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Abstract
Pre-trained Language Models (PLMs) can be
accurately fine-tuned for downstream text pro-
cessing tasks. Recently, researchers have intro-
duced several parameter-efficient fine-tuning
methods that optimize input prompts or ad-
just a small number of model parameters (e.g
LoRA). In this study, we explore the impact
of altering the input text of the original task
in conjunction with parameter-efficient fine-
tuning methods. To most effectively rewrite
the input text, we train a few-shot paraphrase
model with a Marginal Maximum Likelihood
objective. Using six few-shot text classifica-
tion datasets, we show that enriching data with
paraphrases at train and test time enhances
the performance beyond what can be achieved
with parameter-efficient fine-tuning alone. The
code used for our experiments can be found at
https://github.com/SaeedNajafi/RIFF.

1 Introduction

Multiple Pre-trained Language Models (PLMs),
such as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), T5 (Raffel et al., 2019), and
GPT2 (Radford et al., 2019b), have demonstrated
remarkable performance when fine-tuned for down-
stream text processing tasks. PLM variants with
less than 1 billion parameters are easier to train end-
to-end with commodity hardware. However, very
recent PLMs have been trained with a few hundred
billion parameters, including PaLM-2 (540B)(Anil
et al., 2023), GPT3 (175B)(Brown et al., 2020a),
OPT (175B)(Zhang et al., 2022a), or Llama-2
(70B)(Touvron et al., 2023). Training all param-
eters of these models end-to-end is not straight-
forward unless done with a dedicated cluster with
specialized hardware.

In response, NLP research have developed ef-
fective techniques to control or alter the behavior
of PLMs by updating the input context through
prompt optimization (Liu et al., 2021a) or adapt-
ing a few additional parameters within the network

itself (Hu et al., 2021). However, current PLM
control techniques have not considered altering the
original input text to improve the performance of
the model. Here, we investigate this idea by train-
ing a secondary smaller PLM to paraphrase the
original input at train and test time, thus augment-
ing the existing data and improving model perfor-
mance.

Our inspiration comes from interactions with
young children. Determining what a child knows
is challenging because they can be sensitive to
the wording of the question (Donaldson, 1978).
Adults are also influenced by different wordings
of a question. For example, opinion polling has
been found to be sensitive to the wording of ques-
tions (Broughton, 1995). Just like we rephrase
questions for humans, we should consider rephras-
ing input text while querying a PLM. For instance,
while classifying the topic of a sentence, phrases
related to time may be irrelevant and could be re-
moved to simplify the modeling problem. Slight
changes to wording could result in the model pro-
ducing a correct prediction.

We explore the integration of paraphrased input
texts during both the training and testing phases. At
training time, augmenting data through paraphrase
generation has been shown to enhance performance
while updating all parameters of the model (Wei
and Zou, 2019; Feng et al., 2021; Chen et al., 2021;
Abaskohi et al., 2023). We broaden the scope of
previous investigations by using paraphrase aug-
mentation in tandem with recent prompt optimiza-
tion and efficient tuning methods. At test time,
recent works have used ensemble predictions with
various optimized prompts and tuned weights (Iz-
mailov et al., 2019; Li et al., 2023). We further
contribute to this line of work by incorporating
ensemble predictions based on input paraphrases,
again in concert with prompt optimization and effi-
cient tuning techniques.

We start by pre-training a smaller language
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model on paraphrases generated by a large lan-
guage model (i.e. ChatGPT or GPT3.5-turbo). Sub-
sequently, we explore various training objectives
for fine-tuning this paraphrase generator with feed-
back from the main task’s language model. Our
analysis shows that our proposed objective reduces
hallucination in the generated paraphrases. Then,
we experiment on six text classification datasets
demonstrating that incorporating paraphrase aug-
mentation during both training and testing phases
enhances the performance of discrete/soft prompt
optimization and efficient tuning techniques. In
summary, our contributions are as follows:

• We propose an efficient idea for Rephrasing
Inputs for parameter-efficient Few-shot Fine-
tuning of language models (RIFF) tested with
recent prompt optimization and efficient tun-
ing methods.

• We conduct a comprehensive study on vari-
ous learning objectives for fine-tuning a para-
phrase generator using feedback from the
main language model.

• Our augmentation experiments on six text
classification datasets reveal that paraphrase
generation, when combined with prompt opti-
mization and adaptation techniques is a simple
yet effective approach to boost performance.

2 Problem Formulation

We focus on classification problems in Natural Lan-
guage Understanding (NLU) tasks where we have
access to a mini-batch of supervised training exam-
ples Bsupp = {(xi, yi)}Ni=1. Our goal is to update
the parameter set θlm for a language model by maxi-
mizing the probability of the class label yi given the
input xi: Pθlm(yi|xi). Here, we augment Bsupp with
semi-supervised examples. In particular, we gener-
ate M paraphrases for each xi using the paraphrase
generator Pθpar(zi,j |xi), where zi,j represents the j-
th paraphrase for the input xi. In the optimal case,
this paraphrase will preserve semantic meaning but
vary syntactic/lexical form. We then incorporate
the generated paraphrases to create a new mini-
batch of examples Bs+p = Bsupp ∪ Bpara. Using
this augmented mini-batch, we optimize the follow-
ing objective Jθlm :

N∑

i=1

{
logPθlm(yi|xi) +

1

M

M∑

j=1

logPθlm(yi|zi,j)
}

(1)
To train the language model using Equation 1,

we need to update the parameter set θlm. One ap-
proach would involve updating every parameter for
the language model to optimize the training ob-
jective (referred to here as the "All-Finetuning" or
AllTune approach). However, this method can be
computationally intensive. As a result, we will
explore the impact of paraphrase augmentation
along with six other efficient baseline tuning tech-
niques (Houlsby et al., 2019a) and prompt opti-
mization (Liu et al., 2021b).

We assume that each input x or its paraphrase z
is preceded by the task instruction p, which is often
specified in previous works. The task instruction,
which we represent using the symbol p to be con-
sist with prompt optimization literature, serves as a
parameter-free, gradient-free technique for enhanc-
ing the performance of the PLM across various
downstream tasks (Brown et al., 2020b; Petroni
et al., 2019; Deng et al., 2022). When using only
the task instructions, no parameters for the lan-
guage model are updated (θlm = ∅), and zero-shot
predictions are made solely on the evaluation data.
We further investigate multiple language model
tuning techniques while incorporating these task
instructions into the input or its paraphrases.

2.1 LM-Friendly Paraphrase Search
Given a training example (x, y), our objective is
to assign the gold label y to the input x by maxi-
mizing the log likelihood logP (y|x). We leverage
the fact that when x is misclassified, there may
exist paraphrases of the input x that lead to the
correct class prediction. These paraphrases should
retain the semantic meaning of x while exhibiting
syntactic differences, akin to the way we rephrase
things when we have been misunderstood. Thus,
we generate paraphrases zj based on the input x,
that enable the downstream language model to pre-
dict the correct label y with greater confidence.
Consequently, our data log likelihood is factorized
into the following marginalization over the space
of paraphrases, where θpar and θlm represent the
parameters for the paraphrase generator and the
downstream language model, respectively:

Jθpar := logP (y|x) = logEz[P (y, z|x)]
= log

∑

z

Pθpar(z|x)× Pθlm(y|z) (2)

To train the paraphrase generator and optimize
the objective stated in Equation 2, we explore four
distinct learning aspects: (a) two methods for gra-
dient approximation, (b) a reward normalization
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technique, (c) three decoding techniques for sam-
pling paraphrases, and (d) two approaches to ensure
grammatical integrity during paraphrase generation.
By combining these elements, we examine various
learning approaches to refine the paraphrase genera-
tor with the aid of the downstream language model.
In the subsequent paragraphs, we will describe our
suggested options for each aspect.

