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Abstract

Memorisation is a natural part of learning from
real-world data: neural models pick up on atyp-
ical input-output combinations and store those
training examples in their parameter space.
That this happens is well-known, but how and
where are questions that remain largely unan-
swered. Given a multi-layered neural model,
where does memorisation occur in the millions
of parameters? Related work reports conflict-
ing findings: a dominant hypothesis based on
image classification is that lower layers learn
generalisable features and that deeper layers
specialise and memorise. Work from NLP sug-
gests this does not apply to language models,
but has been mainly focused on memorisation
of facts. We expand the scope of the locali-
sation question to 12 natural language classi-
fication tasks and apply 4 memorisation local-
isation techniques. Our results indicate that
memorisation is a gradual process rather than
a localised one, establish that memorisation is
task-dependent, and give nuance to the general-
isation first, memorisation second hypothesis.

1 Introduction

Memorisation in neural models is both concern-
ing due to overfitting and privacy concerns, and
desired because of information that needs to be
stored, such as facts. With the recent surge in the
number of models trained on very large, closed-
access training corpora, the NLP community has
seen an increased interest in research questions that
aim to improve our understanding of memorisation,
such as: Which data points are memorised, and can
we extract those examples from models (e.g. Chang
et al., 2023a; Shi et al., 2023; Nasr et al., 2023)?
How dependent is memorisation on model scale,
architecture and training procedures (e.g. Carlini
et al., 2022)? Can we localise memorised informa-
tion (i.e. pinpoint which weights, subcomponents
or layers are most associated with storing that in-
formation) and edit models’ memories (e.g. Meng
et al., 2022a; Hase et al., 2024)?
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Figure 1: If we train transformer to memorise incor-
rect label g, the implementation of that memorisation
is task-dependent. We demonstrate this for 12 NLP
classification tasks. The visualisation is for illustrative
purposes.

Memorisation localisation is the central theme
in this work, specifically localisation at the level of
layers. There is a lack of consensus about which
layers are particularly involved in memorisation in
deep neural models, which may stem from the vary-
ing experimental setups and varying definitions of
memorisation employed by different studies. Work
from computer vision (CV) mostly focused on
memorisation of perfectly memorised mislabelled
examples, positing that lower layers capture gener-
alisable features while deeper layers memorise (e.g.
Baldock et al., 2021; Stephenson et al., 2021) (al-
though that has been recently challenged by Maini
et al. (2023)). Work from NLP often discusses
memorisation of facts, for which lower (Geva et al.,
2023), middle (Meng et al., 2022a) and final lay-
ers (Dai et al., 2022) have all been mentioned as
playing crucial roles in pre-trained language mod-
els (PLMs). And lately, with the availability of
some open-access pre-training data, memorisation
localisation for sequences memorised verbatim has
gained traction, and initial results primarily point to
lower layers (Stoehr et al., 2024). Different articles
investigating different types of memorisation arrive
at different answers, and even work focused on a
specific type (such as facts) does not always agree.

We contribute an important piece of the puzzle
in the memorisation localisation landscape, by em-
ploying a setup that is similar to Stephenson et al.
and Maini et al.: we perform layer-wise localisa-
tion in fine-tuned models for 12 NLP classification
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tasks, enforcing memorisation by applying label
perturbation to a data subset. We use four memori-
sation localisation methods (§3), and first examine
their accuracy in a control setup. Afterwards (§4),
we address the main research question: In which
layers does memorisation occur? The results
do not always align — which underscores that we
should not overly rely on one localisation method —
but do tell a coherent story. In §5, we introduce a
visualisation technique (centroid analysis) to make
this story more interpretable: memorisation is not
sudden but gradual. Together, layers gradually shift
mislabelled examples to their newly assigned class,
but when that happens is task-dependent: the better
a model generalises to new data for a particular
task, the more relevant deeper layers are for memo-
risation. Figure 1 illustrates this. Our findings beg
a nuance of the generalisation first, memorisation
second hypothesis, and we end with a discussion
(§6) of what our findings mean for localisation and
model editing going forward.

2 Related work

In this section, we discuss a broad range of related
work on memorisation localisation from CV and
NLP, focusing specifically on studies that discuss
the role of different layers in deep neural networks.

Noise memorisation in CV  Multiple image clas-
sification studies concluded that deeper layers are
more involved in memorisation than earlier layers,
based on analyses of the memorisation of misla-
belled or hard examples. This has been reported by
work contrasting entire models (regular models and
ones trained with randomised labels) (Morcos et al.,
2018; Cohen et al., 2018; Ansuini et al., 2019, i.a.),
and work discussing how some examples are han-
dled differently within one model: Baldock et al.
(2021) establish a positive correlation between pre-
diction depth in image classification (the earliest
layer that predicts the label) and example-level
learning difficulty metrics. Stephenson et al. (2021)
analyse hidden representations for image classifi-
cation and report that memorisation of mislabelled
examples occurs abruptly in late layers and late
training epochs. Rewinding models’ final layers to
earlier checkpoints reversed memorisation.

Contrary to previous work, Maini et al. (2023)
report that for image classification datasets that
were partially mislabelled, instead of memorisation
being confined to specific layers, there are small
sets of neurons dispersed over the full architecture
involved in memorisation.

Memorisation of factual knowledge NLP mem-
orisation localisation studies have primarily fo-
cused on factual knowledge, although only a subset
of work in this direction discusses the roles of dif-
ferent layers. De Cao et al. (2021) first connected
work from CV to fact memorisation in transformer,
and train a hypernetwork to edit facts. Their hyper-
network mostly edits the bottom layer of a six-layer
transformer, and De Cao et al. suggest this differ-
ence might be due to the change in modality.

