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Abstract 

Syntactically Controlled Paraphrase Gen-
eration (SCPG), which aims at generating 
sentences having syntactic structures re-
sembling given exemplars, is attracting 
more research efforts in recent years. We 
took an empirical survey on previous SCPG 
datasets and methods and found three tac-
itly approved while seldom mentioned in-
trinsic shortcomings/trade-offs in terms of 
data obtaining, task formulation, and pre-
training strategies. As a mitigation to these 
shortcomings, we proposed a novel Dual-
Stage Multi-Task (DSMT) pre-training 
scheme, involving a series of structure-ori-
ented and syntax-oriented tasks, which, in 
our opinion, gives sequential text models 
the ability of comprehending intrinsically 
non-sequential structures like Linearized 
Constituency Trees (LCTs), understanding 
the underlying syntactics, and even gener-
ating them by parsing sentences. We per-
formed further pre-training of the popular 
T5 model on these novel tasks and fine-
tuned the trained model on every possible 
variant of SCPG task in literature, finding 
that our models significantly outperformed 
(up to 10+ BLEU-4) previous state-of-the-
art methods. Finally, we carried out ablation 
studies which demonstrated the effective-
ness of our DSMT methods and empha-
sized on the SCPG performance gains com-
pared to vanilla T5 models, especially on 
hard samples or under few-shot settings. 

1 Introduction 

Given a source sentence 𝑋 , (e.g., ‘How exciting 
that is.’), and a template sentence 𝑌 (e.g., ‘That's 
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exactly right’), the goal of Syntactically Controlled 
Paraphrase Generation (SCPG) is to produce a par-
aphrase sentence 𝑍 whose syntactic structure stays 
as close to the 𝑌 as possible, while retaining 𝑋 's 
original semantics (e.g., ‘That's really exciting.’). 

It is a simple yet crucial task, beneficial to a great 
many NLP tasks, such as neural machine transla-
tion (Yang et al.. 2019), abstractive text summari-
zation (Cao et al., 2018), dialogue generation (Gao 
et al., 2020), as well as data augmentation (Sun et 
al., 2021) and improving model robustness (Iyyer 
et al., 2018; Huang et al., 2021). 

In principle, supervised learning for SCPG task 
requires a set of (𝑋, 𝑌, 𝑍) triplets. Practically, it's 
possible to obtain large-scale (𝑋, 𝑍) pairwise  da-
tasets by means of neural machine translation in-
ference (Wieting et al., 2018), or various data-min-
ing & web-crawling techniques (Iyer et al., 2017; 
Dolan et al., 2004; Potthast et al., 2010). However, 
obtaining (𝑋, 𝑌, 𝑍) triplets constitutes a more deli-
cate situation, usually involving heavy human 
workload or intolerable computational costs (Chen 
et al., 2019; Kumar et al., 2020). As a compromise 
to this problem, preliminary SCPG datasets (Chen 
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Figure 1: Differences between exemplar-based and 
target-based SCPG. Blue bars and red bars stand 
for model inputs/outputs while red bars stand for 
the part with differences (syntactical guidance in-
puts). 𝑇(⋅) indicates the constituency tree of a sen-
tence, while 𝑍& stands for model’s predictions for 
target sentence 𝑍. 
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et al., 2019; Kumar et al., 2020) use a great quantity 
of easy-to-gain (𝑋, 𝑍)  pairs as training sets, to-
gether with a small portion of them delicately an-
notated and edited to form (𝑋, 𝑌, 𝑍) triplets, consti-
tuting the validation/test set.  

Due to the absence of template sentence (𝑌) in 
the training set, as shown in Figure 1, preliminary 
methods are manifestly divided into two genres: 
exemplar-based and target-based methods. The 
former ones (Chen et al., 2019; Kumar et al., 2020; 
Sun et al,. 2021) train models to predict 𝑍 given 
𝑍’s constituency tree (𝑇(𝑍)) as syntactical inputs 
together with sentence 𝑋 as sentential inputs on the 
(𝑋, 𝑌) pairwise training set. During inference, they 
replace 𝑇(𝑍)  with 𝑌 ’s constituency tree 𝑇(𝑌)  to 
incorporate 𝑌 into model’s learned predicting pro-
cedure. The latter ones (Li et al., 2020; Yang et al., 
2022a) adopt the same training criteria as the for-
mer ones, while keep using 𝑇(𝑍) as syntactical in-
puts during evaluation. It’s obvious that there is a 
trade-off between bringing a train-validation in-
consistency and deviating from the original SCPG 
task formulation which requires 𝑌, if 𝑌 is not pre-
sent during training. What’s more, they both intro-
duce a reduction bias for a constituency tree (but 
not sentential) template as syntactical guidance, 
since 𝑍 itself cannot be provided to models during 
training. 