Gradient Approximation: Text generation can
be reformulated as an episodic reinforcement learn-
ing problem where an agent (i.e. a paraphrase gen-
erator) generates tokens (i.e. takes actions) one
step at a time until reaching the end of the episode
(i.e. selecting the end of sequence token). There-
fore, for a given training example (x, y) and its
paraphrase z, we define the terminal reward (i.e.
goodness) for z as R(z) = logPθlm(y|z). When
approximating the gradient vector of objective 2
concerning θpar, we propose two strategies. These
include: (i) Marginal Maximum Likelihood (MML)
and (ii) approximating the gradient vector of the
paraphrase model via the Policy Gradient (PG) the-
orem. Notably, gradient updates using these two
methods exhibit a close relationship, with the main
difference lying in the posterior coefficient utilized
to score each sample (Guu et al., 2017). We can re-
cast the main objective presented in equation 2 into
the following equation representing the expected
reward:

Jθpar := logEz∼Pθpar (.|x)[e
R(z)] (3)

Given each input x, if we extract paraphrase sam-
ples from Pθpar(.|x) and approximate the expecta-
tion in Jθpar via numerical summation, we optimize
the objective using MML estimation. This process
results in the following gradient update:

∇JMML
θpar

:= ∇θpar logEz[e
R(z)]

=
M∑

j=1

ϕMML(zj)×∇θpar logPθpar(zj |x)

ϕMML(zj) =
Pθpar(zj |x)× eR(zj)

∑M
j′=1

Pθpar(zj′ |x)× e
R(z

j
′ )

(4)

By introducing the log inside the expectation
(applying Jensen’s inequality), we can optimize a
surrogate lower bound for the objective presented
in equation 3, resulting in the following policy

gradient approximation (Sutton et al., 1999):

∇JPG
θpar

:= ∇θparEz[R(z)]

=

M∑

j=1

ϕPG(zj)×∇θpar logPθpar(zj |x)

ϕPG(zj) = Pθpar(zj |x)×R(zj) (5)

Reward Normalization: For our secondary
learning aspect, we can either utilize the basic re-
ward, denoted as R(zj), or normalize the rewards
among the paraphrases of a given input x. This pro-
cess of normalization is particularly useful because
it prevents the training of the paraphrase generator
with rewards of varying magnitudes, as different
training examples are not equally challenging for
the language model. Prior research suggests that
such normalization of rewards can significantly en-
hance the performance of text generators across a
variety of tasks (Guo et al., 2022). The normalized
reward Rn is defined as follows:

Rn(zj) =
R(zj)− µj

σj
, µj =

1

M

M∑

j=1

R(zj)

σ2
j =

1

M

M∑

j=1

(R(zj)− µj)
2 (6)

Decoding Techniques: To train the paraphrase
generator, we use both the MML and PG gradient
estimations which necessitates drawing M samples
from the paraphrase generator. We implement three
decoding techniques for this purpose. Firstly, we
utilize diverse beam search decoding (Vijayaku-
mar et al., 2018) to gather these M paraphrases.
Secondly, in order to thoroughly explore the para-
phrase space, we alternatively collect the M para-
phrases using nucleus (top-p) sampling (Holtzman
et al., 2020). For the top-p sampling, we estab-
lish a sampling threshold of p = 0.99, at which
we collect the minimal set of tokens from the vo-
cabulary with a cumulative probability of at least
0.99. We then re-sample tokens from this set. And
thirdly, during the training phase we blend diverse
beam search and top-p sampling. Here, we initially
sample M paraphrases using both methods, then
combine the top M/2 samples from each output
to construct our final M samples. During the test
phase, we only use diverse beam search.

Grammatical Integrity: We describe three
distinct modeling techniques for both the MML
and PG gradient estimations: On-policy learning,
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Off-policy learning and KL-penalized On-policy
(KLOn) learning.

As we are sampling paraphrases from Pθpar(zj |x)
and updating θpar using these samples, the para-
phrase generator may start generating ungrammati-
cal text during this default on-policy learning set-
ting. Similar instances of degenerate generation
have been reported in tasks like question genera-
tion (Najafi and Fyshe, 2023) and program synthe-
sis (Liang et al., 2018).

To mitigate degenerate paraphrase generation,
we experiment with off-policy sampling. Here,
we maintain a fixed sampling module Pfixed(zj |x)
for sample selection, then update the main para-
phrase generator Pθpar(zj |x) within the frameworks
of objectives 4 and 5. Consequently, with these
off-policy samples, the posterior coefficients in-
corporate the importance sampling ratio s(zj) =
Pθpar (zj |x)
Pfixed(zj |x)

ϕPG
off (zj) = s(zj)×R(zj)

ϕMML
off (zj) =

s(zj)× eR(zj)

∑M
j′=1

s(zj′ )× e
R(z

j
′ )

(7)

Our next solution for degenerate paraphrases in-
volves imposing a penalty in the training objective
if the samples drawn from the current paraphrase
generator, Pθpar(z|x), deviate from those of the pre-
trained paraphrase generator. We can implement
this penalty as a KL-divergence penalty between
the distributions of paraphrases produced by the
current model and the pre-trained one. To integrate
this penalty we define the following new objective
for θpar:

JKLOn
θpar

:= logEz[e
R(z)]− βEz[log s(z)] (8)

Building upon the previously approximated
MML and PG gradients, we can now derive the
following regularized gradient vector with respect
to θpar. Please note that β is a hyper-parameter in
this context:

∇Jθpar − βEz[(log s(z) + 1)∇ logPθpar(z|x)],
z ∼ Pθpar(.|x) (9)

Note that the KL penalty can be interpreted
as the sum of a grammar reward, denoted by
logPfixed(z|x), and an entropy regularization term
over Pθpar(z|x). The entropy regularization aids in
the diverse exploration of the search space (Mnih
et al., 2016), while the grammar reward discour-
ages the learning of ungrammatical samples.

2.2 Ensemble Inference

After optimizing Equation 2 and fine-tuning
our paraphrase generator, we generate weakly-
supervised examples for inclusion in Equation 1
to train our downstream language model.

To predict the class label of a test example, we
could either use our fine-tuned language model to
predict the class label based on the original input x,
or adopt an ensemble approach. For the latter, for a
given x, we generate M paraphrases using our fine-
tuned paraphrase generator. We then average the
prediction scores for a potential class label across
the M+1 values according to Equation 1 to predict
the class label for that input example x. This aligns
with our earlier assumption that some paraphrases
could be easier for the language model to predict
the correct class label. During data augmentation
for the language model, we select the validation
set’s best model according to this ensemble predic-
tion.

3 Experiments

3.1 Setup

Pre-trained Models:
For paraphrase generation, we employ a T5-

base model (Raffel et al., 2019) which has been
trained on paraphrases generated by ChatGPT
(i.e. version GPT3.5-turbo). These output para-
phrases were generated for input texts from var-
ious datasets, including Quora paraphrase ques-
tions, texts from SQUAD 2.0, and the CNN news
dataset (Vladimir Vorobev, 2023). To create this
training data, ChatGPT generated five paraphrases
for each input, which were then used as the tar-
get for the T5-base model. The weights for this
model are publicly available1. In our experiments,
this model was able to generate more diverse para-
phrases compared to other public pre-trained mod-
els.

