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Abstract
Temporal knowledge graph reasoning has
emerged as a crucial task for answering time-
dependent questions within a knowledge graph
(KG). Despite tremendous progress, the present
research is impeded by the sparsity of a tempo-
ral KG and an over-reliance on simple single-
relational reasoning patterns. To overcome
these challenges, we introduce Mul2Questions,
a new temporal KG reasoning benchmark fea-
turing over 200k entities and 960k questions
designed to facilitate complex, multi-relational
and multi-hop reasoning. Additionally, we pro-
pose a new model adept at conducting pattern-
aware and time-sensitive reasoning across tem-
poral KGs. The model’s efficacy is con-
firmed through rigorous evaluations, show-
casing its effectiveness in sparse data condi-
tions and adeptness at handling questions with
long reasoning chains. We have made our
benchmark and model publicly accessible at
https://github.com/Zihe2003/Mul2Questions.

1 Introduction

Temporal knowledge graph reasoning involves
the task of answering questions related to time-
dependent facts within a knowledge graph (KG)
(García-Durán et al., 2018; Jia et al., 2021; Saxena
et al., 2021; Lan et al., 2022; Chen et al., 2023).
For example, given two facts with time duration:
(Barack Obama, position, President of US, 2009-
2017) and (George W. Bush, position, President
of US, 2001-2009), for a time-related question
“Who was the president of the United States be-
fore Barack Obama?”, a model for this task should
infer that the answer is “George W. Bush”. Recent
benchmarks such as (Saxena et al., 2021) and Mul-
tiTQ (Chen et al., 2023) have greatly improved this
task and expanded its applicability.

Despite notable progress, the current study on
temporal knowledge graph reasoning faces chal-
lenges of the sparsity of KGs and oversimplified
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Figure 1: A comparison of single-relational (top) and
multi-relational multi-hop (bottom) reasoning patterns.

reasoning patterns. The CronQuestions benchmark
(Saxena et al., 2021), for example, uses templates
with only five temporal relations to generate ques-
tions — this produces a sparse reasoning graph af-
ter filtering the original KGs and can significantly
ease the reasoning. Furthermore, it is worth noting
that a substantial proportion (84.5%) of the ques-
tions in previous benchmarks (Saxena et al., 2021;
Chen et al., 2023) involve only single-relational
reasoning patterns, as shown in the top of Figure 1.
In such cases, the reasoning is simplified because
only one relation is involved, and the answer is
sure to have the same relation shared with the two
entities that appear in the questions. There remains
a lack of evaluations on complex multi-relational
and multi-hop reasoning patterns, as depicted in
the bottom of Figure 1.

This work focuses on multi-relational multi-hop
reasoning in a densely connected temporal knowl-
edge graph. As our first contribution, we developed
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a new benchmark named Mul2Questions, which
contains over 200k entities spanning a temporal
KG that is a strongly connected graph created using
a breadth-first graph-expanding strategy. Moreover,
the benchmark also includes an extensive collection
of temporal questions (over 960k) that require com-
plex multi-relational multi-hop reasoning patterns,
as illustrated in Figure 1 (bottom), by incorporat-
ing 135 distinct temporal relations. Table 1 shows
a statistical comparison between our benchmark
and others, which highlights the much higher se-
mantic complexity of our benchmark’s questions
(as defined in Eq. (1)) — this indicates a height-
ened challenge in both finding candidate entities
and deducing correct answers.

In addition to the data contribution, we present
a new model for temporal knowledge graph rea-
soning that incorporates pattern-aware and time-
sensitive joint reasoning methods. Through rigor-
ous evaluations, we show that our methods outper-
forms existing methods by a substantial margin (+9
points) in overall accuracy. Furthermore, it per-
forms well in data-scarce situations and addressing
questions with long reasoning chains.

In summary, our contributions are three-fold:

• We present Mul2Questions, a new benchmark
for temporal knowledge graph reasoning, fo-
cusing particularly on multi-relational multi-
hop reasoning patterns. We also study its po-
tential extension to multilingual scenarios.

• We introduce a new method with pattern-
aware and time-sensitive mechanism for rea-
soning over temporal KGs; it demonstrates
outstanding ability in addressing diversified
reasoning patterns.