Since the aforementioned SCPG methods re-
quire constituency trees which are difficult to feed 
to seq2seq models as syntactical inputs, another 
trade-off, task vs. model structure trade-off occurs.  
Some works (Kumar et al., 2020; Yang et al., 2022a) 
design dedicated tree-encoding model structures to 
assure fine-grained encoding of tree structures and 
precise syntactical control, while others (Iyyer et al., 
2018; Sun et al., 2021; Yang et al., 2022b) convert 
trees to linearized constituency trees (LCTs) in a 
root-first-bracket-separated manner as shown in 
Figure 2 and treat them as sequential inputs like 
natural. The former ones add to model complexity 
while the latter ones inevitably introduce losses of 
topological information during linearizing. 

Apart from supervised methods, there is also a 
growing trend of unsupervised pre-training on a 
large set of single sentences. Previous unsuper-
vised works (Huang et al., 2021; Huang et al., 2022) 
mainly focus on training model to reconstruct sen-
tences from disentangled syntactic and semantic 
embeddings learned by separate encoders. In spite 
of their effectiveness, their models still lack syntac-
tical understanding abilities and can only adapt to a 

small range of downstream tasks due to their dedi-
cated model structures. Thus, we firmly believe 
that the extent and power of syntactical pre-training 
is still underestimated, which is the third issue of 
previous methods.  

Drawing from the three issues of previous works, 
we proposed a novel Dual-Stage Multi-Task 
(DSMT) syntax-oriented pre-training scheme 
based on a series of tasks which correspond to sub-
tasks of understanding, manipulating, compre-
hending and generating LCT sequences. Upon pre-
training, through analyzing the performance of our 
models on these tasks, we found that our models 
gain sufficient knowledge about the structure and 
intrinsic syntactics of LCT sequences. Afterwards, 
we fine-tuned our models on target-based and ex-
emplar-based SCPG tasks adding no external tree-
encoding structures or specifically designed in-
put/output schemes and found that 1. our models 
significantly outperform previous SOTA methods 
(up to 10+ BLEU-4) on target-based SCPG, 2. 
training our models even on (X, 𝑌, 𝑍) triplet dataset 
may diminish the train-validation inconsistency for 
exemplar-based SCPG. 

In our opinions, our contributions are as follows: 

• We proposed a novel dual-stage multi-task 
pre-training scheme, which is the first that 
emphasize on understanding linearized tree 
sequences which were previously widely 
used but seldom considered. This also well 
remits the third issue of previous SCPG 
methods. 

• We achieved SOTA performance without in-
troducing dedicated structures by fine-tuning 
DSMT pre-trained models on all SCPG tasks, 
which resolves the second tradeoff. We built 
triplet training data and achieved SOTA 

 

Figure 2: The Linearized Constituency Tree (LCT) 
example for sentence I am a student., while a se-
quence wrapped in a pair of brackets stands for a 
subtree. Nodes and their corresponding parts in 
LCT are marked in the same color. For example, 
(DT a) stands for the subtree with DT as root node 
and a as child node. 
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performance on exemplar-based SCPG by 
using exemplar sentences as syntactical 
guidance inputs, which resolves the first is-
sue. 

We released our code and data on 
https://github.com/ChristLBUPT/DSMT-T5, we’ll 
actively maintain the repo in the following years. 

