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Abstract

In the field of information extraction (IE), tasks
across a wide range of modalities and their
combinations have been traditionally studied
in isolation, leaving a gap in deeply recogniz-
ing and analyzing cross-modal information. To
address this, this work for the first time intro-
duces the concept of grounded Multimodal Uni-
versal Information Extraction (MUIE), pro-
viding a unified task framework to analyze
any IE tasks over various modalities, along
with their fine-grained groundings. To tackle
MUIE, we tailor a multimodal large language
model (MLLM), REAMO, capable of extracting
and grounding information from all modalities,
i.e., ‘recognizing everything from all modal-
ities at once’. REAMO is updated via var-
ied tuning strategies, equipping it with pow-
erful capabilities for information recognition
and fine-grained multimodal grounding. To
address the absence of a suitable benchmark
for grounded MUIE, we curate a high-quality,
diverse, and challenging test set, which en-
compasses IE tasks across 9 common modal-
ity combinations with the corresponding multi-
modal groundings. The extensive comparison
of REAMO with existing MLLMs integrated
into pipeline approaches demonstrates its ad-
vantages across all evaluation dimensions, es-
tablishing a strong benchmark for the follow-up
research. Our resources are publicly released
at https://haofei.vip/MUIE.

1 Introduction

IE is a pivotal topic (Li et al., 2022a), encompass-
ing subtasks such as Named Entity Recognition
(NER; Nadeau and Sekine, 2007), Relation Ex-
traction (RE; Miwa and Bansal, 2016), and Event
Extraction (EE; Ahn, 2006), which plays a crucial
role in constructing domain-specific knowledge
bases (Bosselut et al., 2019) and in facilitating deep
semantic understanding of data (Satyapanich et al.,
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Please extract entity words from the text:
Justin meet up with a fan in Beverly Hills,
California yesterday.

(Justin, person)
=9 (Beverly Hills, location)
(California, location)

Text + Image = NER + Image Segmentation
Please extract entity words in the text, and outline
them in the image correspondingly:

President Trump and Merkel address
Korean Peninsula developments.

(Trump, person) .z kit
g’ T~

(Merkel, person)s&s

Please extract entity words in the text, and outline
the audio correspondingly:

Panasonic has reduced its workforce by nearly
10000 in both Japan and overseas companies.

(Panasonic, organization)
(Japan, location)

H“ J ‘“WHW ‘UH\M\\‘\‘UHU vt "WH [ H‘ ﬂ[ ““‘hﬂl“ Wbttt ﬂ\“m

Text + Image + Audio = RE + Image & Speech Segmentation
Please extract relations between entities in the text,
and outline them in given images and audios:
Singer Mika enjoyed our Queen Shreya E-»
Ghoshal's spectacular Performances.

(Mika, peer, Shreya Ghoshal)

[
e e
endil K

Text + Video = EE + Video Tracking

Please extract all possible events in the video, . .
and track the argument mentions in the video: (Type: opening, Trigger: unpack,
This boy is unpacking the plastic packaging of a apigent: boy, Object: 10y)

e ‘ Em
E  + Speech Segment T

Video + Audio = EE + Video Tracking + Spee
Please extract all events in the video, and track the (Type: feeding, Trigger: feed,
arguments in the video, and outline them in audio: Agent:' woman, Target: kangaroo)

B COL
™ s

L \H\:um-‘ wmwuh;wwn-\\M‘m-‘lu\”nn]w

ot o

Figure 1: Examples of grounded multimodal universal
information extraction (MUIE).

2020). In reality, a vast amount of information is
conveyed through modalities beyond text. Conse-
quently, research in IE has evolved from focusing
solely on textual data to embracing various other
modalities, leading to the development of multi-
modal IE (MIE; Liu et al., 2019), e.g., images,
videos, and audio. Despite the growing research ef-
forts dedicated to MIE, the exploration in this area
remains insufficiently developed. We argue that
several critical aspects must be fully considered for
future MIE research trends.

Firstly, current studies primarily investigate
MIE tasks within individual modalities (or certain
modality combinations) (Sun et al., 2021; Chen
et al., 2022b). With the existence of several modal-
ity categories and diverse definitions for different
IE tasks, studying each modality separately to con-
struct specialized MIE models would inevitably
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lead to resource wastage and inefficiency. In real-
world applications, there is a constant need for
building unified systems with “one-for-all” robust
generalizability for faster practical deployment. In
light of the recent success of textual universal IE
(UIE; Luetal., 2022; Fei et al., 2022), MIE unifica-
tion should also be promising. Second, the major-
ity of existing studies (Zhang et al., 2017) exhibit
a bias toward text-centric IE outputs, necessitating
the decoding of detailed textual IE labels and in-
herently prioritizing text. While they often treat
other modalities as auxiliaries and do not produce
outputs for them, this practice does not align with
reality, because all modalities can equally carry
important information. For example, even infants
who have not yet learned to speak can learn about
entities from vision. Thus, each modality should be
treated equally, and detect fine-grained information
from all given modalities. Last, most current MIE
(Zheng et al., 2021) involving multiple modalities
(e.g., Image&Text) tends to extract the modality-
aligned part of the information under the assump-
tion that different modalities associate with each
other. However, in practical scenarios, the informa-
tion carried by different modalities can be either
shared (Li et al., 2022b), or unrelated (Wu et al.,
2023a). This suggests that information should be
flexibly recognized from any modality sources.

