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Abstract

The imitation of the children’s language ac-
quisition process has been explored to make
language models (LMs) more efficient. In par-
ticular, errors caused by children’s regulariza-
tion (so-called overregularization, e.g., using
wroted for the past tense of write) have been
widely studied to reveal the mechanisms of
language acquisition. Existing research has
analyzed regularization in language acquisi-
tion only by modeling word inflection directly,
which is unnatural in light of human language
acquisition. In this paper, we hypothesize that
language models that imitate the errors chil-
dren make during language acquisition have a
learning process more similar to humans. To
verify this hypothesis, we analyzed the learning
curve and error preferences of verb inflections
in small-scale LMs using acceptability judg-
ments. We analyze the differences in results
by model architecture, data, and tokenization.
Our model clearly shows child-like U-shaped
learning curves for certain verbs, but the pref-
erences for types of overgeneralization did not
fully match the observations in children.

1 Introduction

Current LLMs require a huge amount of data for
training, and this is an issue in terms of data col-
lection cost and training time. In contrast, infants
can acquire their first language with low resources.
One of the LLMs, GPT-3, requires approximately
200 billion words for learning (Brown et al., 2020),
whereas infants are required to learn only about
100 million words (Chomsky, 1959; Warstadt and
Bowman, 2022). Recent studies have shown the
benefits of mimicking human language acquisi-
tion. For instance, using child-oriented vocabulary
and/or child-directed speech (CDS) as learning data
improves learning efficiency (e.g., Huebner et al.,
2021; Eldan and Li, 2023). In the language acquisi-
tion literature, there are many studies on children’s
errors and U-shaped learning curves (Bybee and
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Figure 1: Our evaluation method for error preferences
using minimal pair data. We can track the language
model’s learning of verb inflection by comparing the
generation probabilities of two sentences, one with the
correct past form and the other with the overregularized
form.

Slobin, 1982; Pinker and Ullman, 2002; McClel-
land and Patterson, 2002). These errors and U-
shaped learning curves may seem inefficient at first
glance. However, it has been suggested that such
characteristics are crucial for efficient language ac-
quisition in children (Bowerman, 1982; Carlucci
and Case, 2013). Based on this background, we
believe that children make typical generalization
errors due to their inductive biases. By modeling
these errors, we can gain valuable insights into
these biases. To analyze whether current LMs
have a human-like learning process, we aim to
test how well LMs reproduce the characteristics
of children’s errors. Our assumption here is that
imitating human-like efficient learning processes
necessitates imitating human-like errors as well.
Therefore, to verify this hypothesis, we test the
following two research questions:

• Do the current LMs exhibit a child-like U-
shaped learning curve?

• Do current LMs make child-like mistakes?

Overregularization of acquired language knowl-
edge is one of the typical phenomena observed in
children’s language acquisition. As a case study,
we focus on the learning of past tense inflection
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in English verbs, which is often analyzed to ob-
serve overregularization and investigate the learn-
ing curve inflection in neural LMs. In addition,
previous studies showed that using CDS sorted by
the child’s age as learning data improves learning
efficiency (Huebner et al., 2021). Therefore, we
test whether the model shows human-like error
preferences by training with CDS, using the model
trained on Wikipedia as a comparison. Specifically,
we created pairs of sentences with and without over-
regularization verbs and used them as shown in
Figure 1 to evaluate what errors the model prefers
during pre-training.

In the experiment, for certain verbs, our model
shows U-shaped learning curves corresponding to
the three stages observed in children. However,
for other verbs, our model does not prefer the cor-
rect past tense until the end or does not show a
U-shaped learning curve. Furthermore, even mod-
els that show a U-shaped curve have error type
preferences different from children’s. Thus, our
results suggest that even recent LMs may not fully
reproduce human characteristics in learning curves
and error preferences in the learning process.

Our contributions are as follows:

1. We showed that using acceptability judgment
allows us to analyze the overregularization of
verbs in neural LMs.

2. We analyzed how well recent small language
models (SLMs) capture children’s learning
curves and preferences for types of errors.

3. We analyzed the overregularization of the
model by various data, tokenizers, architec-
tures, and verb types and found that LMs re-
produced a part of the characteristics of the
child’s errors in some verb types.

2 Related Work

Effects of Imitating Human Learning Processes
Huebner et al. (2021) proposed BabyBERTa, a
model for learning with age-ordered data of texts
that humans encounter by 6 years old, and suc-
ceeded in improving learning efficiency. Eldan and
Li (2023) created TinyStories, a dataset of short sto-
ries generated by GPT-3.5 and GPT-4 that contain
only words normally understood by 3- to 4-year-
olds. They improved the efficiency of learning by
using TinyStories for training data.