2 Related Work 

Prior works about  SCPG can be categorized ac-
cording to different perspectives. In terms of  
model structures, Early practices of SCPG such as 
(Iyyer et al., 2018; Kumar et al., 2020) utilize RNN 
(LSTM, GRU) or RNN-based VAE models (Chen 
et al., 2019; Bao et al., 2019; Zhang et al., 2019), 
while recent works mainly focus on randomly-ini-
tialized or pre-trained encoder-decoder Transform-
ers (Li et al., 2020; Sun et al., 2021; Huang et al., 
2021; Yang et al., 2022a; Huang et al., 2022) with 
reasonable parameter magnitudes. In terms of syn-
tactic control, some of these VAE approaches 
(Chen et al., 2019; Bao et al., 2019) exploit syntac-
tical latent variables while others use explicit con-
stituency tree inputs. Among those who feed mod-
els explicit constituency trees, the way that they in-
put the trees also differs, with some of them linear-
ize (Iyyer et al., 2018; Sun et al., 2021) the constit-
uency trees and directly feed them into seq2seq 
models just like sentences, while others design ded-
icated model structures such as Tree-LSTM (Ku-
mar et al., 2020) or Tree-Transformer (Yang et al., 

2022a) for intensive tree modeling. This essentially 
constitutes the second issue as mentioned in Sec-
tion 1, in our opinion. Moreover, apart from super-
vised SCPG methods trained on parallel corpus, 
unsupervised methods on standalone sentences 
are also becoming a growing strand, which mainly 
achieve unsupervised training by separately encod-
ing semantics and syntactics utilizing correspond-
ing encoders and learn to reconstruct the sentences 
(Huang et al., 2021; Huang et al., 2022). These 
methods can adapt to SCPG tasks directly by mix-
ing source sentence’s semantics and template sen-
tence’s syntactics. These methods are spiritly simi-
lar to early VAE practices like Chen et al., 2019 and 
Bao et al., 2019 which, in our opinion, lacks variety 
in terms of tasks and model structures. 

3 Dual-Stage Multi-Task Syntax-Ori-
ented Pre-Training: Overview 

The framework of our methods is shown in Figure 
3. We base our work on T5 model (Raffel et al., 
2020) and ParaNMT-50m (Wieting et al., 2018) da-
taset. Our DSMT pre-training involves structure-
aware pre-training and syntax-aware pre-training. 
The former one focus on the structural aspects of 
understanding LCTs, like understanding the topol-
ogies which bracketing sequences (as in Figure 2) 
stand for, or inferring useful information such as 
heights or parent/sibling relationships from these 
sequences. The latter one focus on learning the 
meanings of different syntax tree constituents and 

 

Figure 3: Architecture of our Dual-Stage Multi-Task pre-training and fine-tuning framework. Our mod-
els are trained on a series of tasks which are split into two stages, focusing on learning to comprehend 
LCTs structurally and semantically. After DSMT pre-training, our model is fine-tuned on both exemplar 
based and target based SCPG still under the text2text setting without introducing any external structures. 

 

vanilla
T5

Treeposition indexing
position: 0, 1 tree:

(<node_1> (<node_2>
<node_3>) <node_4>)

<node_4>

pruned tree
parse: I am a

student.

(ROOT (S (NP(PRP D) (VP
(VBP am)(NP (DT a)(NN

student)))(..)))

scpg source sentence: how
exciting that is . template

sentence: that is exactly right

how exciting that is . <sep> (ROOT
(FRAG (SBAR (WHADJP (WRB how)
(JJ exciting)) (S (NP that) (VP is))) (.

.))) <sep> ...

that's really exciting. 
<tgt> (ROOT (S (NP (DT that))

(VP (VBZ 's) (ADJP (RB exactly)
(JJ right))) (. .)))

that's really exciting.

Dual Stage
Multi-Task

Pre-Training

SCPG

Structure-Aware
Pre-Training

(Stage 1)

Syntax-Aware
Pre-Training

(Stage 2)

Exemplar
Based SCPG

Target Based
SCPG

DSMT-
T5

DSMT Pre-Trained
Models

https://github.com/ChristLBUPT/DSMT-T5


4 
 
 

understanding the co-relationship between constit-
uency trees and sentences. Like T5 pre-training, we 
also cast all tasks to text2text format by introducing 
task-specific prefixes. Upon pre-training, we fine-
tune our pre-trained models on exemplar-based and 
target-based SCPG tasks, still in a text2text manner.  

We’ll demonstrate the two stages of our pre-
training and the process of fine-tuning in the fol-
lowing sections. 

4 Stage 1: Structure-Aware Pre-Train-
ing 

In the following section, we’ll be discussing the 
first stage which makes our model understand LCT 
sequences topologically, namely the structure-
aware pre-training stage. 