Later work operated under the assumption of the
knowledge neuron thesis,! assuming that facts are
recalled from the training corpus through trans-
former’s MLP weights, that act as a key-value
memory (Geva et al., 2021), and that one may thus
be able to identify MLP knowledge neurons (Dai
et al., 2022): (1) Meng et al. (2022a,b) edit factual
memories in transformer-based PLMs’ MLPs by
first localising memorisation to specific layers and
only updating those layers, in which case early/mid-
layers are most often selected.> Note that Hase et al.
(2024) find success in model editing to be unrelated
to the layers selected by Meng et al.’s localisation
method, which means that model editing might be
an unreliable way to check where facts are stored.
(2) Dai et al. (2022) identify knowledge neurons
for factual information, and mostly find neurons in
the rop layers of BERT, with similar findings being
reported in later work on knowledge neurons by
Zhao et al. (2024) and Chen et al. (2024). Dai et al.
then succesfully use those neurons to update facts.

Although the articles above disagree in terms of
whether higher or lower layers store factual infor-
mation, work beyond model editing and knowledge
neurons indicates factual information is already
present in the lower layers: Haviv et al. (2023)
show that facts and idioms are stored and retrieved
in early layers in BERT and GPT-2. Deeper layers
perform confidence boosting after retrieval. Geva
et al. (2023) artificially block parts of the computa-
tion in fact retrieval for GPT-J and GPT-2 XL, and
find that factual information is stored in the lower
MLP sublayers, which is echoed by recent work
from Ortu et al. (2024).

Verbatim memorisation While memorisation
localisation has predominantly focused on facts,

'The term was coined by Niu et al. (2024) to summarise
the hypothesis underlying multiple related studies. Niu et al.
criticise the thesis since it oversimplifies knowledge storage.
Instead, they suggest to focus on network-wide circuits.

’E.g. generalisation to paraphrased prompts of modified
facts peaks when editing layer 18 out of 48 for GPT-2 XL. This
result is not specific to transformer: Sharma et al. (2024) find
early/mid-layers to be important when editing facts in Mamba.
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recent open science initiatives publishing PLM pre-
training corpora enable research on memorisation
of pre-training data. Chang et al. (2023b) present
a dataset to evaluate different localisation methods
by relying on text memorised verbatim by three
PLMs, but they do not elaborate on the roles of lay-
ers. Stoehr et al. (2024) examine for one specific
12-layer architecture (GPT-Neo-125M, that we will
also analyse) which model components are respon-
sible for memorising sequences of 50 tokens ver-
batim, finding lower layers to be the most relevant.
Localisation of verbatim memorisation is hard to
standardise across different tasks and models due
to the required access to pre-training data, and be-
cause all PLMs memorise different sequences.

Memorisation beyond localisation Other work
on memorisation in NLP examines the conditions
under which memorisation occurs during fine-
tuning (Ténzer et al., 2022; Mireshghallah et al.,
2022), which fine-tuning tasks lead to the most
memorisation (Zeng et al., 2023), which exam-
ples are memorised (Biderman et al., 2024) and
when memorisation is beneficial for generalisation
(Zhang et al., 2023; Zheng and Jiang, 2022).

Summarising, many different conclusions have
been drawn in memorisation localisation studies. It
is unclear whether the different conclusions from
different articles may be reduced to a difference
between the vision and language modalities, to
a difference between the different types of mem-
orisation investigated, to localisation techniques
employed or even to the varying models and model
sizes used in related work.> We take away some of
that confusion by (1) employing a setup previously
used for the vision modality and (2) investigating
a type of memorisation (‘noise memorisation’) un-
derstudied in NLP, using widely studied models.
This allows us to conclude whether the ‘deeper
layers’ answer from CV really stands in contrast
with the ‘lower layers’ answer from the majority of
NLP studies (or whether that was simply unique to
noise memorisation), and allows us to investigate
whether the ‘lower layers’ answer is unique to fact
memorisation and verbatim memorisation.

3 Methods

To gain a good understanding of how memorisation
is task-dependent, we combine binary classification

3For instance, De Cao et al. investigate 6-layer trans-
formers, whereas Dai et al. and Stoehr et al. use 12-layered
networks, and Meng et al. mostly focus on GPT-2 XL with 48
layers.

tasks from (Super)GLUE (Wang et al., 2018, 2019)
with tasks from more diverse domains and label set
sizes. The tasks fall into four categories: generic
natural language understanding (NLU), sentiment-
related tasks, hate speech detection and topic classi-
fication. Table 1 enumerates the tasks, the datasets’
domains, and the training set and label set sizes.
For each dataset, we perturb the labels of 15% of
the training examples (‘noisy’ examples, = € X,
Y € V), with the new label randomly drawn from
all labels but the original one. The remaining 85%
is unperturbed (‘clean’ examples, x € X, y € V,).
We analyse four PLMs: BERT-base (De-
vlin et al.,, 2019), OPT-125m (Zhang et al.,
2022), Pythia-160m (Biderman et al., 2023) and
GPT-Neo-125m (Black et al., 2021; Gao et al.,
2020). We fine-tune each model separately for the
12 tasks. Appendix D describes the models and our
technical setup.* These 4 architectures are similar
in size and have 12 layers each. In Appendix B, we
repeat a subset of the experiments with OPT-1. 3B.
The PLMs (0p) are fine-tuned for 50 epochs, and
checkpoints are stored when the training accuracy
is near-ceiling (f5y,), and at the end of training
(0pr,). We also train models using the original
labels (0p), using the same random seeds as 0y,
and 0jy,. During fine-tuning, we freeze the input
embeddings. Results reported in §3.2 are based on
one fine-tuning seed, and the remainder of the main
paper computes results using three seeds. Seeds
control the data order and classification heads.

3.1 Localisation techniques

We apply four localisation methods that are detailed
in this subsection and further evaluated in §3.2.

Layer retraining and layer swapping First, we
perform layer retraining, similar to Maini et al.
(2023). We reset layers of interest using weights
from 0 p, freeze the remaining layers using weights
from 6j,, and retrain using clean examples for
five epochs. If the resulting model maintains its
performance on noisy data, the retrained layers are
redundant in terms of memorisation. If the per-
formance on noisy data decreases, that does not
guarantee that memorisation can be localised to
the retrained layers since the retraining objective
may have multiple minima, of which only some
maintain the memorisation performance. We re-
train consecutive layers of window sizes ranging
from 1 to 12.

