
proach for calculating similarity in the embedding
space.
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Figure 2: Layer-wise accuracy for different settings and
models (Llama2 and BERT_large). Star shows the best
value.

Trends Across Layers. Figure 2 illustrates the
layer-wise dynamics in two settings for Llama2
and also BERT_large. We observe non-monotonic
trends for Llama2 across layers: both the base and
repeat initially increase in lower layers before de-
creasing in higher layers. Consequently, optimal
performance is achieved at lower layers when uti-
lizing the hidden states of the target word as the
default choice. This suggests that lower layers
in LLMs encode lexical semantics, offering both
a practical insight and a pathway for interpreting
LLMs. Notice that the performance in the high-
est layer for LLMs does not lose to the worst (i.e.,
50%), indicating it has still remained word mean-
ing in some extent. Moreover, the trend contrasts
with bidirectional BERT_large model, which ob-
tains the best performance in higher layers. This
highlights a difference between these two archi-
tectures: BERT concentrates on its current word
across the layers while Llama2 aims for next token
prediction.

Balancing Understanding and Prediction. To
explore the balance between lexical understanding
and predictive capability in Llama2, we computed
the accuracy using representations of the previous
token before the target (referred to as repeat_prev)
in the repeat setting. It is important to note that
we opted for the repeat setting instead of the base
setting, given that the base setting is constrained
by incomplete information access. Furthermore,
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Figure 3: Layer-wise accuracy of Llama2 representa-
tions (repeat and prompt setting), as well as the previous
token in the repeat setting (repeat_prev). The increasing
trends observed in repeat_prev and prompt accuracies,
as well as the non-monotonic trend observed in repeat
accuracy, suggest that while the understanding ability
may be weakening, the predictive ability is improving.

we conducted a comparison with the prompt set-
ting, as depicted in Figure 3. Despite the fact that
the representations do not originate from the cor-
rect target word but are anticipated to represent the
next word, both repeat_prev and prompt exhibit a
monotonic trend and comparable result across the
layers. This observation suggests that while the
understanding may diminish (as indicated by the
inverted-U trend in the repeat setting) as layers go
deeper, the predictive ability improves.

5 Conclusion

This study investigates how Llama2’s layer-wise
representations encode lexical semantics using the
WiC dataset. Our experiments reveal that optimal
performance is achieved at lower layers for gen-
erative tasks, while predictive accuracy improves
in higher layers. This suggests that Llama2 priori-
tizes understanding before prediction as informa-
tion flows from lower to higher layers. These find-
ings offer practical guidance on extracting represen-
tations for lexical semantics tasks in engineering
applications. For example, we would opt to utilize
representations from the lower layers for lexical-
related tasks, such as POS tagging and word sense
disambiguation. Conversely, those from the higher
layers could be employed for prediction-related or
generative tasks, including text summarization and
dialogue generation. Furthermore, it also sheds
light on the interpretability of LLMs from a top-
down perspective.

6 Limitations

Probing offers a valuable viewpoint on lexical se-
mantics, but it is still unclear what kind of seman-
tics representations are exactly learned. Bridg-
ing the gap between dense, high-dimensional vec-
tors from computational models and discrete, low-
dimensional concepts from linguistic conventions
remains an important issue to consider.

Another pressing issue is the narrow focus on
only English and one large language model, namely
Llama2. Different languages and models may yield
varying effects on lexical semantic estimation. We
anticipate that future studies will refine and com-
plement our findings using a more diverse sample
of natural languages and models.

7 Ethics Statement

We do not foresee any immediate negative ethical
consequences of our research.

8 Broader Impact Statement

Understanding the linguistic knowledge that LLMs
have acquired is fundamental for the practical ap-
plication of generative AI in the real world. This
understanding not only enhances the interpretabil-
ity of these black-box “Goliaths,” but also improves
the robustness, reliability, and safety of the mod-
els. Words carry significant linguistic meaning,
while the counterpart tokens serve as the smallest
computational units for transformers. We believe
that exploring the lexical semantics within LLMs
is a foundational step in bridging the gap between
computational modeling and linguistics, thereby
highlighting the benefits of combining both fields.
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A Appendix

A.1 Optimal Thresholds for each layer
We list the optimal thresholds for each layer in
terms of three settings of Llama2, i.e., base, repeat
and prompt in Table 3. They are searched according
to the best performance in the development set of
WiC dataset.

Layer Index base repeat prompt

0 0.30 0.30 0.00
1 0.95 0.95 0.35
2 0.90 0.90 0.25
3 0.70 0.75 0.35
4 0.70 0.70 0.45
5 0.40 0.55 0.45
6 0.35 0.45 0.45
7 0.35 0.40 0.40
8 0.30 0.35 0.40
9 0.35 0.25 0.45
10 0.30 0.25 0.45
11 0.30 0.30 0.45
12 0.30 0.20 0.50
13 0.30 0.30 0.50
14 0.30 0.35 0.55
15 0.25 0.30 0.55
16 0.40 0.35 0.60
17 0.40 0.40 0.65
18 0.40 0.40 0.60
19 0.45 0.40 0.70
20 0.45 0.40 0.65
21 0.45 0.40 0.65
22 0.45 0.40 0.65
23 0.40 0.35 0.70
24 0.40 0.35 0.65
25 0.40 0.35 0.70
26 0.40 0.35 0.70
27 0.35 0.40 0.70
28 0.40 0.20 0.70
29 0.40 0.40 0.70
30 0.35 0.25 0.70
31 0.40 0.25 0.70
32 0.35 0.35 0.70

Table 3: Optimal thresholds for each layer.
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