• We release both the benchmark and model to
the public to facilitate further exploration.

2 Related Work

2.1 Temporal KG Reasoning Resources
Temporal KGs are multi-relational graphs with
each edge (i.e., relation) marked with time dura-
tion information (Dasgupta et al., 2018; García-
Durán et al., 2018; Jain et al., 2020). Among
the datasets facilitating reasoning over temporal
KGs, TempQuestions (Jia et al., 2018b), derived
from FreeBase (Bollacker et al., 2008), offers 1,271
questions, and SYGMA (Neelam et al., 2021) uti-
lizes Wikidata to enhance reasoning capabilities for

Dataset #UR #Tem. #Ques. SCQ

TempQ (2018b) - - 1.2k 1.12
TimeQ (2021) - - 16k 1.00
CronQ (2021) 5 30 410k 1.23
MultiQ (2023) 22 246 500k 1.00

Mul2Questions 135 586 960k 2.35

Table 1: A comparison of the number of unique rela-
tions (#UR), question templates (#Tem.), the size of the
question set (#Ques.), and the semantic complexity of
the questions (SCQ) regarding different benchmarks..

TempQuestions. However, these datasets provide
only around a thousand questions, falling short
for developing advanced neural models. On the
larger scale, TimeQuestions (Jia et al., 2021) gath-
ers 16k time-centric questions from eight KGs,
and CronQuestions (Saxena et al., 2021) deliv-
ers an extensive dataset with 328k facts and 410k
questions from Wikidata. Additionally, MultiTQ
(Chen et al., 2023) introduces a dynamic seman-
tic KG from ICEWS05-15 (García-Durán et al.,
2018), broadening the scope with rich semantic in-
formation. Nonetheless, most benchmarks focus on
single-relational reasoning within sparse KGs. By
contrast, our approach emphasizes complex multi-
relational and multi-hop reasoning over densely
populated temporal KGs.

2.2 Temporal KG Reasoning Approaches
The exploration of effective reasoning methods
over temporal KGs is still in its early stages, with
two predominant approaches emerging: semantic
parsing-based and embedding-based methods. Se-
mantic parsing-based methods, such as those em-
ployed by TEQUILA (Jia et al., 2018a), EXAQT
(Jia et al., 2021), and TwiRGCN (Sharma et al.,
2023), begin by segmenting the questions into tem-
poral and non-temporal components and then apply
temporal constraints to refine the pool of potential
answers to find the correct one. Despite their ef-
fectiveness, these methods are constrained by the
need for manually crafted rules for problem decom-
position, limiting their effectiveness in tackling
complex queries. In contrast, recent advancements
in embedding-based approaches leverage neural
networks to capture temporal dynamics and adopt
semantic similarity for answer prediction. Specifi-
cally, CronKGQA (Saxena et al., 2021) introduces
a dynamic, learnable framework for temporal rea-
soning, avoiding hand-crafted rules. TSQA (Shang
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Figure 2: The Mul2Questions benchmark construction process is divided into two parts: temporal KG construction
(left) and temporal question construction (right).

et al., 2022) enhances the interaction between time
and entities using contrastive learning techniques
and time position coding. TempoQR (Mavromatis
et al., 2022) integrates time range information and
employs entity embeddings for richer question rep-
resentations. MultiQA (Chen et al., 2023) proposes
a new model for particularly multi-granularity in-
ference and establishes a new standard for temporal
reasoning tasks. However, limited by the oversim-
plified reasoning patterns in previous benchmarks,
these methods may have difficulties for address-
ing complex patterns. This paper addresses the
challenges by designing a pattern-aware and time-
sensitive mechanism to enhance learning.

3 The Mul2Questions Benchmark

Our Mul2Questions benchmark targets multi-
relational multi-hop reasoning particularly, and we
divide the construction process by temporal KG
construction (§ 3.1) and temporal question con-
struction (§ 3.2) as visualized in Figure 2.