Generalization in the Process of Language Ac-
quisition in Children Overregularization is a
common phenomenon of the language acquisition
process in children (Marcus et al., 1992). For in-
stance, children generalize the past tense of many
English irregular verbs to the regular form at a
certain stage of the learning process. This means
children overregularize by adding -d and -ed to al-
most all verbs. There are three stages of language
acquisition in children: (1) they only memorize in-
flection, (2) they overregularize inflection, and (3)
they learn to use both irregular and regular verbs
correctly. Note that in stage (2), children make mis-
takes not only with new words but also with words
that they have been able to produce correctly. For
this reason, the learning curve of children is said
to be U-shaped (Rumelhart and McClelland, 1986).
We analyze whether the LMs learning curve also
follows a U-shape.

Modeling of First Language Acquisition Ef-
forts to model the acquisition of English past tense,
a prominent phenomenon characterized by overreg-
ularization, have been long-standing in machine
learning (Corkery et al., 2019). Rumelhart and
McClelland (1986) successfully trained a neural
model to convert English irregular verbs into the
past tense and observed a U-shaped learning curve
that showed a child-like tendency to make errors.
Then, Pinker and Prince (1988) showed many de-
fects in this model. This criticism had a huge im-
pact and popularized the idea that neural models
cannot reproduce a child’s language acquisition.
Recently, Kirov and Cotterell (2018) have shown
that the use of recent neural models eliminates most
of the criticisms of Pinker and Prince.

In recent years, there has been a growing interest
in the extent to which neural networks can capture
the language acquisition process in children. Since
2018, several studies have attempted to imitate
children’s language acquisition using recent neu-
ral models (e.g., Kirov and Cotterell, 2018; Cork-
ery et al., 2019; McCurdy et al., 2020). However,
all of these studies have directly learned the trans-
formation from verb lemma to past tense, which
differs significantly from the setting of language
acquisition in children learning from interactions
with adults or conversations among adults (Yang,
2016). In this study, rather than directly learning
inflectional morphology, we employ LMs trained
in CDS to model the natural process of language
acquisition in children.
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3 Our Approach

In this study, we analyze the neural LMs using
CDS as the training data and investigate what gen-
eralizations the model prefers at each step in the
learning process. In previous studies, the model
learned direct transformations of verbs from the
base forms to the past forms, so it was sufficient
to examine whether the generated past tense was
correct. However, since this study does not directly
learn the generation of past tense forms, an alter-
native evaluation method is necessary. Therefore,
we adopt relative acceptability judgments for min-
imal pairs (Warstadt et al., 2020), as illustrated in
Figure 1, to evaluate the model’s preferences by
comparing the generation probabilities. Such eval-
uation methods have become widely used in the
context of LM probing (Linzen and Leonard, 2018).
To assess children’s error preferences, we create
minimal pair data of children’s errors, consisting of
sentence pairs with and without overregularization.
In this task, the model is forced to generate these
pairs. If the probability of generating sentences
with overregularization is higher, it indicates that
overregularized forms are preferred over correct ir-
regular forms; conversely, if it is lower, it indicates
that overregularized forms are not preferred. We
follow BLiMP (Warstadt et al., 2020) to generate
sentences with over-regularization, which results in
an evaluation dataset consisting of 1,000 minimal
sentence pairs for the linguistic phenomenon we
are investigating.

We focus on a typical phenomenon of overregu-
larization in children: the inflection of English past
tense. For irregular verbs, we first create pairs of
overregularization forms (e.g., write→writed) and
correct past tense forms (wrote). Next, we create
pairs of sentences containing the overregulariza-
tion form and sentences containing the correct past
tense. The overregularized forms are created by
concatenating the bare form of the verb with -d or
-ed (base+ed) and the past form of the verb plus
-d or -ed (past+ed) in a rule-based manner. The
list of overregularization forms created is shown in
Table 3 in Appendix A.1.

4 Experiments

We train a small-scale version of GPT, an LM with
incremental learning, on CDS using a character-
level tokenizer and evaluate the model on our evalu-
ation data of past-tense inflections in English verbs.

Inflection Forms Examples

Correct John wrote this article.
Regularize (base+ed) John writed this article.
Regularize (past+ed) John wroted this article.

Table 1: Examples of evaluation data when write is the
target verb. “Correct” means the sentence contains the
correct past tense, and “Regularize” means the sentence
contains the overregularized form.

4.1 Training Data
We use CDS as training data to approximate a
child’s learning environment. To compare the train-
ing data, we added data from Wikipedia and used
the following three patterns of small-scale data for
training.