In response to these challenges, this paper is ded-
icated to pioneering a novel task, grounded Multi-
modal Universal Information Extraction (MUIE).
As illustrated in Fig. 1, MUIE aims to unify
the modeling of various IE tasks (e.g., NER, RE,
EE) with any (or combination) inputs across the
most common modalities (e.g., text, audio, image,
and video), and produce fine-grained multimodally
grounded IE results. To solve MUIE, we con-
sider taking advantage of the existing generative
LLMs (OpenAl, 2022; Chung et al., 2022; Chi-
ang et al., 2023) with in-context instructions (Dong
et al., 2022). We develop a novel multimodal LLM,
REAMO, achieving “Recognizing Everything from
All Modalities at Once”. REAMO not only out-
puts all possible textual IE labels but also identi-
fies corresponding groundings across other modal-
ities: 1) statically, by segmenting visual objects
and audio speeches, and 2) dynamically, by track-
ing textual or vocal events in videos. Technically,
REAMO employs a Vicuna (Chiang et al., 2023)
LLM as its core semantic reasoner, utilizing Im-
ageBind (Girdhar et al., 2023) as a multimodal en-
coder to project image, video and audio inputs into

LLM-understandable signals. At the decoding end,
we integrate the SEEM (Zou et al., 2023) for vi-
sual grounding&tracking, and the SHAS (Tsiamas
et al., 2022) for audio segmentation, where the mes-
sages are passing from LLM to decoders through
structured meta-response effectively. Given input
multimodal information, REAMO is able to output
UIE label tokens as well as fine-grained groundings
recurrently.

We then design learning objectives to tune
REAMO to endow it with robust MUIE and cross-
modal grounding capabilities. First, we repur-
pose existing textual UIE annotation into instruc-
tion format, and use it to tune the backbone LLM
for activating the UIE ability. Then, we perform
both coarse-grained instance-level and fine-grained
grounding-aware cross-modal alignment learning,
enhancing the REAMO’s capability in fine-grained
multimodal semantic understanding. Furthermore,
we instruction-tune REAMO on specific corpus, to
build its working behavior of generating structured
meta-response texts.

In response to the absence of standard evaluation
data for grounded MUIE, we further introduce an
evaluation benchmark, where we annotate a high-
quality testing set of 3,000 instances covering NER,
RE, and EE tasks under 9 common modality com-
binations. The data further advances by annotat-
ing both modality-shared/-specific content to sim-
ulate aligned and misaligned modality scenarios.
Extensive zero-shot experiments on these bench-
marks demonstrate that REAMO shows strong per-
formance over existing MLLMs with respect to IE
tasks and multimodal grounding.

Overall, we make three key contributions:

* To our knowledge, this is the first to propose a
grounded MUIE setting, unifying all IE tasks
across modalities, further with fine-grained
multimodally grounded targets.

¢ We introduce an MLLM for the task, REAMO,
excelling in MUIE prediction and achieving
cross-modal grounding of static objects and
dynamic events.

* We contribute a high-quality, diverse, and chal-
lenging dataset, setting an evaluation bench-
mark for follow-up grounded MUIE research.

2 Related Works

IE (Lample et al., 2016; Wei et al., 2020; Fei et al.,
2021; Li et al., 2021; Wang et al., 2022; Cao et al.,
2022) has long been a significant research direction,
consistently attracting substantial interest and focus
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(Trump, person)
(Merkel...)

UIE Output

<UIE> ( Trump , person )(Merkel, person) (U.S. , country ) (German...)

R, G,
- Segments 3 Tracklets

Image Segmenter

Instruction Instruction .
Image Video

<Module>Image Segmenter

Segments

Audio Segmenter

Instruction '"I“ll' Audio

o bl Avdio
A

<Instruction>The woman in the left, The man ...

Large Language Model

Please extract all entity words ... The output format
should be "(entity, labell)(entity2, label2)".
Candidate category labels: person, location,
organization, country...

Input Text: U.S. President Trump and German
Chancellor Merkel address Korean Peninsula
deveIoEmen‘rs in the Washington on Saturday.
Meanwhile, output the module name of segmentation and
the corresponding detailed instruction for segmentation.

Text

Image Projection
Image Encoder Image Encoder

ﬁ Image

Audio P wuw_. tion

8 Video I|I|I|||l Audio

Figure 2: An overview of the proposed REAMO MLLM architecture for grounded MUIE.

for decades. As the world contains various modal-
ities of information, MIE has been consequently
introduced, e.g., multimodal NER (Sun et al., 2021;
Yu et al., 2023; Wang et al., 2023a), multimodal
RE (Chen et al., 2022b), and multimodal EE (Li
et al., 2020). However, the majority of existing
well-established benchmarks for MIE still predom-
inantly focus on texts, supplemented with images
(Zhang et al., 2017; Wu et al., 2023a).

Historically, IE research has treated different
tasks as separate studies for a long (Sun et al.,
2021; Chen et al., 2022b; Liu et al., 2024; Zhang
et al., 2024). Recently, Lu et al. (2022) pioneer
UIE, proposing to unify all IE tasks under a single
generative model to produce all IE results, signifi-
cantly reducing the maintenance cost for individual
tasks. With the latest rapid development of LLMs,
the latest advancements have utilized LLMs with
in-context prompting for UIE, achieving promis-
ing zero-shot performance. Similarly, the swift
progress of MLLMs (Fei et al., 2023) should also
ignite hope for MUIE. Yet research in MUIE re-
mains under-explored.