3.1 Construction of the Temporal KG
We use Wikidata (Vrandečić and Krötzsch, 2014)
to build the temporal KG, following previous works
(Saxena et al., 2021). Instead of simply filtering out
Wikidata to obtain the KG, we employ a breadth-
first approach to expand an empty KG gradually.
This method guarantees a densely connected KG
that includes crucial entities/facts and avoids dis-
continuities in the graph.

To start, we compile an empty KG and build a
seed entity set containing individuals listed as the
“TIME 100 Persons” by the Times magazine1. The
underlying assumption for choosing this set is that

1https://en.wikipedia.org/wiki/Time_100
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Figure 3: The change in the number of entities, relations,
and facts regarding different expanding rounds.

prominent persons may get involved in the world’s
important events and, therefore, have a more ex-
tensive network of connections in Wikidata. Next,
we iterate each entity in the seed set and add enti-
ties that have a temporal connection with it in the
seed set. Additionally, the relevant facts are added
to the temporal KG. We repeat the above process
and check each newly added entity until conver-
gence. Finally, we add the important world events,
such as (World War II, occurs, 1939-1945), into the
temporal KG following Saxena et al. (2021).

Finally, a dense temporal KG consisting of 229k
facts, 292 distinct types of temporal relations, and
over 200k entities was produced, with Figure 3
visualizing the detailed process. To qualitatively
evaluate the constructed KG, we measure its se-
mantic complexity SCKG , defined as the average
number of relation types associated with each en-
tity (Chen et al., 2023). The results reveal that our
temporal KG has a high SCKG of 1.97, 49% greater
than that of CronQuestions, which is generated by
merely filtering the Wikidata set.
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Pattern Template Contextualized Question

Subject-Join CTX(s1, r1, ?) when/at the time/during CTX(f2) ? Which club did {s1} play for when {s2} serverd
as the coach?

Object-Join CTX(?, r1, o1) when/at the time/during CTX(f2) ? Who was the coach of {o1} when {s2} play for
the club?

Time-Join CTX(s1, r1, ?) when/at the time/during CTX(f2) ? Which club did {s1} play during World War II?
CTX(?, r1, o1) when/at the time/during CTX(f2) ? Who was the coach of {o1} during World War II?

Table 2: Templates with different overlapping patterns for question generation.

3.2 Construction of Temporal Questions

We build a large question set with multi-relational
multi-hop reasoning patterns for Mul2Questions
by first recognizing time-compatible fact pairs and
then converting them into question-answer pairs
using templates.

Time-Compatible Fact Pairs. Let f1 = <s1, r1,
o1, t1> be a fact instance in the temporal KG. We
define a time-compatible fact with f1 as another
fact instance f2 with an overlapped duration time.
By definition, f2 can be either a standard fact repre-
sented by f2 = <s2, r2, o2, t2> or a world event f2
= <e2, t2> as introduced by (Saxena et al., 2021).
We then consider the overlapping patterns of f1
and f2 to generate question-answer pairs.

Templates for Question Generation. We define
three overlapping patterns for question generation:
1) Subject-Join: f2 is a standard fact, and the sub-
ject s1 of f1 is involved in f2. In this case, we
set the answer to o1 and generate a contextualized
question based on the semantics of f1 and f2. 2)
Object-Join: similar to subject-join type, but the
object o1 of f1 is involved in f2. In this case, we
set the answer to s1 and generate a contextualized
question. 3) Time-Join: in this case, f2 is a world
event, and we can set the answer to either s1 or
o1 and generate a contextual question. Figure 2
gives an example of Subject-Join type, and we set
the answer to the object “Mauricio Pochettino” and
a generated question is “Who was the coach of
Paris SG F.C. when Lionel Messi joined the club?”.
Table 2 shows more examples.

The above describes 2-hop reasoning patterns,
but by adding more compatible facts, we can get a
longer reasoning chain. For example, when finding
another fact f3 = <Lionel Messi, award received,
Ballon d’Or, 2019, 2019>, we can construct a three-
hop question, “Who was the coach of Paris SG F.C.
when <the player winning Ballon d’Or at 2019>
joined the club?” However, considering this of-

ten gets long and verbose questions, we only use
the ten most common 3-hop patterns. In total, we
find 586 unique patterns (including ten 3-hop pat-
terns) involving 135 different temporal relations,
much larger than previous methods. Then, we em-
ploy seven experts to contextualize each pattern
and extend them by a generative language model of
GPT-4 (OpenAI, 2023), using few-shot prompting
techniques (Brown et al., 2020). Finally, we get
6,274 contextualization templates. By propagating
each template using compatible fact instances, we
finally ended up with 960k questions. We refer to
Appendix A for more examples of contextualized
templates that we use to generate questions.

