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Abstract

Large Language Models (LLMs) have demon-
strated an impressive capability known as In-
context Learning (ICL), which enables them
to acquire knowledge from textual demonstra-
tions without the need for parameter updates.
However, many studies have highlighted that
the model’s performance is sensitive to the
choice of demonstrations, presenting a signifi-
cant challenge for practical applications where
we lack prior knowledge of user queries. Con-
sequently, we need to construct an extensive
demonstration pool and incorporate external
databases to assist the model, leading to con-
siderable time and financial costs. In light
of this, some recent research has shifted fo-
cus towards zero-shot ICL, aiming to reduce
the model’s reliance on external information
by leveraging their inherent generative capa-
bilities. Despite the effectiveness of these ap-
proaches, the content generated by the model
may be unreliable, and the generation process
is time-consuming. To address these issues, we
propose Demonstration Augmentation for In-
context Learning (DAIL), which employs the
model’s previously predicted historical sam-
ples as demonstrations for subsequent ones.
DAIL brings no additional inference cost and
does not rely on the model’s generative ca-
pabilities. Our experiments reveal that DAIL
can significantly improve the model’s perfor-
mance over direct zero-shot inference and can
even outperform few-shot ICL without any ex-
ternal information. Our code is available at
https://github.com/yisunlp/DAIL.

1 Introduction

Large Language models (LLMs) have recently
gained widespread attention due to their numer-
ous advantages, including user-friendly interac-
tions, convenient applications, and zero-shot ca-
pabilities (Wei et al., 2021; OpenAI, 2022; Scao
et al., 2022; Zhang et al., 2022a; OpenAI, 2023;

∗Equal Contribution.

Touvron et al., 2023; Baichuan, 2023). However,
the expanding parameter scale of LLMs poses a sig-
nificant challenge to fine-tuning, demanding con-
siderable investments in both time and computa-
tional resources. Therefore, In-context Learning
(ICL), a method enabling LLMs to acquire knowl-
edge through textual demonstrations without the
need for parameter updates, has become increas-
ingly important in recent times (Wei et al., 2021;
Dong et al., 2022).

Conditioning on some input-label pairs (demon-
strations), LLMs can rapidly acquire the ability
to solve new tasks in a few-shot manner just by
combining the demonstrations and the sample to-
gether(Radford et al., 2019; Brown et al., 2020).
However, many studies indicate that the model’s
performance is sensitive to the choice of demonstra-
tions (Zhang et al., 2022b; Liu et al., 2022b; Hao
et al., 2022; Lu et al., 2022a). In extreme cases,
inadequately chosen demonstrations can signifi-
cantly degrade the model’s performance, causing a
drastic drop from State-of-the-Art to near-random
(Liu et al., 2022b). To address this challenge, re-
searchers have proposed various solutions, includ-
ing demonstration selection, calibration, and ar-
rangement (Rubin et al., 2022; Min et al., 2022d,b;
Zhao et al., 2021a; Chen et al., 2022; Yoo et al.,
2022; Min et al., 2022a). These methods can im-
prove the model’s performance and stability under
ICL across many tasks.

Nevertheless, these approaches are still insuffi-
cient to ensure the reliable application of ICL in
real-world scenarios, where our prior knowledge of
user queries is often limited. Consequently, it is a
common practice to construct an extensive demon-
stration pool, harness external databases, and im-
plement various strategies such as selection, cali-
bration, and arrangement methods, as mentioned
earlier, to deal with all kinds of queries from users.
However, this process entails a significant invest-
ment in time and financial resources. Therefore,
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some researchers (Zhang et al., 2022c; Kim et al.,
2022; Lyu et al., 2023; Chen et al., 2023) attempt
to alleviate the reliance on external information by
proposing zero-shot ICL. These approaches lever-
age the model’s generative capabilities to produce
the required information for the inference process.
In this context, zero-shot ICL offers a promising
avenue for more efficient and cost-effective deploy-
ment for ICL.

These methods can reduce the dependence on
external information, but the quality of the con-
tent generated by the model cannot be guaranteed,
which may pose some potential risks. Furthermore,
the generation process is time-consuming, which
can bring additional costs during inference. To ad-
dress these problems, we propose Demonstration
Augmentation for In-context Learning (DAIL),
which employs the model’s previously predicted
historical samples as demonstrations for subse-
quent ones1. Specifically, we only need to maintain
a memory bank of a small size M and define the
entry, selection, and deletion strategies. During
the inference phase, the selection strategy chooses
the most suitable demonstrations from the mem-
ory bank. Subsequently, we use the entry strategy
to add the predicted sample to the memory bank.
Upon reaching maximum capacity, we use the dele-
tion strategy to remove some stored samples. Our
experiments on different benchmarks and models
demonstrate the effectiveness of DAIL.

Overall, our contributions in this work include:

• We point out the potential limitations of previous
zero-shot methods in stability and inference time.

• We introduce DAIL, an easy yet effective method
to enhance zero-shot ICL.

• Our experiments reveal that DAIL can signifi-
cantly improve the model’s performance over di-
rect zero-shot inference and can even outperform
few-shot ICL without any external information.

2 Preliminary

2.1 Problem Formulation
In this subsection, we briefly summarize the in-
ference process of ICL. A Large Language Model
(LLM) can be formalized as a function f : X −→ Y ,
mapping the input space X to the output space Y .
The corresponding dataset comprises a set of la-
beled demonstrations {xis, yis}ns

i=1 and a set of un-
labeled queries {xit}nt

i=1. Then, a carefully crafted
1At the beginning, we use zero-shot inference because

there is no historical samples.