To our knowledge, the work most closely related
to this paper is by Sun et al. (2023), who lever-
age existing MLLMs to unify various MIE tasks
through a two-stage process of span extraction and
classification in a multimodal QA format. Yet, we
identify clear limitations in their approach that fall
short of achieving comprehensive MIE unification.
Firstly, while their work only considers text and
image modalities, lacking comprehensiveness, we
broadly cover the four most common modalities.
Secondly, beyond addressing these limitations, we
also introduce a novel MLLM tailored for grounded

MUIE and contribute a new benchmark dataset for
MUIE research. These efforts aim to pioneer the
next stage of MUIE research.

3 Task Definition: Grounded Multimodal
Universal Information Extraction

We now give a formal definition of grounded MUIE.
Suppose the inputs are any of a text 7', an image I,
an audio A, a video V/, or their combination.

NER task seeks to predict all possible textual labels
of entities { E"'}, with pre-defined entity types
C"" € C™ (e.g., person, location and organiza-
tion), where each F may correspond to a span
within 7', or visual region within I, or a speech
segment within A. We denote the visual grounding
mask as M, and the speech segment as M 4.
RE task aims to first identify all possible entities
{E"} following the NER step, and then determine
a pre-defined relation label RRE € RRE for two
entities < ER", EX® > that should be paired. Also
ERE should correspond to 7', I, or A, as in NER.
EE task detects all possible structured event
records that consist of event trigger E', event type
C® € C%, event argument £ and event argument
role C*' € C¥. Here E®' and E* correspond to
a continuous span within 7" or a speech segment
within A. Also £ might refer to the visual region
within 7, or the temporal dynamic tracklet in video
V (i.e., object tracking). We denote the video track-
ing mask as M,;q. C*" and C*" are pre-defined label
sets.

Following Wang et al. (2023b), we employ in-
context learning (ICL; Dong et al., 2022) to prompt
LLMs for MUIE, with the specific task executed
depending on the user’s intention. In the bottom
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left of Fig. 2 we simply illustrate the ICL prompt.

4 Our Proposed Model
4.1 MLLM Framework of REAMO

Fig. 2 presents a schematic overview of REAMO
MLLM, which consists of three main parts: multi-
modal encoder, LLM, and decoder for UIE predic-
tion & multimodal grounding.

Multimodal Encoding. While REAMO takes
four types of modality sources, except texts that are
directly input to LLM, the image, audio, and video
inputs should be encoded. Following Wu et al.
(2023b); Fei et al., 2024b), we leverage the high-
performance ImageBind (Girdhar et al., 2023) as a
unified multimodal encoder. Then, via a projection
layer, different input representations are aligned
into language-like embeddings that are understand-
able to the LLM.

LLM Reasoner. An LLM serves as the center
unit of REAMO for content semantics understand-
ing and reasoning. Specifically, we follow the most
common practice, using the Vicuna-v1.5 (Chiang
et al., 2023) as the backbone LLM.

» Input:

<Text to analyze>

<Non-text Modality>

e 10 1 B

<Prompt>
Please extract all entity words - - -

>

<UIE>
(Trump, person)
(Merkel, person)

<Module>

Image Segmenter
<Instruction>
Segmentation: ‘A person’

MUIE Decoding with Grounding. The central
LLM takes on the crucial role of decision-making.
Based on the input prompt, LLM will produce tex-
tual responses, containing the UIE task results as
well as the meta-response that will be used to call
the downstream modules to generate fine-grained
multimodal groundings. Here, consider integrat-
ing the existing high-performance SEEM model
(Zou et al., 2023) for image segmentation and

video tracking (Li et al., 2024; Wu et al., 2024;
Fei et al., 2024a), and the SHAS model (Tsiamas
et al., 2022) for audio segmentation. Specifically,
the meta-response includes three parts, as shown
above. The corresponding ‘<Module>’ and ‘<In-
struction>" information will be passed to the corre-
sponding modality segmenter(s), to activate them
to generate grounding(s).

4.2 MUIE Fine-tuning for REAMO

With REAMO at hand, we now consider fine-tuning
it through multiple objectives to enable REAMO
with strong MUIE capability.

UIE Instruction Tuning. Our initial goal is to
equip the system with the fundamental capabil-
ity for UIE in the text modality. To achieve this,
we consider tuning the backbone LLM specifically
for UIE. Following the practices of Wang et al.
(2023b), we repurpose existing annotation data to
form a set of instruction-tuning datasets for UIE.
To avoid the huge cost of fully updating the LLM,
we leverage the LoRA technique (Hu et al., 2022),
achieving the goal by tuning only a small subset of
parameters, without altering the overall LLM.

Multimodal Alignment Learning. REAMO inte-
grates the ImageBind encoder to enable the LLM
to comprehend basic multimodal signals. Follow-
ing this, we proceed with multimodal alignment
learning. We consider using the language-centric
LLM as the core, requiring only the alignment of
other modalities to text. We mainly utilize the vast
array of available ‘X-caption’ pair data (‘X’ stands
for image, audio, or video). We adopt an ‘X-to-text’
generation, where the input is ‘X’, and the LLM
generates the corresponding caption. During this
process, we fix the ImageBind and LLM while only
updating the projection layer.