4.1 Datasets 

Since most of the preliminary works including 
these unsupervised works use ParaNMT-50m 
(Wieting et al., 2018) or ParaNMT-small (Chen et 
al., 2019) as training set, in consideration of prov-
ing our method’s intrinsic advantage rather than 
showcasing a technique of data engineering, we 
also use ParaNMT-50m as our pre-training dataset. 
Since it’s a pairwise paraphrastic dataset derived 
from neural machine translation results, to utilize 
more various data, we only use the machine trans-
lation part of each translation pair. After a series of 
heuristics of filtering (details are discussed in Ap-
pendix B), around 22-million machine translation 
sentences are used for training. We split the sen-
tences into samples for each task, and divide out 5k 
examples for each task as validation set. Finally, we 
use Stanford CoreNLP parser (Manning et al., 2014) 
to parse all sentences into constituency trees. We 
linearize the trees to gain LCTs. This processed 
ParaNMT-50m dataset will be used in both stages 
of our pre-training. 

4.2 Data Preprocessing 

Prior than training, we apply a series of critical pre-
processing methods for our model and data. Re-
mind that we use Stanford CoreNLP (Manning et 
al., 2014) parsers to parse the sentences, it’s ok to 
directly use these LCT as inputs to these structure-
aware tasks. However, since constituency trees are 
derived from a series of probabilistic context free 
grammar (PCFG) rules, they exhibit strong and 
easy-to-find regularities (e.g., S is always at the be-
ginning). These regularities give our model more 
possibility to remember LCT by rote and might 
thus hinder our models from focusing on learning 
topologies. Therefore, we add special tokens 
(<node_1>, <node_2>, … <node_99>) to our 
model’s vocabulary and replace all constituency 
nodes randomly to these special nodes. We also all 
a <sep> token to our model’s vocabulary for tasks 
with multiple input/output constituents and add to-
kens representing node heights (<H_1>, 
<H_2>, …) and ranks among siblings (<S_1>, 
<S_2>, …) for tree interpreting task. 

4.3 Tasks 

The key issue to structure-aware pre-training lies 
on tasks. We propose a series of structure-related 
tasks. We’ll introduce these tasks in detail in the 
following paragraphs. 

Treeposition Indexing. Treeposition is a se-
quence which can be used to locate a node in a tree. 
Assume the treeposition sequence is {𝑡!, 𝑡", … 𝑡#}, 
then 𝑡$ indicates that it is the 𝑡$-th child of the (𝑖 −
1)-th node. The treeposition of the root node will 
be an empty sequence. We train our model to locate 
a node by giving a treeposition sequence and a lin-
earized tree sequence. A typical example is shown 
as follows: 
Inputs: treeposition indexing posi-

tion: 2 1: tree: (<node_1> <node_11> 
(<node_12> <node_21>) <node_13>) 
Outputs: <node_21> 

We can see that samples are prepended with task 
prefixes, with trees linearized. Other details, such 
as sampling strategies (probabilities of a node to 
be chosen, etc.), and examples of all tasks from 
each stage can be found in Appendix A. 

Tree Forming: A tree can be constructed ac-
cording to a series of context free grammar (CFG) 
productions. The left part of a production corre-
sponds to the root of a subtree while the right part 
stands for its children. We train our model to pre-
dict the linearized sequence of the tree constructed 

 

Figure 4: Examples of pruning a constituency 
tree to different heights. 
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by a set of productions, with the left part of the first 
production as the root of the entire tree. 

Node Deletion: Node deleting is a common tree 
operation, especially during construction a bal-
anced tree. For a subtree (A (B C D)), we lift up 
C and D to make them as A’s new children upon de-
leting B. We train our model to predict the linear-
ized sequence of the new tree after deleting, giving 
the linearized sequence of a tree and the treeposi-
tion of the node to be deleted. 

Height selection: In this task, we train our 
model to select all nodes left-to-right at a specified 
height, given a tree’s linearized sequence and a 
specified height.  

Tree Interpreting: We selected several im-
portant topology-related attributes of tree nodes in-
cluding height, parent node and rank among sib-
lings, and train our models to predict them for each 
node given a tree’s linearized sequence. These at-
tributes include a node’s parent, height, and rank 
among its siblings.  