Method Inputs Labels
AUTO-COT (Zhang et al., 2022c) from training set no need
Z-ICL (Lyu et al., 2023) from external corpus no need
SG-ICL (Kim et al., 2022) no need given
Self-ICL (Chen et al., 2023) no need no need
DAIL (Ours) no need no need

Table 1: A comparison to prior attempts on zero-shot
ICL. Self-ICL and DAIL do not require any external
information to construct demonstrations.

template t is utilized to transform each sample into
a natural language sentence that the model can pro-
cess. During the inference stage for a given query,
K demonstrations are selected from the demon-
stration pool based on a selection strategy such as
TopK (Liu et al., 2022b). Subsequently, these cho-
sen demonstrations and the query are combined to
construct the input sequence for the model:

Input = {t(x1s, y1s), ..., t(xKs , yKs ), t(xit)}, (1)

where t(·) is the transformation of the template.
The model processes the input sequence and gen-

erates the final output, denoted as:

Output = V (f(Input)), (2)

where V is a mapping function that converts the
model’s output into a label in the label space. It
can be a text-level matching function or a selection
mechanism based on probability or perplexity.

2.2 Potential Risks of Previous Methods

While previous works have delved into zero-shot
ICL, they mainly focus on reducing the reliance on
labeled demonstrations and are not entirely inde-
pendent of external information (Table 1 shows the
resources needed for each method). We concentrate
on a setting that requires no external information,
aiming to minimize the extra cost. Moreover, these
methods rely on the generative capabilities of the
model, so there may be issues with poor generation
quality and increased inference time.

We take Self-ICL (Chen et al., 2023) as an exam-
ple. Self-ICL performs the following three actions
upon receiving a question: 1) It uses a human-
designed prompt to guide the model in generating
K new, related, and diverse questions based on the
original question. 2) It employs zero-shot inference
to obtain the answers for the generated K questions
respectively. 3) It concatenates these K questions
and their answers to serve as demonstrations for
ICL. In our experiments, we find that Self-ICL
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(𝑢 is a vector with a shape of 1 * k)

Query:

Q: What are the dimensions of 𝑢𝑇𝑢?

A:Txk B:Tx1    C:Kx1    D:1x1

A: D (right prediction)

New instance 1:

Q: What are the dimensions of 𝑣T𝑣?

A: Tx2    B:Tx2    C:2x1    D:1x2

New instance 2: 

Q: What are the dimensions of 𝑤𝑇𝑤?

A:3x3    B:Tx3    C:3x1    D:1x3

New instance 3: 

Q: What are the dimensions of 𝑥𝑇𝑥?

A: Tx4    B:Tx4    C:4x1    D:1x4

Query:

Q: What are the dimensions of 𝑢𝑇𝑢?

A:Txk B:Tx1    C:Kx1    D:1x1

A: A (wrong prediction)

Figure 1: A bad case for Self-ICL, the quality of the
generated samples is poor, with repeated options, false
labels, and too similar semantics, which leads to the de-
cline of the model’s performance. For simplicity of the
figure, we omit the generated labels of demonstrations.

relies heavily on the generative capability of the
model. When the model generates poor demonstra-
tions, it will hurt the performance of ICL (Figure
1). Furthermore, Self-ICL requires more queries
and token consumption than direct zero-shot infer-
ence, resulting in increased inference costs. This is
particularly pronounced in its generation process
(Figure 2), where the expense of generating a token
exceeds that of encoding a token. Consequently,
this poses a challenge to computing resources dur-
ing deployment for Self-ICL.

To address these challenges, we need to obtain
more reliable demonstrations at a lower cost. It
is intuitive that text provided by humans typically
have higher quality than that generated by mod-
els. With the absence of external information, the
human-supplied text available to LLM is only user
queries. Hence, our strategy involves leveraging
previously predicted historical samples as demon-
strations. This offers several advantages over other
zero-shot ICL methods, including superior text
quality, independence from the model’s generative
capabilities, and lower acquisition costs.

3 Method

Figure 3 illustrates an overview of our method. Sup-
pose we have a LLM f and a set of user-issued
queries to respond. We initialize a memory bank
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Figure 2: Time consumption (in seconds) for different
methods and sequence lengths (batch size = 16). We
use LLaMA-2-7B (Touvron et al., 2023) as the base
model. Encode: cost of encoding n tokens. Generate:
cost of generating n tokens. 3-shot: ICL with three
demonstrations. For simplicity, we assume that all the
demonstrations generated by the model have the same
sequence length as the query.

with a maximum capacity of M . At step 0, the
memory bank is empty, and we directly process the
query using zero-shot inference. At step t, when a
new query arrives, we employ the selection strategy
to search for K samples in the memory bank. If the
number of samples in the memory bank is less than
K, we extract all demonstrations from the bank.
Following the model’s output, we use the entry
strategy to add the current sample, i.e., the current
query paired with the correlated model response, to
the memory bank. At step t+ 1, the sample from
the previous step t has been in the memory bank
and can be selected as a demonstration to help an-
swer the new query. In the following subsections,
we will elaborate the details of our entry, selection,
and deletion strategies, which manage the dynamic
data flow within our memory bank.