“The codebase is available at: https://github.com/
vernadankers/memorisation_localisation.
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Category Dataset Task Domain Size Labels
WiCg by Pilehvar and Camacho-Collados (2019) word sense disambiguation Word-/Verb-net, Wiktionary 5.4k 2
RTEg by Dagan et al. (2006) textual entailment news, Wikipedia 25k 2
NLU MRPCg by Dolan and Brockett (2005) paraphrase classification news 37k 2
CoLAg by Warstadt et al. (2019) labelling grammatically linguistic theory books 85k 2
o by Clark et al. (2019) question answering given a context Google queries, Wikipedia 9.4k 2
& by Socher et al. (2013) sentiment classification movie reviews 69 2
Sentiment A by Socher et al. (2013) sentiment classification movie reviews 85k 5
n by Saravia et al. (2018) emotion classification tweets 16k 6
Hate speech v by ElSherief et al. (2021) hate speech classification tweets 5.1k 7
P » by de Gibert et al. (2018) hate speech classification social media 8.6k 2
Topic Reutersg by Apte et al. (1994) topic classification news Sk 8
Classification TRECy by Li and Roth (2002); Hovy et al. (2001) topic classification news, misc. 55k 6

Table 1: Datasets with their domain, label set size and training set size. In §4 and §5, datasets are marked consistently

using the same colours and symbols.

Alternatively, we swap layers between ), and
0o, using the same window sizes. If swapping
layers leads to a drop in performance on noisy ex-
amples while maintaining performance on clean
ones, it becomes more likely that the layers were
vital for memorisation (although this is again not
guaranteed). We indicate layer relevance using the
memorisation error: the ratio of incorrect predic-
tions for noisy examples. The lower the error rate
for noisy examples when retraining or swapping a
layer, the less likely it is that this layer was crucial
for memorisation.

Retraining or swapping all 12 layers means mod-
ifying the full model, and provides a baseline for
the maximum error we can expect for the noisy
data. In the results section, we will use this to nor-
malise the results, such that the memorisation error
is 1.0 when modifying all 12 layers.

Forgetting gradients We also inspect gradients,
computed by back-propagating —L(X,,, Vn, s, )
and computing the L;-norm per layer. We use 0,7,
due to gradient saturation in 0y, 2 The assumption
is that memorisation is localised in the layers re-
quiring the largest updates when ‘forgetting’ noisy
labels. Because gradient magnitudes do not reli-
ably pinpoint layers, we used two tasks to decide
on the norm to use and whether or not to normalise
gradients using gradients for clean examples and
gradients for a frozen model (Appendix E).

Probing Lastly, we train probing classifiers (Con-
neau et al., 2018) to predict whether, for a hidden
state encoding x in layer [ (h}), x € X, or x € X..
The classifier is an MLP with one hidden layer,
trained for 100 epochs maximum with a learning
rate of 2e—4. The hidden states come from train-
ing examples that are redistributed into a training,

3See Akyiirek et al. (2022) for a discussion of issues with
gradient-based methods when tracing knowledge in a model.

probing c‘:)Vng BERT
BoolQ

gradients SST-2 Pythia
SST-5
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ImplicitHate

retraining Stormfront oPT

Reuters

0.2.46 .81
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Figure 2: Control setup accuracy @1 (light) and accu-
racy @2 (dark) per localisation method (left), dataset
(middle) or model (computed using probing and gradi-
ents, right), and a random guessing baseline (dashed).

validation and test set for the probe. The classifiers
are trained separately per layer, using five random
seeds per layer. We extract the F-score on the test
partitions and use the increase from /-1 to [ as an
indication of {’s involvement in memorisation (ex-
cept for layer 1, which we compare to the F-score
from a probe trained on 6p).

3.2 Control setup: does localisation succeed?

We now evaluate the localisation techniques by
enforcing memorisation in prespecified layers and
examining whether the techniques pinpoint those
layers (i.e. whether localisation succeeds).

Experimental setup We approach this as a mul-
titask learning setup, to ensure all layers are fine-
tuned, but only two are modified by the task with
noisy labels: the entire model is fine-tuned using
RTE, while the remaining task can only modify two
layers at a time (layers 1 and 2, 6 and 7 or 11 and
12). We train the model separately for the remain-
ing 11 tasks and these 3 different choices of layer
combinations. Afterwards, we first use MRPC and
TREC to validate the postprocessing steps for the
forgetting gradients (see Appendix E), after which
all localisation techniques were applied to the re-
maining nine tasks. We evaluate the techniques
using accuracy @k, indicating the percentage of
the k highest-scoring layers that were among the
correct ones for that setup, computed for k € {1, 2}.
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Figure 3: Memorisation error for layer swapping and
retraining for two datasets, for the OPT model.

Results Figure 2 (left) summarises the accuracies
per localisation technique. Swapping and retrain-
ing are very accurate, but gradients and probing are
less reliable, with accuracy @1 just over 60%. Note
that the near-perfect accuracy for retraining and
swapping here does not guarantee perfect accuracy
in the uncontrolled setup; the per-layer freezing is
just very well-aligned with the per-layer approach
of those techniques. The accuracy per dataset (Fig-
ure 2, middle) only shows slight variations. For the
two lowest-scoring localisation techniques (prob-
ing, gradients), Figure 2 (right) details the accura-
cies per model. Pythia scores particularly badly
for the gradient analysis, for which the accuracies
barely exceed the baseline. Postprocessing (Ap-
pendix E) did not help, which underscores gradi-
ents’ unreliability.

12 3 456 7 8 9101112

4 Results for memorisation localisation

We now apply the localisation techniques to models
in which all layers have been fine-tuned for one task
at a time. The results indicate how important each
layer is for memorisation, per dataset, per model.
We cannot simply aggregate over all results (12
layers x 12 datasets x 4 localisation techniques x
4 models), because the absolute scores returned by

different techniques are not directly comparable.

We discuss the results per localisation technique.

4.1 Layer swapping and retraining

When swapping or retraining layers, we gradually
modify more and more layers in ), either using
weights from 6o, or by retraining layers using clean
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(a) Layer swapping
Figure 4: Maximum memorisation error over 12 layers
when modifying 1 layer; dots represent datasets. Jitter
along the x-axis was added to improve visibility.