For our main language model, we use the
RoBERTa-large model pre-trained with the Masked
Language Modeling (MLM) objective (Liu et al.,
2019), which has demonstrated strong performance
on NLU tasks. Our proposed learning framework
can be readily extended to other paraphrase genera-
tors or backbone language models.
Datasets: Inspired by prior work (Gao et al., 2021;
Deng et al., 2022), we experiment on six classi-
fication tasks in the few-shot setting. These in-

1
https://huggingface.co/humarin/chatgpt_paraphraser_on_T5_base
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clude sentiment classification tasks such as the bi-
nary sentiment datasets SST2 (Socher et al., 2013),
CR (Hu and Liu, 2004), and MR (Pang and Lee,
2005). We also experiment on the 5-label sentiment
dataset SST5 (Socher et al., 2013), the question
type classification dataset TREC (Voorhees and
Tice, 2000), and the topic classification dataset AG-
News (Zhang et al., 2015). The number of classes
per dataset, as well as the used instructions are
outlined in Appendix F. Instructions and class ver-
balizers are based on previous work (Deng et al.,
2022) in prompt optimization. Detailed informa-
tion about the specific learning rates for each LM
technique along with other hyper-parameters can
be found in Appendix D.

3.2 Few-shot Paraphrase Fine-Tuing

As discussed in Section 2.1, there are four learn-
ing aspects to be considered when fine-tuning our
paraphrase generator for the downstream language
model. We conduct an extensive set of experiments
in the 128-shot setting for the SST2 binary senti-
ment classification task.

Figure 1: Average ensemble accuracy over five vali-
dation splits in the 128-shot SST2 classification task.
PG gradient estimation is not robust during the training
trajectory while doing on-policy learning.

We randomly select 128 training examples for
each unique label within the dataset. An equal num-
ber of examples are gathered to form an internal
validation set. We create five train/validation splits
using the arbitrarily chosen random seeds. We train
the models for 1120 training steps with the batch
size of 8 (i.e. 35 epochs). As we are training the
models, we evaluate the performance of 140 weight
checkpoints per model on the validation splits (i.e
one checkpoint per 8 training steps). We examine
the mean accuracy, which is averaged over the five
validation splits. Despite the ensembling approach

described in Section 2.2, to accurately capture the
quality of the generated paraphrases, we exclude
the original input x when computing the ensemble
accuracy on the validation splits.

We assess the impact of reward normalization
in the context of on-policy, off-policy, and KL-
penalized on-policy (KLOn) learning, considering
both PG and MML gradient estimations. Table 1
lists the best performance out of all the checkpoints
evaluated on the validation splits, which is further
averaged over five validation splits. With both PG
and MML gradient estimations, reward normaliza-
tion is boosting the performance across the three
text decoding techniques for both on-policy and
KLOn learning techniques (see ‘AVG’ column in
Table 1). Conversely, reward normalization is not
improving performance with off-policy learning
(follow discussion in Appendix B and see Table 4)

Table 1 verifies that MML gradient estimation
outperforms PG gradient estimation on average
across three decoding techniques for both on-policy
and KLOn learning techniques. The highest accu-
racy is achieved by ‘PG-Z’ with on-policy learning
and top-p decoding, however it is not robust during
the entire training trajectory. Figure 1 shows that
PG gradient estimation is not robust throughout
the training trajectory, which causes the paraphrase
generator to produce nonsensical paraphrases. This
results in downstream classification performance
on par with random guessing. In contrast, off-
policy and KLOn learning circumvent this diver-
gence. MML gradient estimation maintains robust-
ness throughout the training phase. In Table 1, we
also report the average accuracy of all the check-
points as we are training the models (numbers in
parentheses). The learning technique ‘MML-Z’
is more robust during the training trajectory com-
pared to ‘PG-Z’.

Upon investigating various elements of our learn-
ing objectives for fine-tuning the paraphrase gener-
ator, the combination that delivers the best perfor-
mance across the validation splits, which is also ro-
bust during the entire training trajectory, includes:
MML gradient approximation, KLOn learning,
mixed decoding for sample generation, and finally
applying reward normalization. We name this
combined approach our proposed RIFF algorithm.

3.3 Paraphrase Quality Analysis
We investigate the impact of the RIFF algorithm
on the quality of the paraphrases in the 128-shot
setting across three classification tasks SST2, SST5
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Table 1: The average accuracy of the best performing validation checkpoint in the 128-shot SST2 classification
task for both the on-policy and KLOn learning techniques. Highest performance per column bolded. Last column
reports the macro-average among each row. Numbers in parentheses (σ | m): σ represents the standard deviations
for the reported means across five train/validation splits; m reports the average accuracy of all the validation
checkpoints as we monitor robustness during the training trajectory. The suffix ‘-Z’ denotes models trained with
reward normalization.

Learning On-Policy KLOn AVG
Technique Top-P Beam Mixed Top-P Beam Mixed

No Tuning 67.5 67.5 67.5 67.5 67.5 67.5 67.5

PG 67.9 (2.3 | 53.2) 68.0 (1.4 | 52.0) 67.9 (2.0 | 52.4) 68.5 (1.2 | 67.4) 68.3 (1.9 | 67.4) 69.1 (1.4 | 68.2) 68.3 (1.7 | 60.1)

PG-Z 71.3 (2.1 | 63.8) 70.2 (1.7 | 68.6) 71.2 (1.3 | 66.6) 68.9 (1.3 | 67.6) 68.8 (1.4 | 67.9) 69.8 (1.3 | 68.5) 70.0 (1.5 | 67.2)

MML 69.6 (2.1 | 68.5) 69.1 (1.8 | 67.6) 69.8 (2.0 | 68.6) 69.5 (2.4 | 68.2) 69.9 (1.9 | 69.0) 70.5 (3.0 | 68.9) 69.7 (2.2 | 68.5)

MML-Z 70.3 (2.7 | 69.1) 70.2 (2.0 | 68.9) 70.2 (2.3 | 69.1) 68.9 (1.8 | 67.9) 70.3 (1.7 | 69.0) 70.6 (2.5 | 68.9) 70.1 (2.2 | 68.8)

and AGNews. To evaluate the quality of the para-
phrases, we report the following five metrics:

Grammar (GR): We evaluate grammar by cal-
culating the perplexity score averaged across the
dataset using the GPT-2-Large model (Radford
et al., 2019a). A low GR score indicates more
grammatical texts.

Lexical Diversity (LD): To assess how para-
phrases differ lexically from the original input
text, we calculate the unigram and bigram Rouge
scores between each paraphrase and the origi-
nal input text (Lin, 2004). We then report 1 −
(Rouge_1+Rouge_2)

2 as our lexical diversity metric.
A higher LD score indicates greater lexical differ-
ence compared to the original text.

Pair-wise Lexical Diversity (PLD): To assess
the lexical diversity among the set of paraphrases
for a given original input text, we calculate LD
scores for every pair of paraphrases for an input
text, and report the average. A higher PLD score
indicates greater diversity among the paraphrases
for a specific input text.

Semantic Similarity (SS): To assess how seman-
tically similar paraphrases are to the original in-
put text, we compute the BERTScore’s F1 met-
ric (Zhang* et al., 2020) between each paraphrase
and the original input text using the BERT-Large
model. A higher SS score signifies more semantic
similarity with the original text.