Semantic Complexity of Questions. Similar to
the definition of semantic complexity of a KG, we
define semantic complexity of questions(SCQ) as
the average of the number of relation types involved
in each question:

SCQ =
1

|Q|
∑

qi∈Q
N

rtype
qi (1)

where Q is the question set and N
rtype
qi is the num-

ber of relation types involved in qi. Consequently,
we get a SCQ = 2.35, which is much higher than
that of CronQuestions (SCQ = 1.21) and MultiTQ
(SCQ = 1.00), where the most of questions involv-
ing only single-relational reasoning. Obviously,
the larger SCQ, the more relations the question
involves and the harder reasoning.

4 Our Temporal Reasoning Model

We propose a new model featuring discerning dif-
ferent reasoning patterns over a temporal KG. As
shown in Figure 4, our model consists of three es-
sential parts: 1) reasoning subgraph extraction, 2)
reasoning pattern characterization, and 3) pattern-
aware joint reasoning.

14370



Multi-Relational Question:

Who was the coach of {Paris Saint-

Germain} when {Lionel Messi} 

joined the club?

Question/Answer Type 

Classification

hque hans

Mauricio 
Pochettino

Paris SG 
F.C.

head 
coach

2019 2020 2021 2022 2023

Paris SG 
F.C.

Lionel 
Messi

member of 
sports team

President
of US

George W. 
Bush

position 
held

2001 2005 2009 2013 2017

President
of US

Barack 
Obama

position 
held

Mauricio 

Pochettino

softmax

George W. 

Bush

softmax

Harry 
Truman

Barack
Obama

George 
W. Bush

...

Mauricio 
Pochettino

Luis 
Enrique

Thomas 
Tuche

...

Single-Relational Question:

Who was {President of the United 

States} before {Barack Obama}?

Question/Answer Type 

Classification

hque hans

The central fact:

timeline

timeline

The central fact:

Question Type 

Representation

Question Type 

Representation

Answer Type 

Representation

Answer Type 

Representation

Final Answer Prediction

Final Answer Prediction

...

...

Entity Temporal Representation

Entity Temporal Representation

m
a
tc

h
in

g
 s

c
o
re

m
a
tc

h
in

g
 s

c
o
re

m
a

tc
h

in
g

 s
c
o

re

Figure 4: The overview of our approach, featured by discerning different reasoning patterns over a temporal KG.

4.1 Reasoning Subgraph Extraction

Given a question q, we first extract a subgraph to
facilitate reasoning. We begin by identifying a key
entity/relation set from q using an extra trained
entity/relation recognizer2. Then, we create a sub-
graph that includes all facts connected to the enti-
ties, and we designate a fact instance that is closest
to the entity set as the “central fact”. Specifically,
the “close” here is indeed a measurement of the
overlapping of a fact and the entity/relation set. We
then arrange the facts in chronological order, which
is used to help decide a region where the answer is
more likely to exist.

4.2 Reasoning Pattern Characterization

We motivate our reasoning pattern characterization
module by noting that different patterns exist for
reasoning. For example, for the multi-relational
multi-hop reasoning question, it is more likely that
the target fact/entity has a duration overlapping
with the “central fact” involved in the question. By
contrast, for the single-relational reasoning ques-
tion, we should focus on the fact adjacent to the
“central fact” with the same relation for finding the
answer. While for the first/last question (i.e., “Who
is the first president of the US?”), we should focus
on the fact locating the earliest in the chronological
timeline. With the above insights, we build a rea-
soning pattern characterization module to discern

2We use a BERT based recognizer, achieving 92%/85% in
F1 for entity/relation recognition in the questions.

different reasoning patterns to enable reasoning.
We categorize the reasoning patterns into three

aspects: 1) The answer type label, which is a la-
bel from [entity, time]. 2) The question type label,
which is a label from [before/after, first/last, multi-
hop] following definitions of (Chen et al., 2023).
3) The timeline distance, which is a scalar value
showing the distance from the answer entity to the
“central fact”. Note that all these patterns are known
during training, and we build three prediction mod-
els to learn their representations.