BERT OPT GPT-N Pythia
(b) Layer retraining

examples.® We modify 1 to 12 layers at a time, and
measure the effect via the memorisation error.

Case study: RTE vs SST-2 Before discussing
trends across all 12 datasets, we inspect two spe-
cific sets of results to gain a deeper understanding
of the data. Figure 3 details memorisation error
rates for RTE and SST-2 (for OPT): in these matri-
ces, value z in row x, column y, indicates that for
all layer combinations of = consecutive layers in-
cluding y, z was the mean error rate. We show the
results separately for swapping and retraining.

What commonalities and differences do we ob-
serve? For both datasets, modifying a few layers
only yields low error rates (see the top few light
green rows), and fully reverting memorisation re-
quires modifying 7 to 10 layers. Memorisation is
thus not limited to a few layers, but, instead, dis-
persed over the model. Despite these similarities,
the datasets differ in which layers appear the most
crucial for memorisation: for RTE, modifying early
layers leads to the largest increase in memorisation
error, whereas for SST-2, both the very first layers
and layers in the middle appear most relevant.

Aggregating results The findings for these two
tasks are echoed in the overall swapping and re-
training results. Firstly, memorisation is not con-
fined to individual layers: modifying individual
layers barely affects the memorisation error. This
is shown in Figure 4, which provides the memori-
sation error when modifying one layer only, tak-
ing the maximum over layers (i.e. highlighting the
largest error increase), showing datasets as dots.
For most model-dataset combinations, the memori-
sation error rate is below 15% when modifying one
layer. This agrees with findings from Maini et al.
(2023), who similarly employed layer retraining to
identify that memorisation in image classification

®When swapping layers, we monitor errors on clean exam-
ples to ensure that the mixture of models 6o and 6y, differs
only in terms of predictions for noisy examples. The mean
error for clean examples over all windows was 0.3%.
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Figure 6: M-CoG coefficients for layer retraining, that
give a coarse indication of whether lower or higher
layers matter more for memorisation.

(d) Topic classification

is not confined to individual layers.

Secondly, the importance of layers does ap-
pear task-dependent. To investigate this more
systematically, we express layer relevance using
the mean memorisation error (averaging over rows
in the result matrices similar to the ones in Fig-
ure 3). Figure 5 (top row demonstrating layer swap-
ping) details this error per dataset for OPT. Across
the board, early layers matter more for memo-
risation, but that is more prominent for the NLU
tasks than for the other tasks, and for o
there is even a slight increase in the error for deeper
layers. For the remaining models, the same visu-
alisation is shown in Appendix A.1, and we can
summarise the per-layer weights by computing a
Memorisation Centre-of-Gravity (M-CoG), which
is a weighted sum of all layers with weights sum-
ming to 1: 2}31 «; - 1. For layer swapping and re-
training, oy; is the memorisation error for layer %, as

depicted in Figure 5. Figure 6 displays the M-CoG
coefficients for layer retraining, per model, and Fig-
ure 7 provides M-CoG coefficients per dataset by
averaging over models (left) and over localisation
techniques (right). The results show strong agree-
ment between models in terms of the relative or-
dering of tasks — the average pairwise correlation
of the data from Figure 6 is 0.85 (Spearman’s p) —
and between layer swapping and layer retraining —
Figure 8 (left) includes rank correlations for the M-
CoG coefficients, and Figure 9 (left) includes rank
correlations for raw layer weights. Both indicate
strong agreement between the two techniques.

4.2 Probing

Figure 5 (bottom row) displays the probing per-
formance for OPT, and the increase from layer to
layer indicates layers’ relevance. The first observa-
tion is that the performance typically does not de-
crease for deeper layers, i.e. representations do not
‘lose’ information about the fact that some exam-
ples are noisy. Secondly, the performance is quite
low for NLU tasks, especially, which could mean
that clean and noisy examples are more alike for
these tasks than for the remaining tasks. Lastly, in
accordance with the previous results, probing per-
formance does not change suddenly (i.e. memori-
sation is not local to individual layers), and tasks
differ in how the probing performance changes
over layers: performance flattens early for some
tasks (e.g. RTEg) but gradually improves over all
layers for others (e.g. n, v)-
Appendix A.1 provides results for the other mod-
els; for Pythia, probing performance peaks earlier
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Figure 7: M-CoG coefficients averaged over models
(left) and averaged over localisation techniques (right).
Error bars show standard deviations.

than for the other models, indicating that the lower
layers are extra important for this model.

To draw more generic conclusions, we compute
the M-CoG coefficients by using the per-layer in-
crease in probing performance as weights. Figure 7
(left) includes the M-CoG averaged over models
and demonstrates that probing puts a larger em-
phasis on deeper layers compared to layer swap-
ping and retraining. The M-CoG of probing have
a moderately positive correlation to the swapping
and retraining coefficients (see Figure 8), and raw
weights per layer have a weakly positive correlation
to swapping and retraining (see Figure 9).

4.3 Gradient analysis

Finally, we inspect the gradient norms, post-
processed as described in Appendix E. Results ob-
tained using the forgetting gradients correlate quite
strongly with layer swapping and retraining (Fig-
ure 8, Figure 9). That agreement can also be seen
when visually inspecting the norms per layer for
OPT (middle row of Figure 5, see Appendix A.l
for the remaining models): NLU tasks have higher
scores in earlier layers, + and TREC4 have a
more uniform distribution, and » and
Reutersg point to deeper layers (although the gra-
dient norms show a slight increase for the final
layer for multiple tasks). At the same time, the gra-
dient analysis weakly correlates to the probing re-
sults, potentially because both methods have much
lower accuracies than swapping/retraining. The
forgetting gradients failed to pinpoint one model’s
correct layers in the control setup (§3.2). That gra-
dients agree with swapping/retraining supports our
overall findings, but we recommend against relying
solely on gradients for memorisation localisation.

4.4 Intermediate conclusion

In this section, we have taken a closer look at the lo-
calisation results for OPT, and inspected aggregated
results for all techniques and models via M-CoG
coefficients. Because memorisation is not strictly

OPT

0.55

GPT-N

0.79 0 0.49 0.40 0.48

gradients probing retraining

Pythia

swapping retraining probing BERT OPT GPT-N

Figure 8: Spearman’s p for M-CoG from different local-
isation techniques (left), and different models (right).