(i) AO-CHILDES (Huebner and Willits, 2021)

(ii) Wikipedia (Huebner et al., 2021)

(iii) AO-CHILDES+Wikipedia

We adopt the same settings as those used in Hueb-
ner et al. (2021) for training data (i) and (ii). (i)
AO-CHILDES consists of about 5 million words
of text in American English, collected from the
CHILDES dataset (MacWhinney, 2014), which
records CDS from conversations between children
and adults chronologically.1 (ii) is a dataset of
500,000 sentences randomly collected from the En-
glish Wikipedia corpus. (iii) is the combined and
shuffled version of (i) and (ii). In each corpus, all
sentences were lowercase, and sentences shorter
than three words were excluded. We trained the
model with five different seeds in all experiments
and reported the averages of the results. Corkery
et al. (2019) criticize the approach, while Kirov and
Cotterell (2018) report the single best performance
achieved by their model. In contrast, our results,
reported with initialization using multiple seeds,
are considered more reliable.

4.2 Minimal Pair Data
We created 1,000 sets of sentences containing the
correct past tense, base+ed, and past+ed forms2

using the method described in Section 3, and used
these sets for evaluation. We adopted the BLiMP
vocabulary because it contains labels that enable

1The AO-CHILDES dataset contains overregularized verb
forms, but with only 0.49% of past tense verbs in this form,
the results are not significantly impacted.

2Available at https://github.com/osekilab/SLM
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Model CLM/MLM Layers Heads Embeddings Intermediate size Parameters

nanoGPT3 CLM 6 6 384 - 29.94M
nanoGPT 10.99M CLM 3 3 192 - 10.99M

BabyBERTa (Huebner et al., 2021) MLM 8 8 256 1024 8.52M

Table 2: Models used in our experiments. We use BabyBERTa as it can be trained on AO-CHILDES. To model
children’s errors, we also select nanoGPT in the GPT-2 family trained for incremental next-word prediction because
humans process sentences incrementally. To match the number of parameters of BabyBERTa, we adjust nanoGPT
to 10.99M parameters. Details can be found in Appendix A.3.

the production of various sentences. Additionally,
we filtered out vocabulary that was not included in
the AO-CHILDES dataset following Zorro3. Ta-
ble 1 shows an example of creating evaluation data.
We compute the model’s probability of generating
each sentence on the evaluation set. As an evalu-
ation metric, the sentence to which the model as-
signs the highest probability is used as the model’s
preference. Children’s U-shaped learning curves
are observed for learned verbs, not for novel words.
Thus, we would like to observe only a model’s
overregularization of the previously learned verbs.
For this purpose, we only evaluated data in which
the base and past forms of the target verb appeared
in the training data at each step.

4.3 Models

When humans receive utterances as input, they lis-
ten to sentences from left to right, so it is natural to
think of humans as processing sentences incremen-
tally (Altmann and Mirković, 2009). In this experi-
ment, to model children’s errors in LMs, we train
models in a setting that is more realistic than the
human learning environment. Therefore, we select
GPT-2 (Radford et al., 2019), one of the Causal
LMs (CLMs) trained for incremental next-word
prediction.

We also use small models because we train our
models on small datasets to approximate the child’s
learning environment. nanoGPT4 is widely used as
a small-scale GPT implementation. The number of
parameters for nanoGPT is approximately 30M4,
which is nearly 4 times larger than BabyBERTa
(8M parameters) (Huebner et al., 2021) that was
shown to efficiently learn from CDS. For this rea-
son, we conducted experiments using an additional
nanoGPT model with the number of parameters
reduced to about 8M. As a comparison, we use
BabyBERTa (Huebner et al., 2021), a masked LM

3https://github.com/phueb/Zorro
4https://github.com/karpathy/nanoGPT

(MLM) that is not incremental. The models used in
this study and the number of parameters are listed
in Table 2. We train all the models from scratch
using the training data. Implementation details can
be found in Appendix A.3.

We choose the character level tokenizer to
approximate the modeling of past-tense inflec-
tion at the phonological level in the previous
study (Rumelhart and McClelland, 1986; Pinker
and Prince, 1988; Kirov and Cotterell, 2018; Cork-
ery et al., 2019; McCurdy et al., 2020). As a com-
parison, we also experiment with subword-level to-
kenizers. The subword-level tokenizers are trained
using Byte level BPE (Wang et al., 2019) for each
training corpus.

Corkery et al. (2019) claimed the validity to in-
terpret the results of each simulation with different
seeds as the individual participants, rather than as
the average behavior of all participants. We follow
the practice and report the average of the results
across multiple seeds for a fair comparison with
human experiments that report averages across mul-
tiple participants.