Fine-grained Cross-modal Grounding-aware
Tuning. Above we merely enable REAMO with a
coarse-grained multimodal understanding. Yet our
goal is to attain a subtle modality comprehension.
Thus, we further engage in fine-grained multimodal
grounding. Our primary approach revolves around
utilizing existing ‘X-to-text’ phrase grounding data,
e.g., MS-COCO (Lin et al., 2014), where REAMO’s
input consists of textual phrases and grounded re-
gional modality features, and then prompt LLM to
determine their match.

Invocation-based Meta-response Tuning. To
teach the LLM to produce the correct invocation
meta responses, we need to create data specifically
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Tasks

Modality

NER RE EE
I PASCAL-C (Mottaghi et al., 2014) VRD (Lu et al., 2016) imSitu (Yatskar et al., 2016)
A% VidSitu (Sadhu et al., 2021)
A ACEQ5-Aud (Walker et al., 2011) ReTACRED (Wu et al., 2022)

T Twtl7 (Luetal.,2018) MNRE (Zheng et al., 2021) M?E? (Lietal,2020)
T+V VidSitu (Sadhu et al., 2021)
T+A ACEOQ05-Aud (Walker et al., 2011) ReTACRED (Wu et al., 2022)

A MNRE-Aud (Zheng et al., 2021)
T+I+A Twtl7-Aud (Lu et al., 2018)

V+A VidSitu-Aud (Sadhu et al., 2021)

Table 1: Summary of the grounded MUIE test data. Items in the light yellow background mean they are the data
after preprocessing, i.e., via modality translation, where the colored postfix means the target modality.

designed for instruction tuning. Technically, we
make use of the existing annotated datasets for var-
ious vision tasks included in this work. For each
task under specific different user input scenarios,
with the corresponding data, we design various tem-
plate dialogue-format examples. Based on these
examples we then prompt the GPT-4 to generate
more samples under various topics and enriched
scenarios.

5 A Benchmark for Grounded MUIE

To evaluate the performance of our grounded MUIE
system, we develop a benchmark testing set.

5.1 Data Source

We select 9 existing datasets from different modal-
ities (or combinations thereof) for IE/MIE tasks.
Table 1 summarizes these datasets of the raw
sources. We then process these datasets, such as
Text«>Speech, to create 6 new datasets under new
multimodal (combination) scenarios. Before anno-
tation, we carefully select 200 instances from their
corresponding testing sets, ensuring each instance
contained as much IE information as possible.

» PASCAL-C': is an object detection dataset
for evaluating the robustness.

* VRD?, Visual Relationship Dataset: is de-
signed to assess the precision of detecting in-
teractions among pairs of objects. Comprising
5,000 images, the dataset encompasses 100
object categories and 70 predicates.

+ imSitu’: serves as a resource for facilitating
situation recognition, a task concerned with
generating a succinct depiction of the scenario

"https://github.com/bethgelab/
robust-detection-benchmark

2https://cs.stanford.edu/people/ranjaykrishna/
vrd/

3http://imsitu.org/
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portrayed in images. This includes (1) the
main activity, (2) the participating actors, ob-
jects, substances, and locations and most im-
portantly (3) the roles these participants play
in the activity.

» ACE2005*: is extensively used in informa-
tion extraction. It comprises annotated news
articles in English, covering a diverse range of
topics and events, with annotations including
named entities, relations, and events.
ReTACRED?”: is a revised version of TA-
CRED for relation detection, containing over
91k sentences spread across 40 relations.
VidSitu®: is a large-scale dataset containing
diverse 10-second videos from movies de-
picting complex situations (a collection of re-
lated events). Events in the video are richly
annotated at 2-second intervals with verbs,
semantic-roles, entity co-references, and event
relations.

» Twt17’, Twitter-17: is a publicly available
Twitter dataset for NER. It encompasses 723
test tweets, with annotations covering four
entity types, namely, person, location, organi-
zation, miscellaneous.

« MNRES?, Multimodal Neural Relation Extrac-
tion: comprises 15,484 samples and 9,201 ac-
companying images across 23 distinct rela-
tion categories, partitioning into training, de-
velopment, and testing subsets, consisting of
12,247, 1,624, and 1,614 samples respectively.

* M2E? ?: is comprised of 245 multimedia
news articles meticulously annotated with

4http: //projects.ldc.upenn.edu/ace/

5ht’cps: //github.com/gstoica27/Re-TACRED
®https://vidsitu.org/
"https://github.com/jefferyYu/UMT
8https: //github.com/thecharm/MNREp
*https://github.com/limanling/m2e2
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events and their corresponding arguments.

Pre-processing And Modality Translation Be-
fore we begin the annotation work for grounding,
we enrich the types of modality combinations. This
is essential because most MIE datasets currently
focus on the combination of images and text. How-
ever, we aim to simulate a variety of common
modality combinations that could occur in real-
world scenarios. To achieve this, we transform and
preprocess existing datasets. Specifically, our ap-
proach involves cross-modal parallel translation to
generate data in another modality. We preprocess
the following datasets:

* VidSitu-Aud: we start by captioning videos
from the VidSitu dataset, then use the given
video event annotations combined with the
captions to have ChatGPT generate a coherent
sentence, serving as the paired text for each
piece of data.

¢ VidSitu-Aud: Based on VidSitu-Txt, we con-
vert each sentence into speech using Text-
To-Speech (TTS) tools. We employ state-of-
the-art open-source TTS models: Bark!? and
Edge-TTS!!.

* ACE-Aud: we take original textual sentences
from the ACE dataset and record speech using
TTS technology.