OPT

GPT-N

gradients probing retraining
Pythia

swapping retraining probing BERT OPT GPT-N

Figure 9: Spearman’s p for layer-wise scores from dif-
ferent localisation techniques (left), and models (right).
When comparing models, we collect weights from 4
techniques. Those are not directly comparable, so we
apply min-max normalisation per technique.

localised to individual layers, these coefficients lie
close to the middle layer, but they do generally
skew towards earlier layers and provide us with
an ordering of tasks. The most notable pattern in
that ordering that the earlier layers are the most
important for the NLU tasks. This is somewhat
surprising since the NLP community would typi-
cally consider NLU tasks to be more complex than
topic classification or sentiment detection, and as-
sumes higher-level tasks to be processed in higher
layers.” If that is the case, it seems natural for
memorisation to also happen in higher layers, but
this is contradicted by the experiments.

While this section has concentrated primarily on
the comparison of localisation methods, we finally
note that when computing correlations between
models (Figure 8-9, right), these are strongly pos-
itive, except for Pythia, yielding more moderate
correlations. That suggests that our results are not
specific to one training setup, but somewhat generic
to 12-layer transformer-based PLMs.

5 Making memorisation interpretable via
centroid analysis and probing

The results from §4 suggested that earlier layers
are the most relevant for memorisation. To better
understand why, we make models’ internal pro-
cessing of memorised examples more interpretable
through a centroid analysis: we examine pairs of

7E.g. Miiller-Eberstein et al. (2023) show that for topic
classification in BERT (using unperturbed datasets), the centre-
of-gravity as defined by Tenney et al. (2019) lies around layer
4/5 for topic classification, whereas for NLI it is layer 11.
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Figure 11: Illustration of the effect replacing 6 layers
has, for RTE and TREC data, for OPT. We insert 6 layers
from 6o at the lower (‘bottom’) or upper half (‘top’).

classes, monitoring examples with original class
and noisy class y,, for all pairs of a and b. We com-
pute the centroids of the hidden representations
from the two classes and project all data points
from those two classes onto the line through the
centroids. We measure the distance to centroid a
for every data point, normalised by the distance
between the two centroids. This is performed sep-
arately per layer. In layer 1, points belonging to
Yo and y; largely overlap. Towards layer 12, the
two classes are fully separated, and in between, the
memorised examples move away from centroid b
and move towards centroid a. Figure 10a explains
this via annotations for TREC, and Figures 10b-10e
do so for four additional tasks that are illustrative
of the variety that we observe. We include figures
for all tasks and models in Appendix A.3.

This visualisation indicates that memorisation
occurs through gradual changes from the first lay-
ers onward. This explains the results from the pre-
vious section, where we found that memorisation
is not confined to individual layers and that lower
layers were more successful in reverting memori-

sation (in layer swapping/retraining) than deeper
layers: memorisation starts early, and interventions
are more successful when conducted before the hid-
den state has moved too far away from class y,. We
can demonstrate this using the centroid analysis,
applied while swapping six layers at the bottom
or top with layers from 6. For all tasks (see Ap-
pendix A.3), we can prevent the noisy examples
from moving to centroid a by replacing the bottom
six, but for only a few tasks, replacing the top six
has a similar effect. Figure 11 shows this using RTE
and TREC. Swapping the bottom six prevents emit-
ting the noisy class for RTE and TREC, but swapping
the top six is more successful for TREC than RTE.

Task differences To summarise task differences,
we compute two statistics: the crossing (the first
layer in which the noisy mean is closer to a than to
b) and classification initiation (the first layer with-
out overlapping distributions for the two classes),
shown in Figure 12a. Many NLU tasks have an
early crossing and a late classification initiation
(e.g. RTEg and WiCe). The two events are closer
together for hate speech and sentiment tasks, and
topic classification tasks (TREC, and Reutersg)
start classification early but have a late crossing.
This confirms findings from §4: lower-level tasks
(early classification initiation) rely more heavily on
deeper layers for memorisation than higher-level
tasks (late classification initiation). Yet, tasks with
similar classification initiations (e.g. A and
n) can still have different crossings.

Consolidation via probing The centroid analy-
sis merely visualises representations. To consoli-
date that we reach similar conclusions using differ-
ent methods, we train probes to predict an exam-
ple’s class from the hidden state, using (i) original
or (ii) noisy labels. In Appendix A.2, we include
the probes’ performances. We apply the probes to
noisy examples and compute a statistic similar to
the crossing: the layer at which the F) of probe
ii exceeds the F) of probe i with ten percentage
points, referred to as ‘memorisation»generalisation’
in Figure 12b. The timing of this event strongly cor-
relates with the crossings (Spearman’s p = 0.84).
We apply the probes to clean examples to com-
pute a statistic similar to the classification initiation:
the layer at which the probes’ Fj for clean exam-
ples (normalised by random guessing performance)
reaches 90%. The depth of this event strongly cor-
relates with classification initiation (p = 0.73). To-
gether, these two events thus tell a story similar to
that of the centroid analysis (Figure 12b).
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Figure 12: Summary of the memorisation and classi-
fication onset for all datasets, averaged over models,
computed using the centroid analysis or via probing.

Correlates all BERT OPT GPT-N  Pythia
- Generalisation score

crossing 0.75 0.88 0.94 0.94 0.72
mem. » gen. 0.63 0.86  0.88 0.94 0.69
M-CoG 0.56 0.78 0.69 0.92 0.69
- Validation score

crossing 0.70 090 0.84 0.83 0.70
mem. » gen. 0.61 090  0.77 0.76 0.77
M-CoG 0.54 0.80 0.52* 0.72 0.69

Table 2: Spearman’s p relating memorisation for the 12
tasks to models’ generalisation performances. *: p>0.05

Memorisation’s connection to generalisation
When inspecting model internals, we have seen
that the depth of memorisation (quantified as M-
CoG coefficients, the ‘crossing’ and ‘memorisa-
tion»generalisation’) appears anti-correlated with
the difficulty of a task. However, we have yet to
have a proper way of quantifying that difficulty.
We now take models’ validation accuracy at the
end of training (on data unseen during training,
normalised by random guessing performance) and
compute a generalisation score (percentage of
training examples for which the probability of the
target exceeds random guessing when that example
is held out from training).® As indicated in Table 2,
these two metrics correlate moderately with the
memorisation depth when combining data from all
models (Spearman’s p > 0.54), with most correla-
tions being stronger when examining results per
model. All in all, this suggests that the better a
model generalises a task to new data, the more later
layers are involved in memorisation.’