Specifically, given q, we use a BERT encoder to
covert it as a continuous representation h ∈ Rd:

h = BERT(q) (2)

where d denotes the dimension of representation.
Then, we build two classification models to predict
the answer and question type labels. For example,
to predict the answer type label, we first transform
h into ha ∈ Rd:

ha = Wah (3)

where Wa ∈ Rd×d is a parameter, and then use a
binary classifier to map it into an answer type label.
The question type label classification is similar but
compute hq ∈ Rd with another parameter Wq ∈
Rd×d and a multi-class classifier. For the timeline
distance, we compute a scalar number based on the
representations of h and the central fact:

sq = Wt(h⊕ BERT(f)) (4)
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where Wt ∈ R1×2d, f stands for the “central fact”,
and ⊕ denotes a concatenation operator. The clas-
sification and regression models are trained based
on cross-entropy and MSE loss, respectively.

4.3 Pattern-Aware Joint Reasoning
We perform a pattern-aware joint reasoning to lo-
cate the answer. Specifically, for an entity e in the
subgraph, its representation is built by:

he = se→f ∗ (htemp ⊕ ha ⊕ hq) (5)

where htemp ∈ Rdt is the temporal representation
of the entity learned from the temporal KG, follow-
ing (Saxena et al., 2021), and se→f is the timeline
matching score of the entity, computed by:

se→f = N (|Dis(e, f)− sq|; 0, 1) (6)

where N (; 0, 1) denotes a standard Gaussian dis-
tribution, and |Dis(e, f) − sq| is a measurement
for whether the true distance of e and f (Dis(e, f))
matches the predicted timeline distance (sq).

Finally, we perform a softmax calculation to lo-
cate the answer. For example, the probability of e
being the answer is computed by:

Pr(e|q) = exp(Wphe)∑
e′∈G Wphe′

(7)

where Wp ∈ R1×dt+2d denotes a prediction pa-
rameter and e′ ranges over each entity in the sub-
graph. For training, we train all parameters by
minimizing a cross-entropy loss function:

L = −
∑

(q,a)∈D
logPr(a|q) (8)

where (q, a) ranges over each training instance in
the training set D. We use Adam (Kingma and Ba,
2014) algorithm for parameter optimization.

5 Experimental Evaluations

5.1 Datasets and Setups
We evaluate our approach using our Mul2Questions
benchmark and CronQuestions to allow for differ-
ent reasoning patterns. For our benchmark, we
conduct a split of 8/1/1 for the train/dev/test split,
and for CronQuestions, we use the standard set-
tings. As for evaluations, we report results regard-
ing Hit@1 and Hit@10. As for implements, we
use BERTbase as the basic answer/question type
classifier and a linear regression model to predict

the timeline matching score. For the final optimiza-
tion, we set the batch size to 20, chosen from 5,
10, 20, 40, and the learning rate as 1e-5, chosen
from a set {1e-4, 2e-5, 1e-5} on the dev set by
the overall Hits@1 metrics. Our models are im-
plemented by PyTorch and trained using NVIDIA
Tesla V100 GPUs. We have released the code at
https://github.com/Zihe2003/Mul2Questions to en-
able further exploration.

5.2 Baseline Methods

We use previous state-of-the-art temporal knowl-
edge graph reasoning models as baselines, includ-
ing 1) BERT-Based Models, which use represen-
tations constructed by BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) as entity represen-
tations for prediction. 2) EmbedKGQA (Saxena
et al., 2020), which uses representations designed
for static KGs to perform reasoning. To address
temporal questions, it ignores timestamps during
training and employs random time embeddings. 3)
CronKGQA (Saxena et al., 2021), which extends
EmbedKGQA by incorporating temporal KG em-
beddings, serving as a standard baseline for evalua-
tion temporal KG reasoning. 4) TempoQR (Mavro-
matis et al., 2022), which proposes an embedding
representation for question answers using time-
assisted constraints, inspiring further research into
time-sensitive question answering . 5) MultiQA
(Chen et al., 2023), which introduces an innovative
approach by incorporating a multi-granularity tech-
nique that leverages time-assisted constraints. We
refer to our approach as PATKGQA to signify that
it is Pattern-Aware.