* MNRE-Aud: we record speech for sentences
from the MNRE using TTS.

* Twt17-Aud: Similarly, we record speech for
sentences from the Twt17 dataset using TTS.

However, we emphasize that such parallel data

generation can only produce modality-aligned con-
tent. To create diverse content, we plan to introduce
randomness by adding noise to some instances. For
example, we might alter parts of the original text
before synthesizing the speech with TTS. Consid-
ering the aim to only annotate a test set for the sake
of conserving labor and reducing costs, we plan
to select subsets from the test sets of various origi-
nal datasets obtained. We aim to select 200 from
each. Our selection criterion focuses on ensuring a
high quantity of entities and objects in the content,
and the final labels should cover a rich vocabu-
lary. Given there are 15 combinations of modalities
and tasks (including those augmented through our
post-processing), we will have a total of 3,000 data
entries of grounded MUIE test instances. Next,
we revisit the annotation information, specifically

10https ://github.com/suno-ai/bark
Yhttps://github.com/rany2/edge-tts

re-annotating instances from the combined modal-
ity datasets where cross-modal content is not fully
aligned. This ensures that the dataset covers both
modality-shared and modality-specific instances.

6 Experiments

6.1 Settings

We measure the system performance by following
most practices of end-to-end UIE: F1 of entity span
with type for NER, F1 of all subject&object entities
and their relation label for RE. For EE, we consider
event trigger (ET) F1 including both trigger and
event type, and event argument F1 including both
arguments with role types. W.r.t. the multimodal
grounding, for both image and audio segmenta-
tion, we consider the mean Intersection over Union
(mloU); for video segmentation, we use the average
Jaccard (J).

The encoder projection is a linear layer with a
hidden size of 4,096. As no prior method is de-
signed for grounded MUIE, we implement pipeline
systems. Specifically, we first employ an MLLM
to do UIE on multimodal input. And then we pass
the raw multimodal source and the necessary UIE
label to the SEEM or SHAS model for fine-grained
grounding of image, video and audio. We con-
sider the following existing well-exposed MLLMs.
For image-related UIE: InstructBLIP (Dai et al.,
2023), LLaVA (Liu et al., 2023), and also MiniGPT-
v2 (Chen et al., 2023) that can output image seg-
mentation end-to-end. For or video-related UIE:
VideoChat (Li et al., 2023), Video-LLaVA (Lin
et al., 2023). SpeechGPT (Zhang et al., 2023a) for
audio-related UIE. Video-LLaMA (Zhang et al.,
2023b) supporting video+audio; NExT-GPT (Wu
et al., 2023b) supporting all four modalities. All
these systems take the 7B LLM, unless otherwise
specified. For fairness, all baselines are further
tuned using the same UIE instruction-tuning data
as ours. All system takes zero-shot inference, with-
out tuning on in-house datasets.

6.2 Zero-shot Results on Image-related MUIE

Table 2 presents the results of different models on
our MUIE dataset under both text+image and pure
image conditions. From the data, we observe that
overall, the end-to-end approach (MiniGPT-v2) out-
performs pipeline methods. Besides, our system
demonstrates a clear and consistent advantage con-
sistently across all subtasks.
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T+I Input I Input
Method
etho Twtl7 MNRE M2E2 PASCAL-C VRD imSitu

NER I-Seg RE I-Seg ET EA I-Seg NER ISeg RE I-Seg ET EA  I-Seg
LLaVA+SEEM 230 458 154 518 228 135 483 178 261 104 369 195 82 298
InstructBLIP+SEEM 269 520 170 548 230 201 525 210 397 116 391 185 113 300
MiniGPT-v2 454 487 224 562 273 163 548 418 620 186 383 370 133 322
REAMO 474 535 246 569 302 256 60.1 430 646 260 439 415 163 396

Table 2: Zero-shot performance in the UIE scenario of text+image or standalone image input. I-Seg:

grounding by

image segmentation. Performance of REAMO is with blue background.

Method T+A Input A Input
ACE05-Aud ReTACRED ACE05-Aud ReTACRED
NER A-Seg RE A-Seg NER A-Seg RE A-Seg
SpeechGPT 26.7 21.4 454 27.5 14.0 13.3 30.4 21.0
NEXT-GPT+SHAS 19.6 15.6 37.5 20.4 8.3 10.2 25.1 12.4
REAMO 28.5 24.3 46.8 29.1 17.4 16.7 334 25.1

Table 3: Zero-shot performance in the text+audio or standalone audio input scenarios.

Method T+V (VidSitu-Txt) V (VidSitu)
ET ER V-Trck ET ER V-Trck
VideoChat+SEEM 28.8 185 281 143 92 209
Video-LLaVA+SEEM 31.0 224 314 18.6 88 206
REAMO 328 231 344 223 145 232

Table 4: Zero-shot results in the text+video or stan-

dalone video input scenarios.
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Figure 3: Performance gap between modality-shared
(aligned) and modality-specific (unaligned) MUIE.

6.3 Zero-shot Results on Audio-related MUIE

In Table 3, we present the performance of vari-
ous models under text+audio and pure audio input,
respectively. The trends observed are similar to
those seen in the previous table: 1) End-to-end ap-
proaches (SpeechGPT) demonstrate stronger per-
formance compared to the pipeline method (NExT-
GPT+SHAS), effectively mitigating the issue of
error propagation. 2) Our REAMO consistently out-
performs others across all subtasks and scenarios.