Factual Consistency (FC): To measure halluci-
nation in the generated paraphrases with respect
to the original input text, we rely on a publicly
available factual consistency metric. The model
has been trained for textual entailment and summa-
rization datasets with samples annotated for factual

Table 2: Average metrics on the test sets to evaluate
the quality of paraphrases across three classification
tasks: SST2, SST5, and AGNews datasets. The metrics
are further averaged across five training folds for the
FinPara method. OrigIn: Represents the original task
inputs. PrePara: Corresponds to task inputs obtained
from the pre-trained paraphraser. FinPara: Indicates
task inputs from the finetuned paraphraser in the 128-
shot setting. We scale scores into the range of [0-100],
except for GR. Better performance per column bolded.

Input Type GR LD PLD SS FC

OrigIn 198 n/a n/a n/a n/a
PrePara 143 60.5 61.6 70.4 77.3

FinPara 162 50.6 53.3 74.7 79.1

consistency2.
We present the metrics for the datasets in Ta-

ble 2. Compared to a model that was not fine-tuned
for this task (PrePara), our RIFF algorithm has
reduced the diversity among the generated para-
phrases and their lexical variation compared to the
original input text. This outcome aligns with our
search-learn objective that prioritizes high-scoring
paraphrases over others. RIFF has contributed to
higher semantic similarity compared to the original
input. Interestingly, the perplexity of the generated
paraphrases after fine-tuning with our objective is
still low, demonstrating the grammatical accuracy
of these paraphrases. The example paraphrases
shown in Appendix C illustrate that RIFF reduces
hallucination in the generated paraphrases, which
may contribute to the lower LD score but higher
SS score with respect to the original input text. A
higher FC score as shown in Table 2 verifies that
the RIFF objective has reduced hallucination in the

2
https://huggingface.co/vectara/hallucination_evaluation_model
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generated paraphrases.

3.4 Paraphrases for Few-shot LM Tuning
Our primary hypothesis is that various LM tun-
ing techniques could benefit from diverse views
of the original input text. To test this hypothesis,
we fine-tuned our paraphrase generators in a 16-
shot classification setup using the RIFF algorithm.
Subsequently, we fine-tuned the downstream clas-
sification model in the same 16-shot setting, while
introducing M = 8 paraphrases as per the objec-
tive outlined in Equation 1. For evaluation, we used
the best model from the validation set to make pre-
dictions on standard evaluation splits, following the
ensemble approach described in Section 2.2. For
consistency with prior research, we used the ran-
dom dataset splits provided by RLPrompt (Deng
et al., 2022), aligning with the random seeds used
by LM-BFF (Gao et al., 2021).

We study the effect of paraphrases on seven lan-
guage model tuning techniques. The first tech-
nique AllTune updates every parameter in the net-
work. Another technique, GS, is based on Au-
toPrompt (Shin et al., 2020) for discrete prompt
optimization. The technique SpTune (Lester et al.,
2021) learns soft prompt vectors, and LoRA (Hu
et al., 2021) is a recent adaptation technique. Ad-
ditionally, we investigate ClsTune, which trains
a classifier on top of the language model, InTune,
which updates all of the input embedding table, and
HTune, which only updates the language modeling
head in the Transformer architecture. A detailed
description of these techniques is discussed in Ap-
pendix A.

Table 3 illustrates the average accuracy on stan-
dard test sets across six text classification datasets.
The reported scores correspond to seven distinct
LM tuning techniques: ClsTune, GS, SpTune,
HTune, InTune, AllTune, and LoRA.

Recent prompt optimization techniques like GS
and SpTune significantly benefit from paraphrase
augmentation during training, with SpTune demon-
strating the most dramatic improvement (2.2% av-
erage accuracy increase). While LoRA already out-
performs these techniques (Hu et al., 2021), para-
phrase augmentation further enhances its efficiency
in learning adaptation matrices, leading to aver-
age accuracy gains of 0.2% on SST2 and 0.3% on
AGNews. When coupled with ensemble predic-
tions, denoted in rows with “+RIFF (train+test)”,
all LM tuning techniques see improvements from
the generated paraphrases.

3.5 Paraphrase Robustness Analysis

Figure 2: Average test accuracy across six classification
datasets. Input at rank 0 represents the original test input,
while the remaining eight inputs are top-ranked para-
phrases generated by our fine-tuned paraphrase model.

We generate M = 8 paraphrases for each test
input text and investigate the average performance
of the fine-tuned language models on each of
these paraphrases compared to the original input
text. Figure 2 illustrates the average test accu-
racy over six classification datasets for AllTune,
LoRA, and SPTune, which are popular LM tun-
ing techniques in NLP. The original input texts
are denoted with inputs at rank 0, whereas rank_i
(i ∈ {1, 2, 3, 4, 5, 6, 7, 8}) are the paraphrases re-
turned by the diverse beam search. We observe
that the LM tuning techniques are not robust to
paraphrases. Our paraphrase augmentation during
training increases paraphrase robustness. SPTune
observes more significant improvement in robust-
ness from paraphrase augmentation during training.

3.6 Limitations Discussion
Our paraphrase generator is pre-trained on semi-
supervised paraphrases given by a truly large lan-
guage model (i.e. ChatGPT). Although these large
models are capable of generating high quality para-
phrases for the English language. It is not clear if
these semi-supervised paraphrases are available for
other languages.

In terms of training overhead for our method,
once the paraphrase model is fine-tuned, augment-
ing the mini-batches with paraphrases has minimal
impact on training time in the downstream clas-
sification task. This is because we only need to
perform inference with the paraphrase model once
for the training examples to generate their para-
phrases before the first epoch. The generated para-
phrases are then cached for subsequent training
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Table 3: Average accuracy on the standard evaluation sets for the 16-shot text classification. Numbers in parentheses
are standard deviations across the five train/validation folds. The last column is the micro averaged performance
across the datasets. Highest performance per dataset bolded, second highest underlined. †: the average 16-shot
AllTune results with automatically searched templates (Gao et al., 2021). ⋆: reported results for RoBERTa-large
using in-context learning (Gao et al., 2021).

Tuning Method SST2 SST5 CR MR TREC AGN AVG
No Tuning 84.6 31.0 77.8 81.3 27.6 51.5 58.6

ICL⋆ 84.8 30.6 87.4 80.5 26.2 - 66.9

RLPrompt 92.5 41.4 89.5 87.1 60.5 80.2 77.7

LM-BFF† 92.3 49.2 89.0 85.5 88.2 - 78.5

ClsTune 72.6 (2.4) 34.4 (2.6) 71.4 (2.7) 67.3 (2.8) 74.8 (3.4) 81.7 (1.6) 70.9 (2.2)

+RIFF (train) 72.5 (3.4) 33.9 (3.7) 68.3 (3.9) 70.3 (0.9) 75.8 (1.7) 84.0 (0.9) 71.9 (2.0)

+RIFF (train+test) 74.0 (3.3) 35.0 (3.6) 71.1 (4.4) 72.0 (1.7) 76.8 (2.9) 84.9 (0.9) 73.3 (2.1)

GS 85.5 (1.3) 37.0 (4.2) 80.2 (2.3) 83.0 (1.8) 45.3 (13.1) 82.0 (1.4) 75.0 (2.3)

+RIFF (train) 86.4 (1.9) 37.8 (3.3) 82.7 (1.3) 84.7 (2.1) 51.0 (8.6) 81.0 (2.4) 75.4 (2.5)

+RIFF (train+test) 87.3 (2.0) 38.2 (3.5) 85.1 (1.9) 84.7 (1.9) 52.4 (7.7) 83.3 (1.5) 77.0 (2.1)