3.1 Entry Strategy

Following the processing of each query, we com-
bine the query and the corresponding response into
a sample and directly add the sample to the mem-
ory bank. Despite its simplicity, the entry strategy
is a fundamental building block in our method.

3.2 Selection Strategy

Our selection strategy involves assigning a score
to each sample in the memory bank and selecting
those with the highest scores. Each sample’s score
comprises two factors: the Selection Score and the
Entropy Score. Assuming the query that the model

14234



Memory Bank

Text     Label

Good movie!         1

Bad movie.         0

Unforgettable! 1

…        …

Review: [Text]

Sentiment:[Label]

Template

Demonstration 

selection

Review: Good movie! Sentiment: Positive

Review: Bad movie. Sentiment: Negative

Review: Delicious!  Sentiment:

Large Language Model

Input

Positive

Output

Delicious!             1

Step t

Test

sample

Memory Bank

Text     Label

Good movie!         1

Bad movie.         0

Delicious! 1

…        …

Review: [Text]

Sentiment:[Label]

Template

Demonstration 

selection

Review: Good movie! Sentiment: Positive

Review: Delicious! Sentiment: Negative

Review: Bad meal!  Sentiment:

Large Language Model

Input

Negative

Output

Bad meal!             0

Step t+1

sample

Figure 3: Overview of our method. After each inference, we combine the current query with the model’s output
and add them to the memory bank. After step t, the sample is added to the memory bank and then used as a
demonstration at step t+1.

need to respond is x, and a sample in the memory
bank is x̂, we will explain how to compute the
Selection Score and the Entropy Score for them.

3.2.1 Selection Score

The Selection Score primarily comes from existing
demonstration selection methods. We have experi-
mented with various selection methods, including
random selection, BM25 (Robertson et al., 2009),
and TopK (Liu et al., 2022b).

Random score Under random selection, all sam-
ples are chosen with equal probability. Therefore,
we assign a score of 0 to all samples.

BM25 score The BM25 algorithm (Robertson
et al., 2009) is a well-known information retrieval
method based on the Okapi TF-IDF algorithm
(Ramos et al., 2003). It is widely employed for
ranking queries in information retrieval tasks. We
can leverage it to compute a similarity score be-
tween x̂ and x.

scores = BM25(x̂, x), (3)

where BM25(·) represents the BM25 algorithm.

TopK score Noting that selecting demonstrations
with semantics closer to the query enhances the
performance of ICL (Liu et al., 2022b), we utilize
Sentence-BERT (Reimers and Gurevych, 2019) to
calculate the similarity between x̂ and x.

scores = cos(emb(x̂), emb(x)), (4)

where emb(·) denotes the process of computing the
hidden states of a sentence with Sentence-BERT.

3.2.2 Entropy Score
Intuitively, samples with lower entropy should be
prioritized for selection because this suggests that
the sample is simpler and the pseudo-labels are
more reliable (Su et al., 2023). We can compute
the entropy of a sample with the following formula:

scoree = −
∑

c

p (yc|x) log p (yc|x) , (5)

where p (yc|x) is the next token prediction proba-
bility of x provided by the model.

3.2.3 Final Selection Strategy
The final score consists of two components: the Se-
lection score and the Entropy Score. We normalize
each score to mitigate the differences between the
aforementioned two types of scores.

score = N (scores)− α ∗N (scoree) , (6)

where N(·) stands for normalization, and α is a
manually set hyper-parameter to balance the weight
of the two scores.

In addition to the three selection methods above,
we also utilize DPP (Kulesza and Taskar, 2011) to
refine the TopK selections, aiming to enhance the
diversity of the demonstrations. Specifically, we
employ the TopK Score and Entropy Score to select
some candidates and apply the DPP algorithm to
choose K demonstrations from these candidates.
In total, we consider four selection methods, and
their comparison will be discussed in Section 5.1.

3.3 Deletion Strategy
Upon reaching full capacity, we delete half of the
samples from the bank. We explore three different
deletion strategies: Random, FIFO, and Diverse.
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Models Methods Humanities STEM Social Sciences Other Average Time

LLaMA-2-7B

Zero-Shot 49.23 34.73 52.77 49.12 45.37 -
Few-shot 50.54 36.80 54.07 49.76 46.75 ×0.99
Self-ICL 48.61 34.86 49.98 48.94 44.64 ×47.28

Ours 51.76 37.52 54.12 50.01 47.33 ×1.00

Mistral-7B

Zero-Shot 62.93 48.29 66.97 61.58 58.83 -
Few-shot 66.07 49.55 72.18 65.11 61.90 ×1.00
Self-ICL 62.62 48.10 67.16 60.85 58.56 ×101.68

Ours 66.62 51.36 74.30 64.11 62.80 ×1.00

OpenChat-7B

Zero-Shot 67.50 49.72 71.67 63.97 61.90 -
Few-shot 70.31 51.78 73.01 66.33 64.05 ×1.00
Self-ICL 67.74 49.30 70.74 63.22 61.44 ×134.87

Ours 70.67 51.40 74.66 66.77 64.47 ×1.00

Table 2: Accuracy (%) on the MMLU benchmark with different models and different methods. Time: the multiples
of time spent by each method in reasoning the entire benchmark compared to DAIL. We omit the comparison with
Zero-Shot in terms of time. The selection strategy of our reported result is DPP, and the deletion strategy is Diverse.
Bold: the best results. We report the template in Appendix A.4 and the detailed results in Appendix A.5.

Random Randomly select half of the samples
and delete them from the bank.