6.4 Zero-shot Results on Video-related MUIE

In Table 4, we present the final set of results for EE
task based on text+video and pure video input. The

(©) T+A (ACE05-Aud)

Figure 4: Impact of different object/entity numbers.

overall trend observed here again aligns with that
of the previous tables, with our model achieving the
strongest performance. Following, we can confirm
that for single modalities (such as image, audio,
video), without the assistance of textual modality,
the effectiveness of MUIE significantly diminishes.

6.5 Results on Modality-Compound MUIE

Finally, we present the performance of our model
across a broader range of complex mixed-modality
scenarios for MUIE. As shown in Table 5, our
REAMO consistently delivers the best results than
the baseline solutions. This becomes even more
pronounced in complex mixed-modality contexts.
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T+I+A (Twtl17-Aud)

I+A (MNRE-Aud) V+A (VidSitu-Aud)

Method
NER  I-Seg  A-Seg RE I-Seg  A-Seg ET ER V-Trck  A-Seg
Video-LLaMA+SEEM/+SHAS - - - - - 12.0 4.8 12.7 8.4
NExXT-GPT+SEEM/+SHAS 30.7 32.4 13.9 15.4 46.5 18.8 19.3 13.7 19.9 15.0
REAMO 37.4 33.3 15.1 21.8 53.4 21.8 242 185 22.0 20.9

Table 5: Zero-shot performance in more complex modality-hybrid scenarios of MUIE.

(o} Recognize all entity words and categorize them by pre-defined
labels in the given text, and outline them in the given image and
audio correspondingly. The output format should be "(entity1,
labell)(entity2, label2)". Candidate category labels: person, loca-
tion, organization, country, title.

Input Text: My cousin in Lebanon had a wedding and really invited
Nancy Ajram to perform Lamaoooo.

Please thirﬂ( steE bE step.

(Based on the image, there is a woman in extravagant attire standing @
at the center of the stage, presumably the performer mentioned in
the input text, named Nancy Ajram. She is performing "Lam -
20000." Additionally, according to the audio, the name mentioned
is "Wendy," which is not explicitly mentioned in the text.
Therefore, the extracted entity words based on the content from the
image, text, and audio are: (Windy, person)(Nancy Ajram, pers-
on)(Lebanon, location)(Lamaoooo, title). The outlined image and
audio are shown as follows:

L~

B )
Figure 5: Qualitative result A on MUIE (NER) with
modality-specific case via reasoning.

™ Extract relations between entities in the text, and outline them in gi-
ven images correspondingly. The output format should be "(sub-
ject, Relation, object)".
Candidate relation labels: peer, award, part_of, locate_at, nation-
ality, place of residence, member of...
Input Text: Rafael Nadal was interviewed by Bud Collins after his
first French Open title in 2005.

The extracted relationships : (Rafael Nadal, award, §
French Open) (Rafael Nadal, interview by, Bud
Collins). The image is outlined as follows:

Figure 6: Qualitative result B on MUIE (RE) with
grounding rationale via reasoning.

6.6 Gap between Modality-Shared vs.
Modality-Specific MUIE

Previously, we mentioned that in the MUIE con-
text, different models may encounter both aligned
shared information and misalignments between
modalities. Now, we have categorized cases in
the data as either Modality-Shared or Modality-
Specific and compared the performance of various
models under these two scenarios. As illustrated in
Fig. 3, REAMO outperforms all baseline models in
addressing challenges arising from misalignments
between modalities.

6.7 Influence of Entity/Object Numbers

Fig. 4 further illustrates the impact of the num-
ber of entities (or objects) in an instance on the
performance of the MUIE system. It is evident
that our REAMO system maintains commendable

™ Extract all the possible events in the video, and track the argument
mentions correspondingly. Each event associated with an event ty-
pe must have a trigger verb. If possible, please give detailed argu-
ments for each event.

Based on the video content, there are two possible event in the vid- @
eo: (Type: driving, Trigger: drive, Agent: man, Target: car, Direct-

ion: forward, Scene: mire) (Type: driving, Trigger: drive, Agent:

man, Target: car, Direction: backward, Scene: mire)

Figure 7: Qualitative result C on MUIE (EE) with
commonsense-aware cognitive reasoning.

performance in extracting an increasing number
of objects across T+I/T+A/T+V scenarios, both in
terms of MUIE results and fine-grained grounding,
being clearly superior to baseline pipeline systems.

6.8 Case Study

Then, we provide visualizations of case studies,
through which we aim to offer a more intuitive
and comprehensive demonstration of our MUIE
system. Fig. 5, 6, and 7 each displays an ex-
ample for NER, RE, and EE tasks, respectively,
where REAMO yields correct answers. In case
A, our system demonstrates how it can engage in
thought processes and flexibly determine MUIE
labels from different modalities. In case B, the
model can provide accurate relation extractions
and precise segmentation results that correspond to
the entities in the input text. In case C, most im-
pressively, it manages to link semantic information
to factual commonsense understanding based on
accurate fine-grained cross-modal grounding, and
correctly answer the question.

6.9 Error Analysis

Finally, we delve into our model itself, and analyze
the possible shortcomings for shedding light on
future explorations. Via our experiments, we here
summarize several error types:

* Repetition of Extracted Content: When text
and information from other modalities are not
strictly consistent, our method may output dif-
ferent entity names, arguments, or relation-
ships. However, upon integrating information
from different modalities, they should corre-
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spond to the same entity names, arguments, or
relationships.
Incomplete Information Extraction: The
outcomes of information extraction are incom-
plete, such as incomplete named entity recog-
nition, failure to identify relations involving
in-depth reasoning, or incomplete identifica-
tion of event arguments.