5 Results

5.1 Correct Form vs. Overregularized Form

We show in Figure 2 the learning curves for the past
tense inflection of the verb. The y-axis represents
the proportion of evaluation data where the correct
past tense was selected from sentences containing
either the correct past tense or the overregularized
form. The horizontal axis represents the steps of
learning, while the vertical axis indicates a pref-
erence for the correct past tense forms when the
value is above 0.5, and a preference for the over-
regularized forms when it is below 0.5.

Figure 2 shows that most of the learning curves
when using the incremental character-level mod-
els appeared to be U-shaped around 0.2–4k steps,
though, we believed that this was different from
the U-shape of the children. This is because the
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Figure 2: Learning curves of past tense inflection for nanoGPT and BabyBERTa. The columns indicate the tokenizer
used. “divided” refers to a subword-level tokenizer that splits inflected forms into multiple tokens to facilitate
inflection learning. Accuracy shows the proportion of correct past tense preferences. Points above 0.5 indicate a
preference for the correct past tense, while points below 0.5 indicate a preference for the overregularized form. The
learning curve of character-level nanoGPT forms a U-shape but lacks the Stage 3 of children’s learning. Overall
accuracy remains low even at the end of training. Due to variations in max steps depending on the dataset and type
of tokenizer, the endpoints of the lines differ.

correct response rate in the early steps of model
learning is around 50% or lower, except in the case
of the 10.99M model using AO-CHILDES as train-
ing data, which is different from the Stage 1 for
children who can correctly use the learned verbs.
Moreover, at the end of the learning phase of the
model, the preference for the correct past tense
does not significantly exceed for the overregular-
ized form, which is different from the latter part of
the Stage 3, when the child can use the correct past
tense almost perfectly.

In the character-based CLM models, the ratio of
correct past tense and overregularized form prefer-
ences is nearly random at the end of the learning.
In training BabyBERTa, as an MLM, the overregu-
larized form was preferred more than 80% except
in the early stages of learning. Additionally, the
learning curves in this experiment were unstable
for most of the training period. From these results,
we assume that the model and dataset used in this

study may not have been capable of acquiring the
correct past tense inflection. The subword-level to-
kenizer we used does not split past tense inflected
forms, and the model may not learn the rules of the
word form transition. To confirm this hypothesis,
we checked the subword-level tokenizer and found
that the past tense of many verbs is not split and is
marked as a single token. To resolve the problem,
we modified the subword-level tokenizer to split
past tense inflected forms and added “divided” as
a result of experimentation. As a result, the per-
centage of correct past tense preferred increased at
the end of the learning. However, the percentage
was still around 60%, which does not correspond
to the children’s Stage 3. We have also not previ-
ously resolved the low correct response rate of the
character-level models.

All of the above results indicate that the neu-
ral model does not reproduce the learning curve
of children. However, since these results are aver-
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aged over all verbs, a child-like U-shaped learning
curve may be observed for some verbs. In the next
section, we show a more detailed analysis of the
results.

5.2 Results in each Verb Type

Bybee and Slobin (1982) investigated the rate at
which overregularization is applied to irregular
forms in the natural speech of children aged 1.5–5
years and found that children’s overregularization
trends differed by verb type. They define verb types
by the way the verb changes phonetically during
inflection. Table 4 in Appendix A.2 shows the verb
types they defined. In addition, Rumelhart and
McClelland (1986) claimed that the generalization
tendency of the neural model is not affected by verb
frequency but by verb type for most of the learning
period. For a detailed analysis of the impact of the
verb types on generalization tendencies, we also
report the percentage of correct responses for each
verb type for a detailed analysis of the impact of
these verb types on generalization tendencies and
how well the model reproduces human overregu-
larization tendencies. Table 4 also shows the verbs
used in the evaluation data of this experiment.

Table 3 shows the rates of overregularized form
produced by children as shown by Bybee and
Slobin (1982) and the rates of overregularized
forms preferred by character-level models trained
on AO-CHILDES for each verb type. Table 3 also
shows that, for some verb types, the model can be
trained to prefer the correct past tense 80% of the
time by the end of learning. On the other hand,
even at the end of the learning, five verb types (II,
III, V, VI, and VII) showed a greater preference,
and the Verb type II even showed a 90% preference
for the overregularized forms.