SpTune 89.7 (3.7) 39.4 (6.2) 82.4 (2.8) 86.1 (2.2) 35.2 (2.7) 82.0 (2.6) 76.1 (3.2)

+RIFF (train) 91.2 (2.2) 44.5 (4.2) 84.6 (1.9) 86.1 (0.7) 38.4 (4.3) 84.0 (1.9) 78.3 (2.2)

+RIFF (train+test) 91.6 (2.3) 45.1 (4.1) 86.2 (1.8) 86.6 (0.8) 38.4 (4.0) 86.0 (1.0) 79.7 (1.7)

HTune 87.4 (2.3) 37.4 (2.0) 84.0 (2.8) 83.1 (1.8) 62.4 (7.4) 81.4 (1.4) 76.0 (2.0)

+RIFF (train) 88.1 (1.7) 40.3 (1.9) 84.5 (1.5) 83.4 (2.8) 70.7 (4.8) 83.4 (0.9) 77.8 (1.6)

+RIFF (train+test) 89.1 (1.2) 40.4 (1.8) 86.4 (0.8) 83.1 (3.7) 71.6 (5.9) 85.2 (1.1) 79.0 (1.6)

InTune 91.5 (1.2) 42.3 (4.2) 87.3 (2.0) 84.0 (2.5) 67.7 (5.8) 83.8 (2.2) 78.9 (2.5)

+RIFF (train) 92.6 (0.3) 43.2 (1.9) 87.5 (1.8) 85.9 (2.3) 63.8 (5.3) 85.6 (0.8) 80.2 (1.3)

+RIFF (train+test) 93.1 (0.6) 43.9 (2.3) 89.0 (1.8) 86.0 (2.4) 69.6 (6.3) 86.9 (0.4) 81.3 (1.3)

AllTune 93.1 (0.4) 48.0 (1.0) 89.2 (0.8) 87.3 (3.1) 87.2 (3.8) 87.7 (0.5) 83.0 (1.0)

+RIFF (train) 93.6 (1.3) 50.6 (1.0) 90.2 (1.5) 85.8 (2.3) 84.2 (4.9) 87.2 (0.6) 83.0 (1.2)

+RIFF (train+test) 93.8 (1.2) 51.2 (1.6) 91.0 (1.6) 85.5 (2.3) 84.4 (4.9) 87.2 (0.6) 83.2 (1.3)

LoRA 92.5 (1.8) 48.1 (1.8) 88.6 (2.0) 86.0 (2.6) 89.3 (2.2) 87.3 (0.5) 82.6 (1.3)

+RIFF (train) 92.7 (1.8) 48.0 (2.3) 87.5 (1.5) 85.1 (2.9) 84.8 (2.7) 87.6 (0.3) 82.3 (1.3)

+RIFF (train+test) 93.1 (1.2) 49.2 (2.0) 89.0 (1.1) 85.4 (2.8) 85.9 (3.6) 87.9 (0.3) 82.9 (1.1)
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epochs while fine-tuning the downstream language
model.

In contrast, fine-tuning the paraphrase model
using the RIFF objective requires generating new
paraphrases each epoch, which prevents us from
caching paraphrases across epochs. This fine-
tuning step is about eight times slower than
maximum-likelihood training, which benefits from
having ground-truth paraphrases available. Gener-
ating new samples and scoring them is a standard
procedure in Reinforcement Learning.

4 Related Works

To improve prompt optimization and efficient tun-
ing techniques for LMs, we incorporate the gen-
erated paraphrases into the training mini-batches.
Paraphrase generation represents just one tech-
nique of data augmentation. For a comprehensive
overview of diverse data augmentation techniques
for NLP tasks, we direct interested readers to a
recent survey by Chen et al. (2021).

A recent work for few-shot prompt-based learn-
ing helps contrastive training by paraphrasing the
inputs (Abaskohi et al., 2023). Our work proposes
an objective to further fine-tune the paraphrase gen-
erator distilled from an LLM that reduces hallu-
cination. Despite the previous work, which only
studies the AllTune technique, we investigate the
impact of paraphrases for various language model
tuning techniques. Without contrastive learning,
we can show that we can improve LM’s robustness
by paraphrase generation during training.
Prompt Optimization & Efficient Tuning: Re-
cent research proposes various techniques for
prompt optimization and efficient tuning. We have
used successful techniques from each of these ar-
eas. Appendix E provides our detailed description
of these recent techniques. All of the recent tech-
niques for prompt optimization and efficient tuning
use the original input context provided within the
dataset.
Paraphrase Generation: Recent techniques en-
compass various approaches, including the use
of copy mechanisms, Variational Autoencoders,
Generative Adversarial Networks, and Reinforce-
ment Learning techniques to generate diverse para-
phrases (Zhou and Bhat, 2021). While previous
studies have applied RL techniques for paraphrase
generation, we propose the use of MML gradients
instead of policy gradients to fine-tune our para-
phrase model by the reward of a secondary classifi-

cation task (see Appendix E for more discussion).

5 Conclusion

We investigated the impact of incorporating input
paraphrases while fine-tuning PLMs with recent ef-
ficient tuning techniques. Our results indicate that
specific techniques, such as continuous and discrete
prompt optimization methods like AutoPrompt or
Soft-Prompt Tuning, benefit significantly from the
inclusion of paraphrases. We also conducted ex-
tensive experiments to reduce noise in a distantly
supervised paraphrase generator. Our ablation stud-
ies on fine-tuning the paraphrase generator demon-
strate that policy gradient objectives lack robust-
ness during training, while maximum marginal like-
lihood training remains a robust technique.

Ethics Statement

Many language models show biases in their output
due to the data used to train them (Liang et al.,
2021). It is possible that even with few-shot lan-
guage model tuning, we might continue to detect
analogous biases in the downstream classification
task, for instance, resulting in diminished classi-
fication accuracy for specific minority groups. It
is also possible that the additional data generated
by the paraphrase model will exaggerate existing
biases.
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one mini-batch of training examples and then ran-
domly selects a token from the task instruction
to update. The top k candidate tokens are deter-
mined based on the approximate change in label
log-likelihood: Topv {wT

v .∇wpi
logPlm(y|p, x)},

where wv is the embedding vector of a candidate
token v. The resulting k new task instructions are
evaluated again using label log-likelihood on the
same training examples3, and the top-performing
instruction is retained for the next search iteration.
Prompt optimization always uses the original input
x when searching new task prompts (Shin et al.,
2020; Deng et al., 2022). In our work, we investi-
gate the impact of incorporating paraphrases of x
during search.

Input-Finetuning (InTune): As a straightfor-
ward and efficient tuning technique, we compare
to updating only the input embedding table in the
transformer architecture. This method requires gra-
dient computation similar to All-Finetuning (All-
Tune) as well as the GS method.

LM-Head-Finetuning (HTune): The
transformer-based pre-trained language models
consist of a language modeling head, which maps
the hidden vectors to the token logit for each
token in the vocabulary. For the HTune technique,
we solely update the parameters of the language
modeling head.

Classifier-Finetuning (ClsTune): In ClsTune,
we first create a feature representation h(x) for the
input text x using average pooling of the final hid-
den vectors in the last layer of the language model.
Here, we assume that the language model (feature
extractor) remains fixed, and we then construct a
two-layer feedforward network with the gelu ac-
tivation function (Hendrycks and Gimpel, 2016)
as a classification module on top of the language
model.