We can see that our tasks cover the adding, de-
leting, manipulating and indexing of linearized 
trees. We also incorporate parent-descendant and 
sibling relationships. These tasks are challenging 
and representative and will monitor our models’ 
understanding of linearized tree sequences. Read-
ers might refer to Appendix A for more details.  

4.4 Experiment Settings and Results 

We convert the processed ParaNMT-50m dataset 
into samples of different tasks with specific propor-
tions, and train our model on a small subset of it. 
5k samples are split out for each task as validation 
set. Compared to T5’s multi-task settings (Raffel et 
al., 2020), we employ a stricter multitask setting 
under which we do not fine-tune our models on 
each task individually, but train a unified model. 
Details about training like task sample proportions, 
training and evaluation strategies, and hyperparam-
eter settings are listed in Appendix B and Appendix 
C. We run experiments on 5 different seeds, with 

data reshuffled, and calculate the mean and stand-
ard deviation of each run.  

Results of validation are shown in Table 1.We 
can see that our model gets considerable scores on 
those tasks, especially on those tree-generation 
tasks with trees as outputs such as Tree Forming. 
Considering these tasks’ difficulty and representa-
tiveness, we suppose that our model gains yet suf-
ficient knowledge of the topology of linearized tree 
sequences, and we’ll explore them in experiments 
in Section 7. 

5 Stage 2: Syntax-Aware Pre-Training 

This section is about the second stage where our 
models learn the about LCT themselves (like what 
syntax nodes like NP/VP usually stand for), and the 
relationships between LCTs and sentences (like a 
sentence’s corresponding LCT). We name it the 
syntax-aware pre-training stage. 

5.1 Data Preprocessing 

Since we use random node tokens in stage-1 while 
this stage involves real syntax nodes like NP/VP, 
we add these nodes to our models’ vocabulary and 
embeddings. To better transfer knowledge learned 
from stage 1, we calculate the element-wise means 
and variances of the embeddings of the random 
nodes (added in stage 1) and initialize syntax nodes’ 
embeddings by sampling from a high dimensional 
gaussian distribution featured by those means and 
variances, with covariances as zeros (I.I.D. for each 
dimension). 

5.2 Tasks 

We conduct the following tasks for constituency 
semantics learning: 

Unsupervised Mask Filling: This is also the 
basic unsupervised task of T5’s pre-training. We 
mask continuous spans from training LCT se-
quences and train our models to predict them. Since 
masked spans might correspond to constituency 
nodes, leaf nodes (words), brackets, and any arbi-
trary composition of all them above, this is a crucial 
way for our models to learn generalizable basic 
knowledge about the meaning of syntax nodes to-
gether with the structure of LCTs. 

Apart from the span-level unsupervised mask 
filling task which is less intensive, we also intro-
duce sequence-level tasks which focus on certain 
aspects of LCT comprehending. Some of them fo-
cus more on structural understanding, and are 

Task (Metric) Mean Std 
Treeposition Indexing (Acc) 96.20 1.59 

Node Deleting (F1) 99.87 0.05 
Tree Forming (F1) 99.79 0.08 

Height Selection (F1) 97.80 0.91 
Tree Interpreting (Bleu) 95.71 0.03 

Stage 1 Average 97.88 0.28 

Table 1: Model’s performance on stage-1 struc-
tural aware pre-training tasks.  
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designed in order to prevent catastrophic forgetting 
of structural knowledge learned from stage 1, we 
call them auxiliary tasks. These tasks include: 

Tree Pruning: Given a tree’s LCT sequence and 
a specified height ℎ, we train our model to predict 
the LCT sequence of that tree pruned (as shown in 
Figure 4) at height ℎ. 

Production Detection: Given a LCT sequence, 
we train our model to list all CFG productions con-
stituting the tree. Productions are listed in root-first 
traversal order. 

Pruned Tree Completion: Given the linearized 
sequence of a sentence’s pruned constituency tree, 
we train our model to predict the linearized se-
quence of the full-fledge constituency tree corre-
sponding to the same sentence. This task involves 
parsing of find-grained syntactical structures. 

 Besides, we also introduce tasks which are more 
comprehensive, requiring deeper understanding of 
the syntactics of sentences and involving more 
parsing abilities. These tasks are called comprehen-
sive task and are shown as follows:  

POS Tagging: This is the standard part-of-
speech (POS) tagging task in a text2text manner 
without any external sequence labeling structures. 
Models are trained to predict each token’s POS tag 
sequentially given a sentence as inputs. 