FIFO Delete the samples that entered the bank
earlier (First-In-First-Out).

Diverse We aim to preserve the diversity of the
samples in the bank after deletion. We employ the
TopK Score mentioned above to calculate the sim-
ilarity between each sample and the entire bank.
Subsequently, we delete the samples with higher
similarity, thereby maintaining a diverse set of sam-
ples in the memory bank.

4 Experiments

4.1 Baselines

Zero-Shot Zero-shot inference. The model di-
rectly process the query with no demonstration.
CoT Chain-of-Thought (Wei et al., 2022), an
easy and effective method that utilizes specific
prompts to stimulate the model’s own capabilities.
Few-Shot Few-shot inference. For each task,
meticulously crafted demonstrations are provided
by humans. Note that the comparison between
Few-Shot and other baselines is not entirely fair, as
Few-Shot requires additional external information.
Self-ICL A zero-shot ICL method allows the
model to generate new samples as demonstrations
based on the query (Chen et al., 2023).

4.2 Datasets

MMLU (Hendrycks et al., 2020) Commonly
used to evaluate the common sense reasoning abil-
ity of LLMs, MMLU consists of multiple-choice

questions from various domains. It includes 57
subsets covering subjects in science, technology,
humanities, and other areas. Each subset has four
demonstrations.
BBH (Suzgun et al., 2022) Derived from a sub-
set of tasks within the BIG-Bench benchmark (Sri-
vastava et al., 2022), BBH includes tasks where
existing LLMs struggle to reach average human-
rater performance. We focus on the multiple-choice
tasks, as done in Chen et al. (2023). The demon-
strations are provided in Chen et al. (2023), and
each subset has three demonstrations.

4.3 Models
For MMLU, we utilize LLaMA-2-7B (Touvron
et al., 2023), Mistral-7B (Jiang et al., 2023) and
OpenChat-3.5-7B (Wang et al., 2023) as our back-
bone. They are the latest lightweight models with
powerful capabilities. For BBH, we employ gpt-
3.5-turbo-instruct and gpt-4-1106-preview from the
GPT family (OpenAI, 2022), which are currently
the most popular and influential LLMs.

4.4 Implementation details
The number of candidates for DPP is 10. We set
α to 0.1 for MMLU. The size of the memory bank
M is 2,000. We adopt the decoding strategy from
Chen et al. (2023). For MMLU, we set the number
of demonstrations to four. For BBH, we set the
number of demonstrations to three, consistent with
Chen et al. (2023), and we use the same prompt as
it. In BBH, we cannot obtain the logits of gpt-3.5-
turbo-instruct and gpt-4-1106-preview, so we omit
the Entropy Score and solely leverage the Selec-
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BBH Tasks gpt-3.5-turbo-instruct gpt-4-1106-preview

Zero-Shot CoT Few-Shot Self-ICL Ours Zero-Shot Few-Shot Self-ICL Ours
Boolean Expressions 84.80 85.20 89.60 88.40 85.60 67.20 93.20 92.80 94.00
Causal Judgement 42.25 55.08 63.64 12.30 57.22 73.80 69.19 69.19 70.27
Date Understanding 59.20 44.80 52.20 57.60 55.20 48.40 73.20 74.80 79.20
Disambiguation QA 60.00 50.40 63.60 63.20 62.40 71.20 79.20 80.40 65.60
Formal Fallacies 52.00 52.40 54.80 50.40 52.00 70.40 79.60 76.00 80.00
Geometric Shapes 34.00 34.40 45.60 36.40 32.80 28.40 43.60 36.69 49.40
Hyperbaton 82.40 71.20 65.60 82.80 80.00 73.60 80.80 88.00 87.20
Logical Deduction (five objects) 42.00 36.40 38.00 38.40 42.00 44.80 63.20 70.40 73.60
Logical Deduction (seven objects) 41.60 28.40 38.80 34.80 42.40 45.20 60.00 67.20 64.40
Logical Deduction (three objects) 56.00 60.40 60.40 59.20 55.20 86.80 88.80 94.00 92.40
Movie Recommendation 74.80 77.20 78.40 76.00 71.08 80.40 92.00 80.40 92.00
Navigate 42.80 52.40 50.80 64.80 53.20 71.60 72.80 75.20 75.20
Penguins in a Table 51.37 59.59 52.74 55.48 50.68 74.66 76.03 80.82 80.14
Reasoning about Colored Objects 54.80 75.20 57.20 56.40 56.00 86.80 86.00 82.80 84.40
Ruin Names 70.80 41.20 72.40 64.80 67.34 58.63 90.80 88.00 89.20
Salient Translation Error Detection 41.60 46.40 51.60 51.20 45.20 68.40 67.60 68.40 69.20
Snarks 63.48 61.80 58.40 60.67 64.61 84.66 86.52 82.02 90.12
Sports Understanding 62.00 63.20 86.40 50.00 81.60 84.80 88.80 85.20 90.40
Temporal Sequences 20.80 36.00 38.80 32.80 40.00 97.60 100.00 99.20 100.00
Tracking Shuffled Objects (five objs) 18.00 24.80 17.20 16.40 21.20 36.40 33.60 28.23 35.08
Tracking Shuffled Objects (seven objs) 17.60 40.90 12.40 12.40 14.40 35.60 28.80 28.05 32.93
Tracking Shuffled Objects (three objs) 32.40 46.00 32.40 36.80 33.60 49.20 41.20 33.87 38.21
Web of Lies 15.20 38.80 50.00 38.40 52.00 48.00 77.20 52.40 62.80
All Tasks (avg) 48.69 50.08 53.21 49.55 52.86 64.07 72.50 70.81 73.47