5.3 Quantitative Results

Table 3 shows the performance of different models
on our Mul2Questions benchmark. Accordingly to
the results, our method outperforms baseline mod-
els by a significant margin (+9.5% in Hit@1 and
+9.7% in Hit@10), demonstrating its usefulness.
We also observe that temporal embedding methods
outperform static representation methods such as
BERT and RoBERTa, emphasizing the importance
of introducing temporal embeddings. When com-
paring different types of questions, we can see that
the Time-Join question is easier than the other two.
This is expected since the Time-Join pattern often
contains a world event, which we can easily de-
termine the timing, and use it as a proxy to locate
another fact. In contrast, Subject-Join and Object-
Join need us to consider sharing patterns as well as
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Model
Hit@1 Hit@10

Overall Reasoning Pattern Overall Reasoning Pattern

S-Join O-Join T-Join S-Join O-Join T-Join

BERT (2019) 0.167 0.158 0.082 0.207 0.505 0.513 0.313 0.514
RoBERTa (2019) 0.160 0.149 0.066 0.209 0.503 0.512 0.329 0.507
EmbedKGQA (2020) 0.322 0.313 0.082 0.390 0.629 0.624 0.309 0.698
CronKGQA (2021) 0.378 0.344 0.148 0.516 0.688 0.682 0.494 0.739
TempoQR (2022) 0.522 0.430 0.473 0.795 0.765 0.706 0.724 0.943
MultiQA (2023) 0.416 0.373 0.107 0.592 0.721 0.691 0.527 0.840

PATKGQA (Ours) 0.614 0.577 0.585 0.830 0.862 0.818 0.823 0.961

Table 3: Results on the Mul2Questions benchmark, where S-Join, O-Join, and T-Join represent the Subject-Join,
Object-Join, and Time-Join patterns used to obtain a question.

Model Over. Question Type

Simple Compl.

BERT (2019) 0.243 0.249 0.239
RoBERTa (2019) 0.225 0.237 0.217
EmbedKGQA (2020) 0.288 0.290 0.286
CronKGQA (2021) 0.647 0.987 0.392
TempoQR (2022) 0.918 0.990 0.864
MultiQA (2023) 0.764 0.987 0.712

PATKGQA (Ours) 0.931 0.990 0.887

Table 4: Results of Hit@1 on the CronQuestions bench-
mark, where Simple and Compl. refer to questions that
are based on either a single fact or several facts (albeit
they are still single-relational questions).

distinct temporal relations, which could make the
reasoning more challenge.

Table 4 shows the results of the CRONQuestions
benchmark, which has a different reasoning struc-
ture than ours. As a result, our methods performs
well, indicating that it is effectiveness in address-
ing different reasoning patterns. Particularly, the
improvement stems primarily from addressing com-
plex questions. To demonstrate its effectiveness,
consider a question having a (first/last) pattern in
the CRONQuestions benchmark: “When did Messi
play their first game?”. We show that our approach
produces a negative timeline matching score, sig-
naling that the answer should appear early in the
timeline, which aids in locating the correct entity.

6 Discussion

Ablation Study. We perform an ablation study to
validate the effect of each component in Table 5. In

Method CronQ. Mul2Q.

Base Model 0.918 0.522
+ Subgraph Extraction 0.925 0.564
+ QA Type Representations 0.919 0.528
+ Timeline Matching Score 0.927 0.605

Table 5: Ablation studies of different modules on two
datasets, where the Base Model shares a similar im-
plementation as the state-of-the-art baseline TempoQR
(Mavromatis et al., 2022).

Type Question Examples

2-Hop Who was the coach of Paris SG F.C. when Lionel
Messi joined the club?

3-Hop Who was the coach of Paris SG F.C. when <the player
winning Ballon d’Or at 2019> joined the club?