Softprompt-Tuning (SpTune): In SpTune
(Lester et al., 2021), L prompt tokens are
prepended to the task instruction. These L tokens
are associated with L dedicated prompt embedding
vectors, extending the sequence of vectors derived
from the task instruction and input text with an
additional L trainable feature vectors. During train-
ing, the original embedding table of the transformer
model remains fixed, while a new prompt embed-
ding table is trained by backpropagating the label

3The original AutoPrompt evaluates the new candidate
instructions on another training mini-batch. For fewshot clas-
sification, we re-use the drawn training mini-batch to evaluate
the complete new candidate instructions.

log-likelihood into the prompt embedding table. In
contrast to InTune, here the prompt vectors do not
need to map to vocabulary words.

Low-Rank Adaptation (LoRA): LoRA is one
of the latest efficient-tuning techniques specifically
designed for PLMs (Hu et al., 2021). It learns
low-rank adaptation matrices for the query and
value weight matrices within the transformer model.
For a pre-trained weight matrix Wq ∈ Rd×k,
LoRA learns the necessary adaptation (i.e., mod-
ification) of the weight matrix for a downstream
task through a low-rank decomposition, expressed
as Wq + △Wq ≈ Wq + BA. Here, B ∈ Rd×r,
A ∈ Rr×k, and the rank r ≤ min(d, k). The
adaptation matrices A and B are the only param-
eters subject to training, while the original matrix
Wq does not receive any gradient updates. Studies
have shown that LoRA performs on par with, or
better than, AllTune across various PLMs (Hu et al.,
2021).
All language model tuning techniques we have dis-
cussed will use the same input format. For example
in the sentiment classification task, we use the fol-
lowing format:

“<s> {instruction} {text} . It was <mask> . </s>”.

Except for ClsTune, all of our tuning techniques
maximize the probability of the correct label token
in place of the <mask> token. In contrast, ClsTune
takes the formatted input and classifies it into one
of the predefined class labels.

B Few-shot Paraphrase Fine-Tuning
(Further Results)

This section provides additional results that com-
pare our training objectives for fine-tuning the para-
phrase generator using the feedback from the down-
stream language model.

The off-policy learning technique improves per-
formance when using basic rewards (i.e., 69.1%
compared to 67.9% with mixed decoding). How-
ever, the combined effect of off-policy learning
and reward normalization decreases performance.
With mixed decoding, ‘PG-Z’ yields an accuracy of
71.2% in on-policy learning compared to an accu-
racy of 68.0% with off-policy learning. The ‘AVG’
column in Table 4 further verifies this conclusion
that reward normalization is not improving the fi-
nal performance while training the model with off-
policy learning. We hypothesize that with the off-
policy learning technique, the normalized rewards
should be re-weighted properly if the sampled para-
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Table 4: The accuracy of the best performing validation checkpoint in the 128-shot SST2 classification task trained
with the off-policy learning technique.

Off-Policy AVG
Learn Tech Top-P Beam Mixed

No Tuning 67.5 67.5 67.5 67.5

PG 68.6 (1.8 | 67.5) 68.4 (1.6 | 67.4) 69.1 (1.6 | 67.5) 68.7 (1.7 | 67.5)

PG-Z 68.8 (1.7 | 67.5) 68.7 (1.1 | 67.4) 68.0 (2.1 | 67.2) 68.5 (1.6 | 67.4)

MML 69.2 (2.8 | 68.0) 70.1 (2.4 | 68.6) 70.1 (3.3 | 68.4) 69.8 (2.7 | 68.3)

MML-Z 69.2 (2.5 | 68.3) 69.7 (3.5 | 68.6) 70.1 (2.8 | 68.6) 69.7 (2.9 | 68.5)

phrases are from the fixed paraphrase model.

C Example Paraphrases

In Table 5 and Table 7, we present example para-
phrases from the AGNews test dataset generated by
our pre-trained paraphrase model. We selected the
AGNews dataset for its suitability in paraphrasing
longer texts or short paragraphs. Subsequently, in
Table 6 and Table 8, we display the generated para-
phrases after fine-tuning the paraphrase model with
the RIFF objective. Fewer hallucinations can be
observed in the new paraphrases, which are high-
lighted in red.

D Further Training Details

The learning rate for each LM tuning technique
was separately fine-tuned from the set {0.5, 0.3,
0.1, 0.01, 0.001, 0.0001, 0.00001} using the
train/validation split created for the seed 11 on
the SST2 dataset. The tuned learning rates were
then applied globally across other datasets and ex-
periments. For paraphrase fine-tuning, we train
all the parameters in T5-base with the learning
rate of 0.00001. In Tables 9 and 10, we list the
hyper-parameters and learning rates used across
all datasets. For optimization, we utilized the
AdamW (Loshchilov and Hutter, 2017)4 optimizer
with the AMSGrad variant set to True (Reddi et al.,
2019). We implemented the methods using the
HuggingFace5 library and the PyTorch6 machine
learning framework. We report the accuracy met-
ric on these classification datasets. The experi-
ments were conducted using multiple NVIDIA’s
A40 GPU cards.

4
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html

5
https://huggingface.co/

6
https://pytorch.org/

E Extended Related Works

Prompt Optimization & Efficient Tuning: Re-
cent research proposes various techniques for
prompt optimization and efficient tuning of lan-
guage models. In our experiments, we have used
successful techniques from each of these areas.

FluentPrompt (Shi et al., 2022) is a recent dis-
crete prompting technique based on the projected
gradient-descent and Langevin dynamics. Flu-
entPrompt introduces a fluency constraint within
Langevin dynamics to generate a sample of high-
performing prompts for more interpretable analysis
of these discrete prompts. The optimized prompts
by FluentPrompt performs on-par to the Auto-
Prompt, however they have lower perplexity (Shi
et al., 2022).

Building upon SpTune (Lester et al., 2021) and
P-tuning (Li and Liang, 2021), P-tuning V2 (Liu
et al., 2022) introduced the concept of deep prompt
tuning. This method involves injecting prompt
vectors into the deeper layers of the transformer
model to close the performance gap with AllTun-
ing in medium-sized language models. We have
experimented with LoRA (Hu et al., 2021), a recent
low-rank adaptation technique for tuning language
models. Other potential methods include training
bottleneck adapter modules (Houlsby et al., 2019b;
Lin et al., 2020) added per sub-layer of the trans-
former model. LoRA outperforms adapter tuning
and P-Tuning V2 techniques (Hu et al., 2021). The
successors of LoRA include DyLoRA (Valipour
et al., 2023) which dynamically learns a range
of adaptation ranks, thus eliminating the need to
search the rank of the adaptation matrices as a
hyper-parameter. Similarly, AdaLoRA dynamically
allocates the parameter budget among the weight
matrices during adaptation, with matrices of higher
priority (i.e., those with greater importance to the
downstream task) receiving higher adaptation ranks
than less important matrices (Zhang et al., 2023).
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Table 5: Generated top eight paraphrases using diverse beam search with the pre-trained paraphrase model
(distilled from GPT3.5-turbo) for the following input sentence from the AGNews test dataset:
“Gardner Loses Quest for Repeat Wrestling Gold US heavyweight Rulon Gardner lost his Olympic title Wednesday
after being beaten in the semi-final stage of the 120kg Greco-Roman wrestling event by Georgiy Tsurtsumia of
Kazakhstan.” Contradicting information or hallucinations are highlighted in red.