We found that the learning curve of the Verb type
IV partially corresponds to the three stages of lan-
guage acquisition in children. Figure 4a shows the
learning curve when evaluated only with verbs of
the Verb type IV. Each line in the figure shows the
results for five different seeds. The learning curve
in IV around 1–2k steps corresponds to the Stage
1 where the children can select the correct form of
the past tense with learned verbs in the early stages
of learning. The 2–4k steps correspond to the Stage
2, where the children prefer overregularized forms
even with learned verbs. After 4k steps correspond
to the Stage 3, where the correct past tense is grad-

ually preferred.5 However, the phase in the 0–1k
steps where the LM prefers a more overregularized
form does not correspond to the three stages of the
child. Since the Verb type IV has a high percentage
(90%) of correct past tenses selected in observa-
tions of children, it is considered to be easy to learn
the correct past tense. Thus, our results suggest that
while the model failed to learn the correct form for
many verb types, it may be able to learn the correct
past tense for the Verb type IV. However, the learn-
ing curve for IV verbs showed oscillations even
at the end of learning, suggesting that learning is
unstable.

For the type I, which showed a high preference
for the correct past tense, the learning curve did
not form a U shape but it did correspond to the
other observations for children. Kuczaj (1977)
showed that children produce the correct past tense
for unchanged verbs (Type I) more than for irregu-
lar verbs with vowel change (Type III–VIII). Our
results show that LMs prefer the correct past tense
for type I, and this is consistent with the children.
However, for the other verb types, there was no cor-
respondence between the model and the children.
We found that for some types the learning process
is very unstable. We also found that for some types
past tense inflection cannot be learned. We show
the results of the learning curves for each verb type
in Appendix A.4. This result indicates that there
are some verb types for which it is difficult for the
model to correctly learn past tense inflection.

5.3 Error Types

Overregularization of children’s verbs includes the
addition of -ed at the end of the original form
(base+ed) and the addition of -ed at the end of the
past tense (past+ed) (Kuczaj, 1977). Kuczaj (1977)
observed that children generally produce base+ed
more often than past+ed. Additionally, when chil-
dren grow up and rarely overregularize, they pro-
duce past+ed more than base+ed. Rumelhart and
McClelland (1986) claim that their model repro-
duced this trend. However, it is considered that chil-
dren produce past+ed when they believe the past
tense of the verb to be the original form (Pinker and
Prince, 1988). Therefore, Pinker and Prince (1988)
criticizes Rumelhart and McClelland’s model as
not appropriate for producing past+ed because the
original form of the verb is explicitly given as input.

5The performance did not fully improve at the end of
learning because the results varied by verb, possibly due to
edit distance. See Section 6 for details.
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Figure 3: Rate of preference for overregularized form. From left to right: human preferences, model preferences at
learning steps 0-4k, 4k-8k, and 8k-12k. For the Verb type I, both humans and models consistently prefer the correct
past tense at all stages.

(a) Learning curve (b) Error preferences

Figure 4: Learning curves of verb inflection and error
preferences for the Verb type IV on the character-level
nanoGPT model trained on AO-CHILDES. The model’s
learning curves corresponded to the three stages of chil-
dren’s learning. However, the model’s error preferences
differed from those of children.

However, since our approach does not explicitly
provide the original form of the verb in the model,
a comparison between base+ed and past+ed prefer-
ences would be useful. Hence, we analyze whether
the models learned in the CDS show preferences
for past+ed and base+ed similar to children. Fig-
ure 5 shows the percentage of pairs in which the
character-based model trained with AO-CHILDES
preferred base+ed and past+ed among the correct
and overregularized forms. We excluded verbs that
have the same base form and past form, such as
shut and upset. As shown in Figures 4b and 5,
the incremental model nanoGPT preferred base+ed
over past+ed at all learning points, including the
Verb type IV with its U-shaped learning curve. This
general preference for base+ed matches children’s
behavior, but continuing to prefer base+ed until the

end does not. Additionally, BabyBERTa generally
preferred past+ed. The only exception was Baby-
BERTa trained on Wikipedia, which initially pre-
ferred base+ed and later shifted to past+ed, match-
ing the observations in children.

6 Discussion

How Well Do LMs Reproduce Children’s U-
Shaped Learning Curve? As we saw in Sec-
tion 5, the learning curves of the models trained
with CDS show that, for certain verb types, there
are U-shaped curves corresponding to the three
stages observed in children. For other certain verbs,
even if the models do not show U-shaped learning
curves, the accuracy still matches children’s obser-
vations. However, in many of the verb types, the
model did not reproduce the errors preferred by the
children. Even the Verb type IV, which shows the
most child-like trend in the model, did not perfectly
reproduce the child’s learning curve.