4-Hop Who was the coach of <the club owed by Qatar Sports
Investments> when <the player winning Ballon d’Or
at 2019> joined the club?

Table 6: Example questions for multi-hop reasoning.

particular, we first employ the TempoQR (Mavro-
matis et al., 2022) architecture as the base model,
and then augment it with each component respec-
tively, including subgraph extraction, question and
answer type presentations, and the augmentation
of timeline matching score, to visualize the im-
pacts. The results show that each component aids
learning, with the timeline matching score being
the most effective one and leading to the largest
improvement. This observation highlights the im-
portance for modeling temporal relations of facts
dynamically in the reasoning process, which has
often been missed by earlier research.
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Method 2-Hop 3-Hop 4-Hop

BERT (2019) 0.172 0.083 0.027
CronKGQA (2021) 0.383 0.129 0.074
TempoQR (2022) 0.541 0.172 0.081
MultiQA (2023) 0.420 0.131 0.074

PATKGQA 0.623 0.375 0.312

Table 7: Results of addressing longer reasoning chains.
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Figure 5: Results in data-scarce scenarios on our
Mul2Questions benchmark.

Towards Reasoning over Longer Chains. Then,
we investigate the ability of different models to
handle longer reasoning chains. Specifically, We
generated and sampled 10k 2-hop, 3-hop, and 4-
hop questions3 (same examples are shown in Table
6) respectively and utilize a model for answer pre-
diction. The results in Table 7 indicate that our
method performs well when handling longer rea-
soning chains. The reason for this is that in ques-
tions with longer reasoning chain, the answer often
has an in-direct connection to entities appearing in
the question, which is difficult to handle in prior
methods that do not recognize the reasoning pattern.
In contrast, our approach utilizes answer/question
type representations and timing matching score
mechanisms to assist in locating the answer.

Results in Data-Scarce Scenarios. We exam-
ine the the ability of our approach for learning in
scenarios with limited data, and the results are il-
lustrated in Figure 5. Compared to earlier methods,
our methodology exhibits better performance in
situations where data is limited, where the underly-
ing reason might be that the answer/question type
representations and timeline matching score offer

3Note that we only included a small number of 3-hop
questions and no 4-hop questions in our benchmark because
the majority of them are verbose and impractical

Method CronQ. Mul2Q.

LLama 2 13B (ZERO) 0.326 0.228
LLama 2 13B (RAG) 0.937 0.719
GPT-4 (ZERO)∗ 0.441 0.295
GPT-4 (RAG)∗ 0.954 0.742

PATKGQA∗ 0.937 0.621
PATKGQA 0.931 0.614

Table 8: Comparison to LLMs based models, where ∗

indicates results based on a sampled set of questions.

Language #Facts #Questions Hit@1

English 228k 960k 0.614
French 196k 290k 0.603
Chinese 235k 350k 0.487

Table 9: Results of multilingual extension.

more informative guidance for locating the answer.

Comparison to Large Language Models. Our
method is evaluated against large language mod-
els (LLMs) in Table 8, namely the open-source
LLM LLama 2 13B (Touvron et al., 2023) and the
closed-source LLM GPT-4 (OpenAI, 2023). We
use two settings: zero-shot (ZERO), where a LLM
based model directly predicts an answer without re-
lying on extra clues, and RAG, which incorporates
the subgraph into the prompt to enhance reasoning.
Following prior RAG studies on KBQA (Kim et al.,
2023; Jiang et al., 2023), our approach first retriev-
ing a subgraph and then organizing them in chrono-
logical order. We finally construct a prompt like

“Given the facts: [facts], Please answer [question]”
and query an LLM for the answer. Acocording to
the results, LLM-based models do perform well
at this task; even in a zero-shot setting, they are
accurate about 30% of the time, and their perfor-
mance is much better when a reasoning sub-graph
is added. One reason for the good performance of
LLM is that the questions in the benchmark are all
fact-based questions that an LLM can master at the
pre-training stage, while we note there is still room
for addressing more difficult multi-hop reasoning
patterns.