Paraphrase Text
P1 “On Wednesday, US heavyweight Rulon Gardner lost his Olympic title after losing in the semi-finals of the 120kg

Greco-Roman wrestling event against Georgiy Tsurtsumia of Kazakhstan.”
P2 “Following his loss to Georgiy Tsurtsumia of Kazakhstan in the semi-finals of the 120kg Greco-Roman wrestling

event, US heavyweight Rulon Gardner lost his bid for repeat Wrestling Gold.”
P3 “Rulon Gardner, the heavyweight world champion, suffered a major upset on Wednesday as he was defeated in

the semi-finals of the 120kg Greco-Roman wrestling tournament by Georgiy Tsurtsumia of Kazakhstan. Gardner
lost his Olympic title bid to George Kubica after losing 1-1 and 6-1.”

P4 “US heavyweight Rulon Gardner suffered a setback in the final round of his Olympic title against Georgiy
Tsurtsumia of Kazakhstan, leading to an upset loss that could have resulted in injury.”

P5 “Despite winning the Olympic title in 2004, Rulon Gardner, US heavyweight champion, lost his quest to repeat
as a wrestler in the 120kg Greco-Roman wrestling event after losing to Georgiy Tsurtsumia of Kazakhstan in
their semi-final match.”

P6 “The US heavyweight champion, Rulon Gardner of the United States, suffered a defeat to Georgiy Tsurtsumia
from Kazakhstan in the semi-finals of his men’s 120kg Greco-Roman wrestling tournament, which cost him the
Olympic championship on Wednesday.”

P7 “In a bid to avoid repeat Wrestling Gold, US heavyweight Rulon Gardner lost his Olympic title on Wednesday after
losing in the final round of Georges Tsurtsumia’S 120kg Greco-Roman wrestling match against Kazakhstan’s
Rorum Ignite.”

P8 “After losing his Olympic title on Wednesday, US heavyweight Rulon Gardner was defeated in the semi-finals of
Greco–Roman wrestling event at 120kg against Georgiy Tsurtsumoj, Kazakhstan.”

Table 6: Generated top eight paraphrases using diverse beam search after fine-tuning the paraphrase model with
the RIFF method in the 128-shot setting. The example input sentence is from the AGNews test dataset:
“Gardner Loses Quest for Repeat Wrestling Gold US heavyweight Rulon Gardner lost his Olympic title Wednesday
after being beaten in the semi-final stage of the 120kg Greco-Roman wrestling event by Georgiy Tsurtsumia of
Kazakhstan.” Contradicting information or hallucinations are highlighted in red

Paraphrase Text
P1 “The US heavyweight Rulon Gardner lost his Olympic title on Wednesday after losing in the semi-final stage of

the 120kg Greco-Roman wrestling event to Georgiy Tsurtsumia of Kazakhstan.”
P2 “On Wednesday, Rulon Gardner lost his Olympic title after losing in the semi-final stage of the 120kg Greco-

Roman wrestling event to Georgiy Tsurtsumia of Kazakhstan.”
P3 “Georgiy Tsurtsumia of Kazakhstan defeated US heavyweight Rulon Gardner in the semi-final stage of the 120kg

Greco-Roman wrestling event, resulting in Gardner losing his Olympic title on Wednesday.”
P4 “Despite losing his Olympic title on Wednesday, US heavyweight Rulon Gardner lost his quest for repeat

wrestling. He was defeated in the 120kg Greco-Roman wrestling event by Georgiy Tsurtsumia of Kazakhstan in
their semi-final stage.”

P5 “Rulon Gardner, the heavyweight US heavy weight loser of Olympic title after losing in the semi-final stage of
the 120kg Greco-Roman wrestling event to Georgiy Tsurtsumia of Kazakhstan.”

P6 “US heavyweight Rulon Gardner suffered a loss in the semi-final stage of the 120kg Greco-Roman wrestling
event after losing his Olympic title.”

P7 “In the 120kg Greco-Roman wrestling event, Rulon Gardner lost his Olympic title on Wednesday after losing in
the semi-final stage by Georgiy Tsurtsuma of Kazakhstan.”

P8 “After losing his Olympic title on Wednesday, Rulon Gardner lost the semi-final stage of a 120kg Greco–Roman
wrestling event against Georgiy Tsurtsumoia of Kazakhstan in the Quest for Repeat Wrestling.”
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Table 7: Generated top eight paraphrases using diverse beam search with the pre-trained paraphrase model
(distilled from GPT3.5-turbo) for the following input sentence from the AGNews test dataset:
“Calif. Aims to Limit Farm-Related Smog (AP) AP - Southern California’s smog-fighting agency went after emissions
of the bovine variety Friday, adopting the nation’s first rules to reduce air pollution from dairy cow manure.”
Contradicting information or hallucinations are highlighted in red.

Paraphrase Text
P1 “The smog-fighting agency in southern California followed the lead of other states by implementing the first

rules to control air pollution from dairy cow manure emissions.”
P2 “Southern California’s smog-fighting agency took action on bovine eutrophication by adopting the first rules of

the nation to reduce farm-related air pollution, including dairy cow manure emissions.”
P3 “California’s smog-fighting agency in southern California took action on bovine deposition Friday, following the

implementation of the first rules in the country to control air pollution from dairy cow manure.”
P4 “Calf Air Pollution Control: Southern California’s smog-fighting agency took action on Friday to limit farm-

related sewage emissions by adopting the first rules in the country to reduce air pollution from dairy cow
manure.”

P5 “Efforts to Reduce Farm-Related Smog: Calif.’s agency in Southern California set the pace on Friday with its
first-ever goals to combat bovine emissions and the nation’ll be moving quickly to eliminate farm-related air
pollution, including dairy cow manure.”

P6 “Southern California’s EPA sought to reduce air pollution from farm-related manure, and the agency adopted
the first rules in history to address bovine smog emissions.”

P7 “Calif. aims to reduce farm-related smog, which Southern Californiaś first specialized agency for reducing
bovine emissions took action on Friday by adopting the nation’ reviews that address this issue with ""first ever""
rules from the U.S. federal government.”

P8 “The smog-fighting agency in Southern California adopted new regulations on Friday to reduce farm-related
pollution, including air pollution from dairy cow manure.”

Table 8: Generated top eight paraphrases using diverse beam search after fine-tuning the paraphrase model with
the RIFF method in the 128-shot setting. The example input sentence is from the AGNews test dataset:
“Calif. Aims to Limit Farm-Related Smog (AP) AP - Southern California’s smog-fighting agency went after emissions
of the bovine variety Friday, adopting the nation’s first rules to reduce air pollution from dairy cow manure.”
Contradicting information or hallucinations are highlighted in red

Paraphrase Text
P1 “The smog-fighting agency in southern California adopted the first rules to reduce air pollution from dairy cow

manure, targeting bovine emissions.”
P2 “Southern California’s smog-fighting agency took action on bovine emissions by adopting the nation’ first rules

to reduce air pollution from dairy cow manure.”
P3 “On Friday, Southern California’s smog-fighting agency adopted the nation’ first rules to reduce air pollution

from dairy cow manure emissions.”
P4 “California’s smog-fighting agency took action on bovine emissions by adopting the nation’ first rules to reduce

air pollution from dairy cow manure.”
P5 “Calif. seeks to reduce farm-related smog emissions by adopting the nation’s first rules on Friday, which targets

bovine emission in Southern California and is one of the country’ best agencies for curbing air pollution from
dairy cow manure.”

P6 “Southern California’s scounding agency took action on bovine emissions by adopting the nation’ first rules to
reduce air pollution from dairy cow manure.”