However, as shown in Figure 6, the performance
varied depending on the verb. Specifically, verbs
with a small character-level edit distance to their
past tense form exhibited high performance and
clear U-shaped learning curves. Based on these
findings, our model generalizes in a human-like
manner in the learning of some verbs. This obser-
vation of a U-shaped curve in sub-regular verbs is
consistent with previous studies (Rumelhart and
McClelland, 1986). Additionally, Kirov and Cot-
terell (2018) reported that the trend of the U-shaped
curve was not observed in all irregular verbs. There-
fore, the results of our study are consistent with
their findings. Detailed results by verb can be found
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Figure 5: Preferences for overregularized forms base+ed and past+ed in the character-level models. The columns
indicate the training data. BabyBERTa trained on Wikipedia shows overgeneralization preferences similar to
children. However, in the setting that showed a U-shaped learning curve, no models demonstrated these errors. Due
to variations in max steps depending on the dataset, the endpoints of the lines differ.

Figure 6: Learning curve for each verb in the Verb type
IV on the character level nanoGPT (10.99M) trained
with AO-CHILDES. The model shows clear U-shaped
curves and high performance at the end of training for
have and make. Each line in the figure shows the results
for five different seeds.

in Appendix A.5. These results indicate that the
model’s performance is not entirely influenced by
the frequency of the verbs. When we measured
the correlation between the performance for each
verb and the verb frequency, it did not show a clear
correlation. Detailed correlations can be found in
Appendix A.5.1.

We then discuss the oscillations of the learn-
ing curve. Plunkett and Marchman (1991) argued

that when interpreting U-shaped developmental pat-
terns, it is important to distinguish between macro
and micro U-shaped curves to quantify the acquisi-
tion of inflectional systems such as the English past
tense. They noted that many irregular forms os-
cillate between correct and overregularized forms
with micro U-shaped curves. Kirov and Cotterell
(2018) reported the results of learning verb past
tense inflection with a recent neural model and
claimed that the learning curve does not show a
macro U-shape, but a micro U-shape. Our results
in Section 5 also show oscillations. However, learn-
ing in a transformer is more unstable, especially
with small models or training data, and our results
also show that the learning curve always oscillates
at any point in the learning. We therefore conclude
that the oscillations indicated by our results do not
necessarily reproduce the characteristics of chil-
dren’s errors. Our results better replicate children’s
language acquisition compared to Kirov and Cot-
terell (2018), not by showing oscillations in the
learning curve, but by demonstrating a macro-level
U-shaped learning curve. Instability in the learning
process makes it difficult to conduct reliable anal-
ysis. In the future, we plan to try to eliminate the
instability to make a more reliable analysis.

Why Cannot LMs Prefer the Correct Past
Tense? As we saw in Section 5, LMs did not per-
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fectly select the correct past tense, even at the end
of the training phase; some verbs showed unstable
learning curves, and some selected overgeneralized
forms until the end. The training data included the
correct past tense, and the overregularized form,
i.e., the negative example, was a non-existent word
that should not have been included in the training
data. Therefore, it should be easy to select the cor-
rect past tense at the end of the training, but LMs
could not.

One possibility for the cause of this problem
is that the model does not capture the meaning
of the task. Because not all the sentences in the
evaluation data have words related to the past tense
(e.g., yesterday), the model may not understand the
task of assigning a higher score when the correct
past tense is used. If this is the case, it is natural for
the model to assign higher generation probabilities
to sequences that are closer to the original verb
forms that occur frequently in the training data.

Another possible cause is that the setting of
model training may not be sufficient for the model
to learn the correct past tense. Our results suggest
that the learning of small-scale models is generally
unstable and that CDS is not enough for models
to learn the generalization of correct past tense.
The CDS data we used for training, AO-CHILDES,
was taken from dialogue data between children
and their parents. In our results, Wikipedia arti-
cles probably substituted for children’s input other
than CDS, making learning slightly easier. The
results of the subword-level model with divided
inflectional forms in Figure 2 support this possi-
bility. However, while Wikipedia articles provide
additional information, it is not the same as the
content of conversations between adults that would
be input for children. More training data or more
parameters may be necessary for the model to learn
generalization. We would like to confirm this pos-
sibility in future experiments.

Note that the model of Kirov and Cotterell
(2018) achieves nearly 100% accuracy on the train-
ing data, outperforming our model. However, it is
important to note that their model learns to trans-
duce verbs to past tense forms, which is a relatively
simpler task. In contrast, our task involves training
a language model on CDS and evaluating it by re-
quiring the model to assign higher probabilities to
sentences with the correct past tense as acceptabil-
ity judgments. This distinction highlights that their
model addresses an easier task compared to ours.
Therefore, we cannot conclude that our model is

inferior to theirs based on this comparison alone.