8Computed by training on a randomly selected 50% of the
data, and testing on the held-out 50%, repeated with 30 ran-
dom seeds. This approximates metrics reported by Feldman
(2020); Feldman and Zhang (2020); Jiang et al. (2021). We
adopt the naming of the metric from Dankers et al. (2023).

“Tasks with late crossings are mostly multi-class tasks. To
ensure that this is not a confound here, Appendix C repeats
some of the analyses with binary versions of these tasks.

6 Discussion

We set out to perform memorisation localisation for
natural language classification tasks by perturbing
a subset of the labels and tracing those ‘noisy’ ex-
amples over layers. Applying four localisation tech-
niques to four models crystallised that memorisa-
tion is not local to specific layers but a cooperative
process of weights from many layers. Nonetheless,
not all layers appear equally important. Overall,
early layers are more important than later ones:
the model’s manipulation of memorised examples
starts in lower layers, and to prevent memorisation,
early intervention is more successful than late inter-
vention. We discussed results for 12-layer models
in the main paper, but further experimentation with
a 24-layer model (in Appendix B) leads to similar
findings of memorisation being gradual, with a sim-
ilar ordering of tasks, but mid-range layers being
more important than late layers.

This is not in accordance with the generalisation-
first, memorisation-second hypothesis from CV
(see §2), but does agree with more recent work
on image classification by Maini et al. (2023). It
also aligns with related work on PLMs for fact
memorisation and verbatim memorisation pointing
to the lower layers (Geva et al., 2023; Stoehr et al.,
2024), while also describing cooperative roles for
earlier and deeper layers (Haviv et al., 2023).

The fact that memorisation is not local implies
that editing model weights locally does not nec-
essarily erase memorised information, even if a
flipped label suggests this at the level of the out-
put layer. This might be harmless when editing
facts about named entities like cities (e.g. Meng
et al., 2022a), yet is more worrisome when regard-
ing memorisation of personal information (e.g. Car-
lini et al., 2021), and may be a reason why safety
measures can easily be reversed in PLMs modified
to reduce harmful outputs (e.g. Zhan et al., 2023).

Can we, due to the importance of early layers,
conclude that our results falsify the generalisation
first, memorisation second hypothesis? The results
from §5 suggest that this question requires a nu-
anced answer due to the variation observed among
tasks. The depth of memorisation is positively cor-
related with a model’s generalisation capabilities,
i.e. we do observe a generalisation first, memori-
sation second tendency but the better the model
performs at a certain task, the stronger that ten-
dency is. We consider better understanding what
properties of a task direct memorisation to lower or
higher layers an exciting avenue for future work.
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Limitations

We identify four main limitations of our work:

* Simplified data: To trace memorised exam-
ples over the transformer’s many layers, we
resorted to label flipping to create ‘noisy’ ex-
amples. This situation is somewhat unnatural
when considering real-world examples that
require memorisation from the model. For
example, in the case of sentiment analysis,
that might be a sarcastic phrase whose senti-
ment is the opposite of what is expected based
on a literal interpretation. We cannot guar-
antee that our noisy examples behave in the
same way as real-world examples would. Sim-
ilarly, memorisation of noisy examples need
not affect models in the same way as the mem-
orisation of factual information or verbatim
memorisation of long strings. As laid out in
the introduction (§1), we opted for this type
of data manipulation to create an experimen-
tal setup that more closely resembles that of
related work from CV.

¢ Localisation techniques are imperfect: As
identified in §3.2 the localisation techniques
applied are themselves flawed: in a control
setup where only two layers were modified
during fine-tuning, probing and gradient anal-
yses could not accurately pinpoint those two
layers, and the techniques that could pinpoint
them (layer swapping and layer retraining) are
more reliable at determining which layers are
not crucial for memorisation than at determin-
ing which ones are. Because of the general
agreement between the techniques and the re-
sults from §4-5 we do think our conclusions
are robust, but the absolute numbers of layer
relevance should be taken with a grain of salt.

¢ Visualisation + localisation: In §5 we intro-
duced the centroid analysis as a way of visu-
alising what is happening to examples over
the different layers. This visualisation is a
one-dimensional projection of hidden repre-
sentations and thus an extreme simplification
of the intricate process of memorisation. We
do not mean to use it as a localisation tech-
nique, but as a way to explain the outcomes
of other experiments in the paper.

* Lack of evidence for individual examples:
We analysed the group of noisy examples

as a whole, and concluded that many lay-
ers work together to gradually shift examples
from their original class to the newly assigned
class. However, we have not examined in-
dividual examples; it can still be the case
that for individual examples, memorisation
is more localised to specific layers. We only
have preliminary results suggesting that in-
dividual examples, too, are memorised over
multiple layers, which is the fact that in §4,
swapping/retraining individual layers was un-
successful in increasing the memorisation er-
ror rate.
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A Extended results
A.1 Main results (§4)

We provide the same visualisation of results as shown for OPT in §4 in Figures 13a, for BERT, 13b, for
GPT-N, and in 13c for Pythia. We omit layer retraining, that correlates very strongly with layer swapping
(shown in the top rows of each subfigure).
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Figure 13: Memorisation localisation techniques: (1) the top row provides the memorisation error when swapping
layers (inserting non-memorisation layers into a memorisation model), higher numbers suggest higher relevance.
(2) the middle row indicates (postprocessed) gradient norms, higher numbers suggest higher relevance. (3) the
bottom row provides probing Fj-scores when training probes to predict whether an example is a noisy one, where
the increase between layers suggests layer relevance.
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A.2 Probing to consolidate centroid analysis (§5)

In §5, we trained probes to predict an example’s class based on its hidden state, using either original or
perturbed labels. Figure 14 shows a) test Fi-scores of the noisy examples for the original label (dashed
line), b) test F}-scores of the noisy examples for the perturbed label (solid line), and c) the performance
on clean examples when training with the original labels (dotted line). Tasks vary widely in terms of
when the F-score for noisy labels exceeds that of the original labels. This happens early on for WiCe and
RTEg, but for other tasks (e.g. +, TRECy and Reutersg), the probe is better at predicting the original
label before it can predict the noisy one. We summarised this in the main paper using the ‘memorisation »
generalisation’ event.
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Figure 14: We train probes to predict the noisy label (solid line, shown for noisy examples) or the original label
(dashed line for noisy examples, dotted line for clean examples).