Table 3: Accuracy (%) on the BBH benchmark of gpt-3.5-turbo-instruct and gpt-4-1106-preview. The selection
strategy of our reported result is DPP, and the deletion strategy is Diverse. The results of Zero-Shot and Self-ICL of
gpt-3.5-turbo-instruct are extracted from Chen et al. (2023). We report the cost in Appendix A.3.

tion Score to choose the demonstrations for DAIL,
which may lead to a decline in its performance.
For Sentence-BERT, we use the mostly used check-
point from Huggingface2 to get the hidden states
of the queries. All the experiments are completed
on NVIDIA A100-40G GPUs.

4.5 Results on MMLU
Table 2 shows the main results of each method
on MMLU with different models. We have the
following observations:

Self-ICL performs poorly on MMLU. The per-
formance of Self-ICL on MMLU is consistently
inferior to that of Zero-Shot across various mod-
els. This suggests that Self-ICL may require
stronger model generative capabilities, and the
models we choose may not be sufficient to gen-
erate high-quality demonstrations. Addressing this
issue might necessitate the use of larger and more
powerful models, which could impose certain cost
concerns on model deployment.

DAIL achieves State-of-the-Art (SOTA) results.
DAIL stands out by significantly enhancing the
model performance over Zero-Shot and can even
surpass Few-Shot with no external information.

2https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

Furthermore, DAIL is effective across various mod-
els, indicating that it does not rely on the model’s
generative capabilities and possesses strong gener-
alization ability.

DAIL brings no additional inference time. The
inference speed of Self-ICL is quite slow due to
the substantial amount of time required to generate
demonstrations for each query. DAIL surpasses
Self-ICL in inference speed hundreds of times and
is comparable to Few-Shot inference. This remark-
able efficiency brings a substantial reduction in
deployment costs for real-world applications.

DAIL is a practical method for real-world ap-
plications. In scenarios with limited resources,
DAIL presents a feasible solution capable of ac-
quiring high-quality demonstrations at a minimal
cost. It consistently enhances the capabilities of
ICL, making it an effective and efficient approach
for real-world applications.

4.6 Results on BBH

Table 3 shows the main results of each method on
the BBH benchmark with different models. We
have the following observations:

Self-ICL performs well but sometimes harms
the model performance. Overall, compared to
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Figure 5: Accuracy (%) on MMLU with different dele-
tion strategies.

Zero-Shot, Self-ICL can achieve decent improve-
ments. However, in some tasks, it can still cause
substantial damage to the performance of the model
(Causal Judgement, 42.25% → 12.30%). Even
with a powerful model, the demonstrations gener-
ated by Self-ICL may be unsatisfactory, leading to
a decline in the performance of ICL. The instability
makes it impossible to play a role in real-world
applications.

DAIL Significantly Boosts ICL Performance.
For gpt-3.5-turbo-instruct, DAIL outperforms Zero-
Shot by 4.17% and is only 0.35% lower than
Few-Shot. For gpt-4-1106-preview, DAIL sur-
passes Zero-Shot by 9.4% and exceeds Few-Shot
by 0.97%. It demonstrates the impressive capabil-
ity and generalizability of DAIL.

5 Analysis

5.1 Impact of Selection Strategy
The selection strategy are important for the suc-
cess of DAIL. We propose four selection strategies
and we will compare the effects of them on the
performance of ICL. We conduct experiments em-
ploying different models and selection strategies on
the MMLU Benchmark, Figure 4 shows the results
of our experiments. The results reveal that the DPP
outperforms other selection strategies, with TopK
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Figure 6: Accuracy (%) on MMLU with different α.
We use Mistral as the base model.
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Figure 7: Accuracy (%) on MMLU with different M .

being the closest competitor. This indicates that se-
mantic similarity plays a crucial role in DAIL. DPP
can increase the diversity of the demonstrations
while maintaining the semantic similarity, which
may be the primary reason for its effectiveness. Al-
though BM25 can compute the semantic similarity
of the demonstrations and the test sample, its ca-
pability to represent semantic similarity is weaker
than TopK. Consequently, while BM25 generally
outperforms Random, it does not match the perfor-
mance achieved by TopK and DPP.

5.2 Impact of Deletion Strategy

We investigate the impact of deletion strategy using
different models on the MMLU Benchmark, and
the results are presented in Figure 5. Various dele-
tion strategies show a minor impact on the model’s
performance, with the Diverse deletion strategy
slightly outperforming others. Nevertheless, we
suggest that in a more dynamic environment, where
we need to process various test samples from differ-
ent users, the effectiveness of the Diverse deletion
strategy may become more apparent.
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5.3 Impact of α

α is a crucial hyper-parameter in DAIL, balancing
the Selection and Entropy scores. To explore the
impact of α, we conduct experiments using Mis-
tral on the MMLU Benchmark, and the results are
depicted in Figure 6. In the case of the Random
selection strategy, a notable improvement in model
performance is observed as α increases from 0 to
0.01. Subsequently, as α further increases, perfor-
mance fluctuates slightly but consistently remains
higher than the result when α is set to 0. This
reveals that incorporating the Entropy Score en-
hances the model’s performance. When consider-
ing other selection strategies, the model’s perfor-
mance tends to rise initially and then decline. This
is because when α is small, the combined effect
of the Selection Score and the Entropy Score leads
to a better selection of demonstrations. However,
when α is too large, the excessive weight of the
Entropy Score reduces the impact of the Selection
Score, and make the performance of ICL decrease.
Thus, choosing a suitable α is crucial, and we find
that 0.1 is a good value.