How Well do LMs Reproduce Children’s Er-
ror Types? LMs generally preferred base+ed to
past+ed when making errors, and past+ed was rare,
both consistent with the observations of the chil-
dren. However, in all settings, including the Verb
type IV (Figure 4b), which was observed to corre-
spond with the three stages of children’s language
acquisition, LMs showed no correspondence with
the trend in the production of error types in children
as shown by Kuczaj (1977). Our results suggest
that even recent LMs, which have shown efficiency
improvements with CDS, cannot reproduce the er-
ror type of the children’s learning process. Al-
though we only considered two error types in our
experiments, the previous studies (e.g., Kirov and
Cotterell, 2018) analyzed other error types such as
copying. Covering these other error types in the
analysis may provide further insights.

7 Conclusion

We carried out the analysis of verb overregular-
ization in neural LMs by acceptability judgment
and reported the trend of overregularization in cur-
rent neural LMs. Our model shows a macro U-
shaped curve corresponding to the three stages of
children’s language acquisition, not just oscilla-
tions. Therefore, our model better replicates chil-
dren’s language acquisition than Kirov and Cot-
terell (2018)’s model. Furthermore, the error types
our model generally prefers match Kuczaj (1977)’s
observations of children. However, our results
differ from children’s observations, which show
a shift in error type preferences as learning pro-
gresses. Additionally, our results do not match
those of Rumelhart and McClelland (1986) and
Kirov and Cotterell (2018), which show that mod-
els use nearly 100% correct past tense for many
verbs by the end of learning.

To solve these problems and conduct a more
detailed analysis, we will use a larger model or
training data more similar to a child’s input. In ad-
dition, we plan to analyze the conditions required to
replicate children’s error type preferences. We also
plan to conduct phonological-based experiments,
a wug test (Berko, 1958) to test the regularization
performance of new words, and evaluations across
multiple error phenomena.

14540



Limitations

We adopted character-level tokenization to approx-
imate phonological-level modeling for ease of im-
plementation. However, this is a different setting
from previous studies on modeling the learning of
word inflection (e.g., Rumelhart and McClelland,
1986; Kirov and Cotterell, 2018; Corkery et al.,
2019; McCurdy et al., 2020). To provide more
appropriate modeling of lexical inflection and to
compare the results with those of children, we plan
to experiment at the phonological level.
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(Wikipedia) are socially biased, despite their pop-
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A Appendix

A.1 Overregularized Verb Forms

Table 3 shows the automatically created base+ed
and past+ed forms used in our experiments.

A.2 Verb Types Definition

Table 4 shows verb types based on phonological
changes in past tense inflection, as defined by By-
bee and Slobin (1982).

A.3 Implementation Details
Table 5 details the experimental settings. Most pa-
rameters are adopted from the original nanoGPT
and BabyBERTa. The vocabulary size in Table 5
refers to the subword-level model, while the char-
level model, is the number of symbol types appear-
ing in the training data.

A.4 Learning Curve for each Verb Type
Figures 7, 8, and 9 show the learning curves for
each verb type when the character level models are
trained with AO-CHILDES. Each line in the graph
shows the results of the trials with different seeds.

A.5 Learning Curve for each Verb
Figures 10, 11, and 12 show the learning curves
for each verb when the character level nanoGPT
(10.99M) is trained with AO-CHILDES. Each line
in the graph shows the results of the trials with
different seeds.

For some verbs (lose, have, make, read, break,
wake, and come), we observed a U-shaped learning
curve similar to that of children. Additionally, we
observed high performance for these verbs towards
the end of the learning process. These verbs share
the characteristic of having a small character-level
edit distance when converting to their past tense
forms. These results are likely since our experi-
ment used a character-level model rather than a
phonological one.

A.5.1 Correlation between Verb Frequency
and Accuracy

We considered the possibility that model perfor-
mance could vary based on verb frequency in the
training data. Therefore, we calculated the corre-
lation between each verb’s frequency in the train-
ing data and its accuracy during evaluation. As
shown in Figure 13, we observed correlations of
0.42 for nanoGPT and -0.29 for BabyBERTa, both
trained with AO-CHILDES using a character-level
tokenizer. This indicates that the character-level
nanoGPT model trained with AO-CHILDES is
more influenced by frequency information than
other settings. However, none of the models
showed a strong correlation, indicating that perfor-
mance does not entirely depend on verb frequency.
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Overregularized form Overregularized form