A.3 Centroid analysis (§5)

In §5 we introduced the centroid analysis as a way to visualise what happens to noisy examples as they
move through the different processing layers. Figure 15 now includes visualisations for all four models,
and for OPT with either the bottom or the top six layers swapped with those from 6. Visual inspection
leads to the following observations:

* Gradual vs. relatively localised tasks: For nearly all setups, the noisy examples gradually move
from one centroid to another, confirming that memorisation is a process in which many layers are
involved. Still, there are relative differences to be observed, e.g. compare TREC (gradual) to MRPC
(relatively localised) for Pythia, or compare RTE (relatively localised) to ImplicitHate (gradual)
for BERT.

* Classification initiation task variation: Tasks do not always have a consistent classification
initiation across models: some tasks are relatively stable in terms of when the two distributions of a
and b stop overlapping (e.g. WiC), others show great variation across the four models (e.g. Reuters,
Stormfront, Emotion).

* Swapping bottom layers most successful: Inspecting the swapping centroid visualisations (final
two columns) demonstrates that swapping out the bottom six layers of a memorisation model with
fo can prevent the ‘crossing’ (see §5) from happening. Swapping out the top six layers, on the other
hand, is less successful since, for some datasets, the memorised examples have already ‘crossed’ (e.g.
see WiC, RTE and MRPC).

* Centroid analysis is a simplification: There are a few dataset-model combinations that show that
the centroid analysis is not always a straightforward way to explain the model’s behaviour. For
instance, for Pythia, CoLA leads to unintuitive results, mostly due to the fact that the two centroids
nearly overlap, making the relative distance between them less meaningful in the early layers.
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Figure 15: Visualisations of the centroid analyses for all four models, including additional visualisations for OPT
where the model either is assigned a ‘regular’ bottom 6 layers, or a ‘regular’ top 6 layers (regular meaning the layers
come from 6, trained on the original labels).

B Increasing model size

In the main paper, we have discussed results for four 12-layer architectures, observing generally strong
agreement across those models, in spite of the fact that they were trained with varying corpora and for
varying numbers of updates. To examine to what extent the results observed were specific to /2-layer
architectures, we apply layer swapping to the 1.3B variant of OPT, containing 24 layers and ten times the
number of parameters of the other models we considered.

Figure 16 firstly provides three example matrices, similar to the ones discussed in §4.1. For all three
datasets shown, swapping the middle layers most effectively reverts memorisation when considering
the smaller window sizes, but there are clear distinctions between the three datasets, too: for WiC only
the middle layers appear most relevant, whereas for SST-2 and TREC the upper layers are more relevant
than for WiC. Figure 18 averages the rows from the matrices to summarise results across the 12 datasets,
displaying a pattern similar to the main paper, with NLU tasks relying more heavily on (relatively
speaking) lower layers than the remaining tasks. The agreement is also reflected in Spearman’s p between
the M-CoG coefficients from the main paper for layer swapping and the M-CoG coefficients computed
using Figure 18: p = 0.73 for Pythia, p = 0.84 for GPT-N, p = 0.75 for BERT and p = 0.87 for OPT (small).
At the same time, there is a difference to the results discussed in the main paper since the lowest layers (in
absolute terms) appear much less relevant.

When we execute the centroid analysis and summarise the results using the crossing and classification
initiation events (Figure 17), we similarly observe that the crossings correlate very strongly with the
crossings from the four models (p = 0.94), although the classification initiations correlate very weakly
with OPT-1.3B (p = 0.15, but p > 0.05).
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Figure 18: Per-layer memorisation error rate, averaged over all window sizes during layer swapping for OPT-1. 3B.
A higher error rate suggests higher relevance for memorisation.

C Binarisation of tasks

In the main paper, we used 12 varied NLP classification tasks in our memorisation localisation endeavours.
Having identified that tasks differ in terms of the layers that matter most for memorisation, we should also
note that the tasks with the highest M-CoG coefficients and the highest crossings in §5 also happen to
be the tasks that do not have a binary label set — e.g. consider Figure 12a, where among the six highest
crossings, there are five from multi-class tasks. To ensure that the effect observed is not specific to tasks
with a large label set size, we now change the multi-class tasks (SST-5, Emotion, ImplicitHate, TREC,
Reuters) into binary classification and repeat layer swapping and the centroid analysis. We do this
by taking the most frequent two classes for a task, and training models again with 15% of the labels
perturbed, using one model seed only. We now compare these models to the same model seed trained on
the multi-class variant of the same tasks.

For layer swapping, the M-CoG of the multi-class and binary setups correlate with Spearman’s p = 0.84,
combining data points from all four models (see Figure 19); those same coefficients have a mean difference
of -0.05 and a mean absolute difference of 0.16, meaning that overall, the coefficients differ only slightly.

When we repeat the centroid analysis and compute the crossing and classification initiation events,
those similarly correlate strongly before and after binarisation (p = 0.90 with p < 0.05 for the crossing
and p = 0.67 with p > 0.05 for the classification initiation). Figure 20 shows the events when averaged
over models. And when we look at the absolute numbers obtained for these two events, the crossing is an
average of 0.85 layers earlier, and the initiation is an average of 0.45 layers later, meaning that although
the binarised tasks yield slightly different results, they still starkly differ from the results obtained for the
group of NLU tasks.
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Figure 20: Summary of the memorisation and classifi-
cation onsets for the binarised multi-class tasks.