P7 “The smog-fighting agency of Southern California targeted bovine emission on Friday, adoptting the country’s
first rules to reduce air pollution from dairy cow manure.”

P8 “AP: Southern California’s federal agency adopting the nation’ first rules to reduce air pollution from dairy cow
manure.”

1463



Table 9: Shared hyper-parameters used across all exper-
iments and datasets.

Hyper-parameter Value
Top-k candidates in GS k=4

batch size (RoBERTa-large) 8
batch size in GS (RoBERTa-large) 2

Weight decay 0.0001
Max epochs 100
length cutoff 128 tokens

Paraphrase sample size M=8
Checkpointing steps 8

D
′

in ClsTune 128
Prompt len in SpTune L=25

β in MML 0.1
β in PG 0.6
LoRA α 32
LoRA r 8

LoRA dropout 0.1
Diversity penalty for Div beam 3.0
Repetition penalty for Div beam 10.0

Temperature in Div beam 0.7
P value for top-p 0.99

Table 10: Learning rates used per Language Model
(LM) tuning technique.

LM Tuning Technique Learning Rate
GS No rate

AllTune 0.00001
InTune 0.001
HTune 0.001

ClsTune 0.001
SpTune 0.001
LoRA 0.0001

In scenarios where gradients are absent, Black-
Box Tuning (Sun et al., 2022) applies derivative-
free algorithms for optimizing continuous prompts.
For discrete prompt optimization, RLPrompt (Deng
et al., 2022) employs the on-policy version of soft
Q-learning (Guo et al., 2021) to find the optimal
prompt tokens in a gradient-free setting. Decoder
Tuning (Cui et al., 2023) learns a decoder net-
work over the language model, thus circumventing
the need for gradient computation and input-side
prompt tuning in few-shot classification. In a recent
study, TEMPERA (Zhang et al., 2022b) introduced
a novel approach that involves test-time discrete
prompt editing using a trained RL agent. This agent
is capable of modifying the instruction, in-context
examples, or the verbalizers based on the given task

input.
The use of Language Models (LLMs) in gen-

erating instructions for downstream tasks has in-
volved a two-step process. Initially, LLMs gen-
erate a set of candidate instructions, and subse-
quently, the highest-scoring instruction is utilized
to prompt another LLM to perform the down-
stream task. This approach, known as prompt-
based generation-then-filtering, has been investi-
gated in the recent APE method (Zhou et al., 2023).
APE demonstrates the ability to generate prompts
that achieve performance comparable to human-
designed prompts (Zhou et al., 2023).

To prompt language models for reasoning tasks,
another line of research augment the input context
with demonstration examples outlining the interme-
diate reasoning steps to form the answer. Provid-
ing manually or automatically generated chain-of-
thoughts within these demonstrations strikingly im-
prove LLMs performance in reasoning tasks (Wei
et al., 2022; Zhang et al., 2022c; Kojima et al.,
2022).

All of the aforementioned techniques for prompt
optimization and efficient tuning of the language
model use the original task’s input text (or the orig-
inal input context) provided within the dataset.
RL for Paraphrase Generation: In the following
paragraphs, we provide a brief overview of sim-
ilar reinforcement learning objectives employed
for paraphrase generation. Li et al. (Li et al.,
2018) used a deep RL technique, training a pointer-
generator network as the paraphrase generator and
a decomposable attention model as the evaluator
which assigns a paraphrase score to pairs of sen-
tences. The generator was trained using the pol-
icy gradient objective, with reward shaping and
scaling to stabilize the training process (Li et al.,
2018). Another approach by Qian et al. (Qian et al.,
2019) focused on generating diverse paraphrases
by training multiple generators, accompanied by a
paraphrase discriminator and a generator discrim-
inator. Policy gradient objective and self-critical
learning (Rennie et al., 2016) were employed for
training the generators, with the baseline reward
used in the policy gradient objective being the re-
ward obtained from the greedy-decoded sequence.
Liu et al. (Liu et al., 2020) also applied the pol-
icy gradient objective with self-critical learning,
incorporating multiple reward functions such as
Rouge score with the reference paraphrase, nega-
tive Rouge score with the input sentence to encour-
age lexical variations, and semantic similarity score
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between the paraphrase and the input sentence to
ensure semantic fidelity.

Another study by Du and Ji (Du and Ji, 2019)
compared the use of imitation learning algorithm
DAGGER with policy gradient REINFORCE for
paraphrase generation. The policy gradient ob-
jective has also been applied in generating para-
phrases while considering multiple objectives
for entailment relation-aware paraphrase genera-
tion (Sancheti et al., 2022). In the context of
chatbot responses, a recent work studies unsuper-
vised paraphrase generation with proximal policy
optimization, aiming to maximize a combination
of rewards such as textual entailment, semantic
similarity, language fluency, and lexical dissimi-
larity (Garg et al., 2021). Similarly, the policy
gradient objective has been employed to optimize
multiple rewards, similar to previous work, for un-
supervised paraphrase generation (Siddique et al.,
2020).

While previous studies have applied RL tech-
niques for paraphrase generation, we propose the
use of MML gradients instead of policy gradients to
train our paraphrase model. Our training objective
fine-tunes the paraphrase model for a downstream
classification task. Our paraphrase model has been
distilled from a large language model.

F Task Instructions & Input Format

Table 11 provides a summary of the task instruc-
tions that we append before the inputs, as well as
the class verbalizers for classifying the input text.
The instructions and input templates are derived
from prior work in prompt optimization (Deng
et al., 2022).
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Table 11: Number of classes C, test set size T , the input format, and the instruction used per dataset. The label
words are provided within the instructions.

Dataset C T Input Format Instruction
SST2 2 1821 “<s> {Instruction} {Text}

. It was <mask> . </s>”
“In this task, you are given sentences from movie reviews. The
task is to classify a sentence as ‘great’ if the sentiment of the
sentence is positive or as ‘terrible’ if the sentiment of the sen-
tence is negative.”

SST5 5 2210 “<s> {Instruction} {Text}
. It was <mask> . </s>”

“In this task, you are given sentences from movie reviews. Based
on the given review, classify it to one of the five classes: (1)
terrible, (2) bad, (3) okay, (4) good, and (5) great.”

CR 2 2000 “<s> {Instruction} {Text}
. It was <mask> . </s>”

“In this task, you are given sentences from customer reviews.
The task is to classify a sentence as ‘great’ if the sentiment of
the sentence is positive or as ‘terrible’ if the sentiment of the
sentence is negative.”

MR 2 2000 “<s> {Instruction} {Text}
. It was <mask> . </s>”

“In this task, you are given sentences from movie reviews. The
task is to classify a sentence as ‘great’ if the sentiment of the
sentence is positive or as ‘terrible’ if the sentiment of the sen-
tence is negative.”

TREC 6 500 “<s> {Instruction}
<mask>: {Text} . </s>”

“You are given a question. You need to detect which category
better describes the question. Answer with ‘Description’, ‘En-
tity’, ‘Expression’, ‘Human’, ‘Location’, and ‘Number’.”

AG’s
News

4 7600 “<s> {Instruction}
<mask> News: {Text} .
</s>”

“In this task, you are given a news article. Your task is to classify
the article to one out of the four topics ‘World’, ‘Sports’, ‘Busi-
ness’, ‘Tech’ if the article’s main topic is relevant to the world,
sports, business, and technology, correspondingly. If you are not
sure about the topic, choose the closest option.”
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