5.4 Impact of M

The size of the Memory Bank (M ) is a critical
factor influencing DAIL’s performance. Figure 7
displays the results of experiments with different
models and M on the MMLU Benchmark. We can
conclude from the figure that a too small M can
harm the performance of DAIL, which may be be-
cause the limited number of samples in the memory
bank makes it hard to find sufficient similar and di-
verse demonstrations. This limitation is alleviated
as M reaches 500. Below this threshold, DAIL’s
performance improves with the increase of M , and
above this threshold, the performance of DAIL sta-
bilizes at a satisfactory level. Considering that a
M that is too large will make the selection process
slower and increase the cost of sample storage, we
set M to 2,000.

6 Related Work

6.1 Understanding ICL

In recent years, much research has delved into scal-
ing up parameters and training data for LLMs, un-
covering emergent capacities such as instruction-
following, In-context Learning (ICL), and chain-
of-thought. In the realm of ICL, researchers focus
on optimal demonstration selection, boosting ICL

capabilities, and understanding underlying mech-
anisms. As highlighted by Zhao et al. (2021b),
the instability of ICL is a critical problem, where
factors like prompt format, demonstration exam-
ples, and example order significantly impact per-
formance. Despite being a challenging problem,
there have been many efforts to address optimal
sample selection using heuristic (Liu et al., 2022a;
Su et al., 2022) and model-based methods (Lu et al.,
2022b; Wu et al., 2023; Levy et al., 2023). From
another perspective, many researchers are consider-
ing enhancing the capabilities of ICL. For example,
Min et al. (2022c) enhance the performance of ICL
by reducing its distance from pre-training tasks,
and Zhao et al. (2021a) eliminate the biases of
some specific labels introduced by demonstrations
in ICL, thereby making the distribution of label
logits closer to the actual situation.

6.2 Zero-shot ICL

Despite the success of ICL, many studies have high-
lighted that the model’s performance is sensitive to
the choice of demonstrations. Although researchers
have delved into the optimization of prompts and
demonstrations (Min et al., 2022d,b; Zhao et al.,
2021a; Chen et al., 2022; Min et al., 2022a), the re-
liance on a substantial amount of annotated data for
demonstrations in ICL introduces additional data
collection costs. Consequently, there is a growing
interest in exploring the generative capabilities of
LLMs as a method to mitigate the dependency on
external information. Addressing the challenge of
few-shot Chain-of-Thought (CoT) without human
annotations, Zhang et al. (2022c) leverage zero-
shot CoT for demonstration construction. However,
their approach still depends on an existing train-
ing set as input to zero-shot CoT. Lyu et al. (2023)
explore pseudo-input generation from a raw text
corpus but rely on external sources to construct
pseudo-inputs. Similarly, Kim et al. (2022) investi-
gates the generation of pseudo-inputs by the LLM
itself but requires access to the label set and condi-
tioning the language model on a label provided in
the prompt. Chen et al. (2023) propose a method
that does not require any external information but
still has the problem of relying on model generation
capabilities and slow inference speed.

7 Conclusion

In this paper, we analyze some previous zero-shot
ICL methods and point out their shortcomings in
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terms of stability and inference time. To address
these challenges, we propose DAIL, a simple yet
effective zero-shot ICL method. Our experiments
demonstrate that DAIL can significantly enhance
the performance of ICL without any external in-
formation and bring no inference latency, which
indicates that DAIL has substantial potential in
real-world applications.

Limitations

While DAIL has demonstrated superior accuracy
and inference speed compared to all baselines, it is
important to acknowledge its limitations:

• Obtaining the Entropy Score in DAIL requires
accessing logits, which can be challenging when
using APIs for inference. This introduces deploy-
ment challenges for DAIL in real-world applica-
tions.

• Our validation of DAIL’s performance has pri-
marily focused on MMLU and BBH, both of
which involve multiple-choice tasks. Its effec-
tiveness in open-domain text generation tasks
has yet to be confirmed.

• Storing previously inferred samples poses poten-
tial privacy concerns and increases the risk of
privacy breaches. In scenarios prioritizing data
security, DAIL may not be the most suitable so-
lution.
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A Appendix

A.1 Analyis about the order of samples

In our experiments, we do not shuffle the order of
the samples. According to our analysis, the order
of samples is not expected to have a significant
impact on the results.

Considering an ideal scenario where the mem-
ory bank is infinitely large, and we only use cos-
similarity for demonstration selection. Addition-
ally, each sample selects only one demonstration.
Since cosine similarity is symmetric, if the optimal
choice for sample A is sample B, then the optimal
choice for sample B is sample A. However, either
sample A or sample B must enter the memory bank
first, while the other enters later. Assuming sample
A enters the memory bank first, when the model in-
fers sample A, it will select the sub-optimal sample
C. If sample C is not in the memory bank, it will
select an even less optimal choice. But at this point,
sample B can choose its optimal solution, which
is sample A, and sample C can at least choose its
sub-optimal solution, which is sample A.