Multilingual Extension. In addition, we explore
the feasibility of applying our benchmark construc-
tion approach to other languages. Table 9 shows a
comparison of the corpus size in French and Chi-
nese, demonstrating its practicality. However, in
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comparison to English, the performance of our
model in French and Chinese are marginally re-
duced, which may due to a less compact KG.

7 Conclusion

In this research, we investigate multi-relational
multi-hop reasoning over a dense temporal knowl-
edge graph. We introduce Mul2Questions, a new
benchmark that includes over 200k entities and
960k questions with multi-relational multi-hop pat-
terns. In addition, we present a new model capa-
ble of performing pattern-aware and time-sensitive
joint reasoning over temporal KGs. The effective-
ness has been verified by extensive evaluations. In
the future, we would examine its applicability in a
broader range of domains/scenarios.
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Limitations

One limitation is that, like many benchmarks, our
benchmark’s questions are completely factual and
can be easily addressed using modern large lan-
guage models (LLMs) trained on texts with world
knowledge. To comprehensively test temporal rea-
soning, we may employ more specific questions
that do not contain real-world knowledge. Sec-
ond, the questions are generated using customized
templates. However, handcrafted templates are
typically based on the exporter’s personal knowl-
edge and experience, which may add subjective
biases. Furthermore, the KG employed in the study
is based on a single domain, Wikidata, and we hope
to expand it to other domains in the future.
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A Appendix

In our study, we provided detailed instructions to
participants listed below:

Annotation Instructions
Understanding Patterns: Begin by familiarizing

yourself with the unique patterns. Each pattern rep-
resents a reasoning structure within the knowledge
graph.

Template Structure:

• Craft clear, concise question templates that
can be filled with specific entities or attributes.

• Ensure the template directly relates to the pat-
tern it’s designed for.

Creativity and Variety:

• Use creative wording to cover the breadth of
possible scenarios within a pattern.

• Include a variety of question types, e.g.,
"What is the...?", "Who was the...?", "When
did...?".

Clarity and Simplicity:

• Ensure questions are straightforward and un-
derstandable.

• Avoid complex or confusing phrasing.

Inclusivity:

• Use inclusive and respectful language.

• Avoid bias or potentially offensive language.

Review and Edit:

• Review questions for grammatical accuracy
and clarity.

• Edit to ensure adherence to the pattern.

Submission: Submit the created templates ac-
cording to the provided guidelines, ensuring they
are well-organized and labeled according to the
corresponding pattern.

Compensation: Annotators will receive fair
compensation, determined by task complexity and
their demographic location.

Consent and Data Usage: By participating,
you consent to the use of your contributions in
our projects, with the possibility of inclusion in
research publications.

Ethics and Approval: This project has ethics
review board approval, adhering to standards for
privacy, consent, and risk management.

Support: For questions or clarification, contact
the project coordinators.

We recruited annotators through our institutions,
employing seven individuals to create question tem-
plates for 586 unique patterns. Each annotator re-
ceived fair compensation (about 100$ on the av-
erage), determined by the task’s complexity and
their outputs. We obtained informed consent from
all participants, clearly explaining data usage and
their rights. Additionally, our data collection proto-
col was approved by an ethics review board from
our institution, affirming our adherence to ethical
standards in privacy, consent, and risk management.
For better exploration, we give several of the most
common question templates in Table 10.
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Relation 1 Relation 2 Template Examples

position held significant event Who held the position of {o1} after {s2}
Who was the {o1} during {s2}?

educated at rector Who was the rector of {o1} when {s1} was a student there?
When {s1} graduated from {o1}, the president stepped down in which year?

award received spouse When did the recipient of the {t1} {o1} Award wed {o2}?
Name the spouse of {s1} when he secured {o1}.

nominated for award received Which honors did {s1} receive in the year {o1} nominated it?
In what year was {s1} nominated by {o1} and awarded the {o2} award?

employer chairperson Who occupied the chairman’s seat during the time {s1} was employed by {o1}?
During the year {t1}, who was the president of the agency responsible for hiring
{s1}?

country head of government Who held the position of head of government at the time {s1} obtained {o1}
citizenship?
When did the head of government step down from office after {s1} obtained {o1}
citizenship?

Table 10: Example templates for question generation.
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