Correct form base+ed past+ed Correct form base+ed past+ed

ate eated ated lost losed losted
bent bended bented made maked maded
bit bited bitted met meeted metted
bought buyed boughted read readed readed
bred breeded bredded rode rided roded
broke breaked broked sang singed sanged
brought bringed broughted sank sinked sanked
built builded builted sat sitted satted
came comed camed shook shaked shooked
caught catched caughted shot shooted shotted
chose choosed chosed shrank shrinked shranked
drank drinked dranked shut shutted shutted
drew drawed drewed sold selled solded
drove drived droved spent spended spented
fell falled felled spoke speaked spoked
fled fleed fledded spun spinned spunned
forgave forgived forgaved stole stealed stoled
forgot forgetted forgotted stood standed stooded
fought fighted foughted struck striked strucked
found finded founded swept sweeped swepted
froze freezed frozed taught teached taughted
got getted gotted threw throwed threwed
grew growed grewed took taked tooked
had haved hadded tore teared tored
heard heared hearded understood understanded understooded
held holded helded upset upsetted upsetted
hid hided hidded went goed wented
hurt hurted hurted wept weeped wepted
kept keeped kepted woke waked woked
knew knowed knewed won winned wonned
led leaded ledded wore weared wored
left leaved lefted wrote writed wroted
lit lighted litted

Table 3: Overregularized forms of verbs used in the acceptability judgments with our minimal pair data.
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Type Description Verbs used in our experiments

I Verbs that do not change at all shut, upset, hurt
to form the past tense

II Verbs that change a final /d/ to /t/ build, bend, spend
to form the past tense

III Verbs that undergo an internal flee, leave, lose, hear, sell, weep
vowel change, and also add a keep, sweep
final /t/ or /d/

IV Verbs that undergo vowel change, bring, have, buy, make, catch, teach
delete a final consonant and add
a final /t/

V Verbs that undergo an internal meet, light, stand, hide, ride, write
vowel change and whose stems shoot, read, sit, get, fight, hold
end in a dental understand, breed, lead, find, bite

eat, forget

VI Verbs that undergo a vowel change sing, drink, shrink, sink, win, spin
of /I/ to /æ/ or to /2/

VII All other verbs that undergo an speak, freeze, drive, tear, shake
internal vowel change come, wear, choose, fall, strike

take, wake, forgive, break, steal

VIII All verbs that undergo a vowel throw, go, grow, know, draw
change and that end in a
diphthongal sequence

Table 4: The verb types by Bybee and Slobin (1982) and the verbs used in our evaluation. The verb types are defined
based on the phonological changes during verb inflection.
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nanoGPT (10.99M) nanoGPT BabyBERTa

parameters 10.99M 29.94M 8.52M
layers 3 6 8
heads 3 6 8
embeddings 192 384 256
intermediate size - - 1,024
block size 256 256 -
batch size 64 64 16
epochs 10 10 10
max step 12K 12K 260K
vocabulary size 8,192 8,192 8,192
maximum sequence length 128 128 128
dropout 0.2 0.2 0.1
peak learning rate 1e-3 1e-3 1e-4
warm-up steps 6K 6K 24K

Table 5: Implementation details. Most parameters are adopted from the original nanoGPT and BabyBERTa.
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Figure 7: Learning curves for each verb type on the character-level nanoGPT (10.99M) trained on AO-CHILDES.
For the Verb type IV, our result showed a U-shaped learning curve corresponding to the three stages of children’s
learning.
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Figure 8: Learning curves for each verb type on the character-level nanoGPT trained on AO-CHILDES.
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Figure 9: Learning curves for each verb type on the character-level BabyBERTa trained on AO-CHILDES.
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I

II

III

IV

Figure 10: Learning curve for each verb of the Verb type I–IV on the character level nanoGPT (10.99M) trained on
AO-CHILDES. Our results show U-shaped learning curves, similar to children, on the verbs lose, have, and make.
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VI

V

Figure 11: Learning curve for each verb of the Verb type V–VI on the character level nanoGPT (10.99M) trained on
AO-CHILDES. Our results show a U-shaped learning curve, similar to children, on the verb read.
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VII

VIII

Figure 12: Learning curve for each verb of the Verb type VII-VIII on the character level nanoGPT (10.99M) trained
on AO-CHILDES. Our results show U-shaped learning curves, similar to children, on the verbs break, wake, and
come.
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nanoGPT (10.99M)

BabyBERTa

Figure 13: Correlation between the frequency of each
verb in the training data and its accuracy. The results
from training with AO-CHILDES are reported. We ob-
served correlations of 0.42 for nanoGPT and -0.29 for
BabyBERTa. None of the models showed a strong cor-
relation, indicating that performance does not entirely
depend on verb frequency.
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