Following this logic, if one sample selects a bet-
ter choice, then another sample will inevitably have
to select a worse choice. Consequently, regardless
of the order in which samples enter the memory
bank, the quality of demonstrations selected by all
samples will be relatively consistent overall. There-
fore, the performance of the entire dataset will not
vary significantly.

We conduct a series of experiments to investigate
this, and the results is shown in Table 4.

Methods Humanities STEM Social Sciences Other Average
Zero-shot 62.93 48.29 66.97 61.58 58.83
Samples 66.48 51.13 73.39 65.11 62.75
Subsets 66.58 51.20 72.87 65.26 62.75
All (M=2000) 65.79 50.24 73.38 64.11 62.07
All (M=10000) 65.79 50.24 73.38 64.11 62.74
Ours 66.62 51.36 74.30 64.11 62.80

Table 4: Results of different orders of the sample. Sam-
ples: shuffling the order of samples within each subset.
Subsets: shuffling the order in which subsets appear.
All: shuffling the order of the entire dataset. M : the
size of the memory bank. Base model: Mistral-7B.

From the results, it can be observed that shuf-
fling the order does not have much impact, except
when shuffling the entire dataset. This is because
that some useful samples are removed before a
subset is complete, leading to a slight decrease in
model performance. However, this issue can be
easily resolved by increasing the memory size M .

Increasing M does not significantly increase costs,
so this problem can be perfectly addressed.

A.2 Some results on other tasks
A.3 Details of Experimental Cost

Methods Zero-Shot Few-Shot Self-ICL Ours
gpt-3.5-turbo-instruct

Input Tokens 763K 2,499K 4,303K 2,765K
Output Tokens 15K 15K 1,613K 15K
Cost 1.15 3.75 9.68 4.14

gpt-4-1106-preview
Input Tokens 940K 2,352K 4,992K 2,577K
Output Tokens 15K 15K 1,491K 15K
Cost 9.85 23.97 94.65 26.22

Table 5: The number of consumed tokens and the
cost (in US dollars) of experiments, the results of Self-
ICL and Zero-Shot under gpt-3.5-turbo-instruct are esti-
mated based on the cost reported in Chen et al. (2023).

A.4 Prompt
We present the prompt for the MMLU benchmark
in Table 6.

Demonstration:
Question: A person wants to start saving money
so that they can afford a nice vacation at the
end of the year. After looking over their budget
and expenses, they decide the best way
to save money is to
A. make more phone calls
B. quit eating lunch out
C. buy less with monopoly money
D. have lunch with friends
Answer: B
Test sample:
Question: The complete resynthesis of phospho-
creatine after very high intensity exercise
normally takes:
A. about 10 seconds.
B. about 30 seconds.
C. about 1 minute.
D. about 4 minutes.
Answer:

Table 6: Prompt for MMLU.

A.5 Detailed results
We provide detailed results for the MMLU bench-
mark in Table 7.
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Subsets LLaMA-2-7B Mistral-7B Openchat-7B
ZS FS Self DAIL ZS FS Self DAIL ZS FS Self DAIL