Figure 19: M-CoG coefficients for layer swap-
ping, comparing multi-class to binarised tasks.
Error bars show standard deviations over models.
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D Technical setup and model/data details

Technical setup We ran the experiments for the 12-layer models on NVIDIA GeForce RTX 1080/2080
Ti GPUs. We train the small models using a batch size of 8 (due to GPU restrictions, or 4 in the few cases
where we still get memory errors, which happens for Reuters, in particular) and an initial learning rate of
le-5 for 50 epochs, capping sequences at 512 tokens. 50 epochs is beyond the point of convergence since
the aim is to investigate memorisation rather than optimise models for their generalisation capabilities.
For the models from §3.2 where the main task can only modify two layers at a time, we rerun training
with an increased learning rate if the training accuracy does not exceed .99. For every model trained, we
store checkpoint ,;, when the training accuracy exceeds .993, and store checkpoint 6,,, at the end of
training. The most time-consuming experiments are model training and layer retraining:

* §3.2: 11 datasets x 3 control setups to obtain #; + 11 datasets x 3 control setups to obtain 6o + 11
datasets x 1 frozen model = 77 setups trained for each of the 4 models, taking 1 - 6 hours each

e §4: 12 datasets x 3 seeds for 0, + 12 datasets x 3 seeds for 6 + 12 datasets x 1 frozen model = 84
setups trained for each of the 4 models, taking 1 - 6 hours each
Layer retraining: 12 datasets x 3 seeds 65, x 78 windows = 2808 setups trained for each of the 4
models, taking 3 to 45 minutes each

The experiments discussed in Appendix B are ran on NVIDIA A100-SXM80GB GPUs. OPT-1.3B is
trained with an initial learning rate of 5e — 6 and a batch size of 32 or 16. We train two models per dataset
(0ar and 6p), and individual training runs take 45 minutes to 6 hours, depending on the dataset. Visit our
codebase here: https://github.com/vernadankers/memorisation_localisation.

We use the transformers library'” to obtain the models/tokenisers and train them, implementing the
remaining analyses ourselves.

Model licenses The licenses of all models, which are Apache 2.0 (BERT), a custom license for OPT
models!!' and the MIT License (Pythia, GPT-N) allow non-commercial use for research purposes.

Dataset licenses The datasets contained in GLUE and SuperGlue are available under licences that allow
use and redistribution for research purposes (Wang et al., 2018, 2019). Stormfront is available under
CC-by-SA-3.0; ImplicitHate is not explicitly assigned a license, but the corresponding repository is
available under the MIT license; Reuters is available under the CC-BY-4. 0 license; for TREC the license is
unknown, and Emotion should be used for educational and research purposes only, and has no license,

otherwise 2.
Model Corpus Tokens Steps Params Layers Model dim
BERT-base BooksCorpus, Wikipedia 3.3B IM 85M 12 768
Pythia-160m  The Pile 300B 143k 85M 12 768
GPT-Neo-125m  The Pile 300B 572k 85M 12 768
OPT-125m BookCorpus, CC-Stories, 180B ? 85M 12 768
The Pile, Reddit, CCNewsV2
OPT-1.3B idem 180B ? 1.2B 24 2048

Table 3: Overview of models, along with their pre-training corpora, the number of tokens the model has seen during
training, the number of training steps, the number of non-embedding parameters, and the number of layers and
hidden dimensionality.

E Postprocessing gradients

As described in §3, forgetting gradients are one of the signals we examine to perform memorisation
localisation. We average them over all noisy examples, or over a similar amount of clean examples.
Preliminary experiments indicated that, taken at face value, the gradients do not necessarily pinpoint the

Yhttps://huggingface.co/docs/transformers
11https ://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
12https ://github.com/dair-ai/emotion_dataset
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(d) ‘Noisy’ gradients, norm. (e) Divide by frozen, norm. (f) Subtract clean, norm. (g) Divide, subtract, norm.

Figure 21: Effect of the gradient analysis postprocessing steps on the MRPC and TREC tasks for the BERT model when
using the L;-norm.

correct layers in a control setup. Using two validation tasks (MRPC and TREC), we consider taking the
Li-norm or the Ly-norm over gradients and applying two ways of normalising the forgetting gradients
of the noisy examples: i) subtract the forgetting gradients of clean examples, ii) normalise the per-layer
norm by the norm obtained using a frozen model. The final post-processing step applied afterwards is
that the weights of the 12 layers are normalised to sum to 1 to allow for the computation of the M-CoG
coefficients, and to reduce variation among tasks.

Figure 21a illustrates the L;-norm for ‘forgetting’ gradients for a frozen BERT, that tend to point to the
final layers; Figure 21b and Figure 21c demonstrate forgetting gradients for clean and noisy examples in
the control setup. Both point to similar layers, but the norms are higher for noisy examples.

Figure 21d-21g do apply the within-dataset normalisation that normalises layer weights to sum to one.
Figure 21d again demonstrates for noisy examples that without further post-processing, the gradients
overestimate the relevance of later layers in BERT. Both post-processing steps i) and ii) dampen that. When
measuring the success of the post-processing steps using the accuracy metric, included in Table 4, the
combination of both is most successful at recovering the layers in which memorisation had taken place in
the control setups, and the L;-norm leads to more accurate results than the Lo-norm.

These post-processing steps improve the accuracy for all models but Pythia. Across the board, applying
both steps i) and ii) and using the Li-norm yields the highest accuracy, so we apply both of these steps in
the main paper.

Pythia GPT-N BERT OPT
subtracing clean normalising frozen L, Ly Ly Lo Ly Lo L Lo
x x 0.08 0.08 058 025 058 050 058 0.17
x v 0.08 0.08 0.67 042 050 050 050 042
v X 0.08 0.08 058 025 058 050 0.67 033
v v 0.08 0.00 0.75 025 075 058 058 0.50

Table 4: Effect of the gradient analysis postprocessing steps on the MRPC and TREC tasks, measured as the average
accuracy of the highest scoring layers.
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