Incorrect Grounding Match: The entity

or arguments do not always match with the

grounding results. For instance, when the text
mentions ‘Obama’ and “Trump’ and the image
depicts both individuals, the image object seg-
menter fails to ascertain who is ‘Obama’ and

“Trump’, resulting in an erroneous grounding

match.

Miss-grounding: Our model may output enti-

ties or arguments without successfully ground-

ing the corresponding regions in the respective
image, video, or audio.

Over-grounding: The model may generate

multiple instructions and perform grounding

in the image, video, or audio, yet no corre-
sponding regions actually exist in the visual
or auditory content.

* Error Propagation: Since our system op-
erates as a pipeline process, where a meta-
response is first produced and then used to
invoke functional modules, this sequence in-
troduces error propagation. If there is an issue
with the content of the meta-response, the out-
comes from the subsequent modules will be
incorrect. To address this, we need to develop
more advanced end-to-end MLLM:s.

7 Conclusion

This paper introduces a novel task of multimodal in-
formation extraction setting: grounded Multimodal
Universal Information Extraction (MUIE). First,
MUIE definition unifies all IE tasks across vari-
ous modalities, including text, audio, images, and
video, with fine-grained multimodally grounded tar-
gets. To solve MUIE, we devise REAMO, a novel
MLLM that can extract and ground information
from all modalities. REAMO is tuned through vari-
ous strategies to achieve proficiency in recognizing
and grounding multimodal information. Further
we introduce a high-quality, diverse, and challeng-
ing benchmark dataset for evaluating MUIE sys-
tems. Experimental results demonstrate REAMO’s
stronger performance in extracting and ground-
ing, setting a strong benchmark for the following

grounded MUIE research.
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Limitations

The limitations of this work primarily arise from
the following two aspects. From model perspective,
our MLLM, designed for Grounded MUIE, handles
four common modalities (text, images, video, au-
dio) and may struggle to integrate new ones without
significant retraining. Challenges persist in extract-
ing complex implicit information and in cognitive
reasoning, with current capabilities mainly support-
ing video tracking for event extraction. Further
research is needed to enhance and expand tracking
for other tasks like NER and RE in videos.

From data perspective, we introduced a dataset
solely comprising a test set, limiting in-house train-
ing opportunities. Future work will focus on en-
larging this dataset to include a training set and
expanding annotations to cover more modality com-
binations for the three IE tasks: NER, RE, and EE.

Ethics Statement

The development and application of MUIE systems
potentially raise several potential ethical consider-
ations or risks that should be properly treated to
ensure responsible research and deployment.
Privacy and Consent. Multimodal data in MUIE
systems can include sensitive personal information.
Ensuring data is collected and used with explicit
consent and in compliance with data protection
laws is critical.

Bias and Fairness. MLLMs in MUIE systems
may inherit biases from their training data, poten-
tially causing discriminatory effects. Active efforts
are required to mitigate such biases to guarantee
fairness across diverse groups.

Transparency and Accountability,. MUIE sys-
tems often lack clear decision-making transparency
due to their complexity. Promoting explainable Al
with detailed documentation can enhance user and
stakeholder trust.

Misuse Potential. The ability of MUIE systems
to process diverse data can be exploited for harm-
ful purposes like misinformation or unauthorized
surveillance. Establishing robust legal and ethical
safeguards is essential to prevent misuse.
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A Model Prompt Specification

Here, we show the prompts for each subtask (i.e.,
NER, RE, EE) in MUIE:

7

» Prompt for Named Entity Recognition:

Please recognize all entity words and categorize them
by pre-defined labels in the given text, and outline
them in the given image or video or audio corre-
spondingly. The output format should be “(entity1,
labell)(entity2, label2)”. If an entity possibly has
a counterpart in the given image or video or audio,
please generate a token “<concept>" after the entity
word, for subsequent cross-modal grounding.
Candidate category labels: person, location, organi-

PR |

zation, country...

Input Text/Image/Video/Audio:
i

» Prompt for Relation Extraction:

Please extract all relations between named entities,
and outline them in the given image or video or au-
dio correspondingly. The output format should be
“(subject entity, relation, object entity)”. If an entity
possibly has a counterpart in the given image or video
or audio, please generate a token “<concept>" after
the entity word, for subsequent cross-modal ground-
ing.

Candidate relation labels: peer, award, part_of,
locate_at, nationality, place_of _residence, mem-

ber_of... .
PR |

Input Text/Image/Video/Audio:
i

» Prompt for Event Extraction:

Extract all the possible events in the video, and track
the argument mentions correspondingly. Each event
associated with an event type must have a trigger verb.
If possible, please give detailed arguments for each
event.

Candidate event types: Marry, Attack, Injure, Be-
born, Meet, Transport, Start-position...,

Candidate event argument types: Agent, Target, Di-
rection, Time, Place, Instrument, Organization, Du-

PR |

ration...
Input Text/Image/Video/Audio:

\ J

B Specification of MUIE Fine-tuning
B.1 UIE Instruction Tuning

In this step, we train only the core LLM. To avoid
the significant cost associated with fully updating

the LLM, we employ the LoRA technique, which
allows us to achieve our objectives by tuning only a
small subset of parameters, thus leaving the overall
architecture of the LLM unchanged. The datasets
we utilize are sourced from existing IE datasets.
We list these datasets in Table 6. These data are
converted into an instruction format, following the
practices outlined by Wang et al. (2023b).