abstract algebra 25.25 28.28 24.24 28.28 28.28 28.28 28.28 27.27 31.31 33.33 31.31 30.30
anatomy 43.28 43.28 41.04 44.03 57.46 59.70 59.70 61.19 61.19 64.18 55.97 63.43
astronomy 45.03 44.37 42.38 45.03 56.29 61.59 56.29 62.91 65.56 69.54 63.58 68.87
business ethics 49.49 50.51 42.42 44.44 52.53 53.54 54.55 57.58 62.63 59.60 61.62 61.62
clinical knowledge 53.03 50.76 51.89 54.17 68.18 71.59 66.67 70.45 70.08 68.56 72.73 71.59
college biology 48.25 52.45 46.85 52.45 71.33 72.73 69.93 72.73 74.13 76.22 72.03 77.62
college chemistry 28.28 32.32 28.28 33.33 41.41 47.47 43.43 46.46 39.39 52.53 47.47 47.47
college computer science 37.37 44.44 35.35 38.38 47.47 40.40 48.48 47.47 45.45 47.47 43.43 46.46
college mathematics 30.30 31.31 28.28 31.31 38.38 40.40 39.39 41.41 30.30 30.30 32.32 27.27
college medicine 40.70 40.12 44.77 41.28 58.72 63.37 58.72 61.63 62.79 65.70 63.37 64.53
college physics 21.78 26.73 21.78 26.73 44.55 35.64 43.56 33.66 35.64 41.58 35.64 39.60
computer security 48.48 53.54 60.61 59.60 71.72 73.74 70.71 78.79 70.71 74.75 66.67 74.75
conceptual physics 35.04 39.32 41.88 38.89 46.58 54.27 47.01 54.70 56.41 55.13 57.26 55.98
econometrics 30.09 34.51 28.32 32.74 38.05 46.90 36.28 46.02 46.90 46.90 46.02 53.98
electrical engineering 40.28 42.36 43.75 45.83 52.78 55.56 54.17 56.25 50.69 50.69 52.08 52.08
elementary mathematics 26.79 28.65 27.59 26.53 36.60 36.34 36.34 36.87 42.97 41.11 42.18 44.03
formal logic 24.00 24.80 21.60 25.60 38.40 33.60 40.80 38.40 39.20 43.20 41.60 44.00
global facts 35.35 39.39 41.41 40.40 33.33 37.37 34.34 32.32 27.27 30.30 31.31 31.31
high school biology 50.16 54.69 50.49 53.07 69.26 76.38 68.61 77.02 75.40 81.55 76.05 79.29
high school chemistry 35.15 35.64 33.17 33.17 45.54 46.53 43.07 49.50 44.55 46.04 45.54 49.01
high school computer science 39.39 36.36 36.36 45.45 64.65 61.62 62.63 63.64 66.67 70.71 62.63 69.70
high school european history 57.32 55.49 54.88 54.88 70.73 73.17 71.34 75.00 79.88 78.05 78.05 80.49
high school geography 60.41 60.91 61.42 64.47 73.10 78.68 73.60 83.25 75.63 79.70 76.14 82.74
high school government and politics 65.62 65.10 61.46 60.94 83.33 88.54 82.29 88.02 87.50 89.06 84.38 89.06
high school macroeconomics 40.87 41.65 40.87 44.47 55.53 64.01 56.30 67.61 62.72 62.98 62.21 66.32
high school mathematics 25.65 22.68 28.62 25.65 30.48 28.62 30.48 28.62 30.48 28.25 30.86 28.25
high school microeconomics 43.46 42.62 37.97 44.30 60.34 67.09 59.92 70.04 67.51 67.51 63.71 69.62
high school physics 26.67 26.00 23.33 28.00 37.33 37.33 38.67 41.33 38.67 39.33 36.00 40.67
high school psychology 60.29 65.07 59.56 65.07 75.92 80.51 76.10 83.27 83.27 83.82 80.33 83.27
high school statistics 26.98 31.63 27.44 30.23 42.33 56.28 44.19 53.49 46.98 48.37 43.72 49.77
high school us history 59.11 61.58 55.67 65.52 78.33 77.34 75.37 80.30 76.85 81.77 78.33 81.77
high school world history 59.75 60.59 61.44 63.98 75.00 75.42 69.92 77.97 81.78 80.08 80.51 80.51
human aging 50.45 54.50 55.86 54.50 71.17 70.27 70.27 70.72 66.22 68.92 68.02 71.17
human sexuality 57.69 53.08 49.23 51.54 71.54 75.38 70.00 77.69 76.15 77.69 76.15 78.46
international law 55.00 61.67 55.83 61.67 69.17 79.17 71.67 79.17 78.33 80.00 76.67 79.17
jurisprudence 54.21 54.21 51.40 57.94 69.16 72.90 67.29 74.77 75.70 79.44 71.96 75.70
logical fallacies 53.70 54.32 52.47 48.77 71.60 74.07 70.99 71.60 72.84 74.07 72.22 75.93
machine learning 34.23 31.53 27.03 33.33 44.14 38.74 40.54 52.25 49.55 45.05 48.65 44.14
management 61.76 62.75 63.73 64.71 66.67 77.45 66.67 75.49 79.41 84.31 77.45 85.29
marketing 69.96 71.67 66.52 75.11 84.55 87.55 85.41 87.12 87.12 88.84 84.55 87.55
medical genetics 45.45 51.52 52.53 47.47 64.65 72.73 65.66 65.66 65.66 76.77 65.66 73.74
miscellaneous 64.71 62.02 63.43 65.35 76.21 80.43 75.83 81.71 81.07 81.33 80.05 80.95
moral disputes 46.38 51.59 46.96 55.94 66.38 68.41 66.38 71.59 71.30 71.30 71.88 74.78
moral scenarios 24.16 21.36 24.83 24.50 24.38 37.47 24.83 24.38 36.69 47.20 43.18 46.87
nutrition 51.80 54.10 48.52 51.80 69.51 73.77 59.34 74.43 70.49 73.77 70.16 74.75
philosophy 50.00 54.19 54.84 56.45 64.84 70.97 63.87 71.94 65.81 72.26 67.74 72.26
prehistory 55.42 54.18 54.49 54.49 68.73 72.45 69.35 69.97 70.90 74.61 71.21 74.92
professional accounting 35.94 37.01 34.52 35.59 47.69 46.26 46.62 47.69 44.48 45.91 41.28 49.82
professional law 35.68 34.77 35.75 34.96 43.18 43.31 43.38 45.08 45.92 47.95 46.05 48.14
professional medicine 37.27 36.53 34.32 34.69 62.36 64.21 60.89 61.25 68.63 68.27 65.68 69.37
professional psychology 43.70 44.68 42.06 47.30 60.56 65.96 61.21 68.74 63.18 63.67 63.18 67.92
public relations 51.38 49.54 47.71 55.96 57.80 64.22 61.47 67.89 62.39 59.63 61.47 62.39
security studies 45.08 54.92 38.93 43.85 62.70 65.98 63.93 71.72 68.44 71.31 68.44 71.72
sociology 66.00 62.00 63.50 65.00 82.00 83.00 82.00 82.50 80.50 85.00 83.00 83.50
us foreign policy 68.69 74.75 68.69 73.74 82.83 85.86 82.83 84.85 85.86 88.89 83.84 86.87
virology 48.48 42.42 44.24 46.67 49.09 53.33 47.27 50.30 48.48 52.12 47.27 49.70
world religions 65.29 68.24 61.76 68.24 78.24 80.59 78.82 85.88 82.35 84.12 81.18 84.12

Average 45.37 46.75 44.64 47.33 58.83 61.90 58.56 62.80 61.90 64.05 61.44 64.47

Table 7: Detailed Results (Accuracy%) on MMLU. ZS: Zero-Shot, FS: Few-Shot, Self: Self-ICL.
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