Task Data Source Amount
NER OntoNotes 5.0 76,714
CoNLL2003"? 20,744
RE  NYT (Riedel et al., 2010) 56,196
NYTI11 HRL (Takanobu et al., 2019) 62,648
EE  MAVEN (Wang et al., 2020) 49,873

Table 6: Datasets used for UIE tuning.

B.2 Multimodal Alignment Learning

To accomplish the alignment, we adopt an ‘X-to-
text’ generation task trained on the ‘X-caption’ pair
(‘X stands for image, audio, or video) data from
existing corpus and benchmarks, i.e., given the rep-
resentation of an ‘X’, to prompt the frozen LLM to
generate the corresponding text description. Specif-
ically, we utilize three types of ‘X-caption’ pair
data, including: 1) ‘Video-caption’ pair dataset:
Webvid-2M (Bain et al., 2021), a large-scale dataset
of short videos with textual description sourced
from stock footage sites, 2) ‘Image-caption’ pair
dataset: CC3M (Sharma et al., 2018), contains over
3 million images accompanied by diverse styles
of natural-language descriptions, and 3) ‘Audio-
caption’ pair dataset: AudioCaps (Kim et al., 2019),
an extensive dataset of approximately 46k audio
clips paired with human-written textual descrip-
tions collected via crowdsourcing.

B.3 Fine-grained Cross-modal
Grounding-aware Tuning

For this step, our focus is on achieving fine-grained,
concept-level cross-modal alignment, primarily
aligning the other three modalities to the textual
modality. Our primary method involves utiliz-
ing existing ‘X-to-text’ phrase grounding datasets.
REAMO’s input comprises textual phrases and
grounded regional modality features, prompting
the LLM to determine their match. For fine-
grained image-to-text alignment, we consider the
MS-COCO dataset (Lin et al., 2014). For video-
to-text alignment, we turn to the TAO dataset
(Dave et al., 2020). For entity-level audio-to-text
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alignment, we primarily utilize the dataset for the
Speech NER task (Chen et al., 2022a). Since there
is a lack of dataset in English speech, we thus use
TTS tools to generate the CoNLL 2003 textual
NER data into speech NER data.

Invocation-based Meta-response Tuning. For
this step, we aim to teach the LLM to produce
the correct format of invocation meta-responses.
Thus, we need to create data specifically designed
for instruction tuning. Technically, we make use
of the existing annotated datasets for various vi-
sion tasks included in this work. For each task
under specific different user input scenarios, with
the corresponding data, we design various template
dialogue-format examples. Based on these exam-
ples we then prompt the GPT-4 to generate more
samples under various topics and enriched scenar-
ios. To ensure data diversification, the resulting
instruction data includes a rich number of instances
(10k), under different simulations of modalities and
tasks.

C Grounded MUIE Evaluation

Our grounded MUIE evaluation dataset involves
predictions for three tasks, including UIE label
prediction, multimodal grounding prediction, and
cognitive QA task prediction. Here, we provide
detailed evaluation metrics for these three subtasks.

C.1 UIE Evaluation Metrics

To evaluate textual UIE results of the model, we
use span-based offset Micro-F1 as the primary
metric.

* For NER task, we follow a span-level evalu-
ation setting, where the entity boundary and
entity type must be correctly predicted.

* For RE task, a relation triple is correct if the
model correctly predicts the boundaries of the
subject entity, the object entity, and the entity
relation.

* For EE task, we report two evaluation metrics:

— Event Trigger (ET): an event trigger is
correct if the event type and the trigger
word are correctly predicted.

— Event Argument (EA): an event argu-
ment is correct if its role type and event
type match a reference argument men-
tion.

C.2 Modality Grounding Evaluation Metrics

For the evaluation of the fine-grained modality
grounding accuracy, the key idea is to measure
the mean Intersection over Union (mIol).

Image Segmentation. Let us denote by Mimg =
{Mg}g":1 the ground truth set of G regions, and
Mimg = {My}X_| the set of K predictions. In-
spired by prior work, if K # G, we employ
padding with () to equalize the sizes of both sets,
resulting in a final size of P = max(G, K). Then,
we find a bipartite matching between these two
sets by searching for a permutation of P elements,
o € Sp, with the lowest cost:

P
0 = argmin,cg, Z Linaten(Miy, My(y), (1)

2

where Ematch(Miv M, ;) is a pairwise matching
cost between ground truth Mi and a prediction
with index o (7). We compute this optimal assign-
ment efficiently with the Hungarian algorithm. We
define [fmatch(MivMa(i)) as ['bce(MiaMa(i)) +
Edice(Mi, My (;)). The final IoU of each predic-
tion is:

_ Area of Overlap

ToU = 2)

Based on the IoU scores, we can calculate mIoU
metric by referring image segmentation dataset.

Area of Union

Video Tracking. For videos, we compute the
Jaccard Index (a.k.a, mloU score) for each frame
via the above calculations, and then average them.

Audio Segmentation. Similarly, the mloU score
for each audio segment is computed to evaluate
the quality of speech segmentation results. We
measure the 1D span of the extracted segments and
the 1D span of gold segments.
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