Constituency Searching: This task only ac-
cepts sentences as inputs. Given a sentence and a 
specified syntax node, our models are trained to 
predict all spans corresponding to that node. 

Constituency Discrimination: Binary form of 
the previous task. Given a sentence, a span from 
that sentence and a constituency node, models are 
trained to deciding whether the span constitutes the 
constituency node. We add this task as an easy-to-
learn alternative of the previous task. 

Pruned Tree Parse: Given a sentence, our mod-
els are trained to parse the corresponding constitu-
ency tree pruned at a specified height.  

In conclusion, like the tasks on which T5 was 
trained, these tasks cover almost all granularities of 
constituency syntactics, ranging from low level 
POS tags to high level pruned trees. They are also 
progressive, with some of them acting as the basics 
of others. Again, readers might refer to Appendix A 
for more details of these tasks. 

5.3 Experiment Settings and Results 

Similar to the settings of stage 1, we also convert 
the dataset to samples of each task with specific 
proportions and train models on 5 runs of different 
randomize settings. More details like sample pro-
portions, data usage and training settings are intro-
duced in Appendix B and Appendix C. Results are 
shown in Table 2. These results indicate similar 
conclusions as in stage 1, that our model gains con-
siderable and sufficient performance on syntax-ori-
ented tasks. We’ll further compare with baselines 
and interpret the efficiency of our DSMT training 
in Section 7.  

6 Downstream Task: Constituency-
Based and Sentence-Based SCPG 

A further pre-trained model is gained after dual-
stage multi-task pre-training. We call the model 
Dual-Stage Multi-Task pre-trained T5 (DSMT-
T5). With respect to the two genres of previous su-
pervised SCPG methods mentioned in section 1, 
it’s time to answer the following two questions: 

• Q1: Is DSMT-T5 well capable of target-
based SCPG, when constituency trees are 
given as syntactical constraints? 

• Q2: Now that exemplar-based SCPG has an 
obvious train-validation gap problem, how 
can we diminish that gap and will DSMT-T5 
fit in well in that solution? 

6.1 Target-Based SCPG 

To answer Q1, we fine-tune and evaluate DSMT-
T5 on ParaNMT-small (Chen et al., 2019), using 
<source, paraphrase > (X, Z) pairs in both training 
and validation/test set, using the LCTs of para-
phrase sentences (𝑇(𝑍)) as syntactic constraints. 

Methods. Like AESOP (Sun et al., 2021) which 
makes no structural engineering to models, we em-
ploy a barely seq2seq input/output scheme. Our 
model’s input includes source sentence, source sen-
tence’s pruned LCT and paraphrase sentence’s 
pruned LCT without leaf nodes (words), with all of 

Task (Metric) Mean Std 
POS Tagging (Bleu) 95.74 0.40 
Tree Pruning (F1) 96.80 0.26 

Production Detection (F1) 98.80 0.35 
Constituency Discrimination 

(Acc) 92.85 0.76 

Constituency Searching (F1) 78.84 0.72 
Prune Tree Parse (F1) 80.99 0.27 

Stage 2 Average 91.19 0.21 

Table 2: Model’s performance on stage 2syntax-
aware pre-training tasks. 
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them concatenated by a special <sep> token. Our 
model’s output only includes predicted paraphrase 
sentences. 

Baselines. Under target-based setting, we com-
pare our methods with preliminary methods also 
focusing on target-based SCPG together with their 
baselines: SCPN (Iyyer et al., 2018), GuiG (Li et 
al., 2020) and SI-SCP (Yang et al., 2022a).  

Experiment Setup. We use the constituency 
trees provided alongside the public available 
ParaNMT-small dataset (Kumar et al., 2020). We 
prune the constituency trees to a height of 5 (in-
cluding root) for fair comparison, since most of our 
baselines are prone to do so and using more find-
grained constituency tree will significantly close up 
predicted sentences with ground truth under target-
based setting. Details of training hyperparameters 
are discussed in Appendix D. In order to alleviate 
the effects of randomness, we run our experiments 
on 5 set of seeds and report the averaged metrics. 

Evaluation Metrics. Following previous works, 
we employ two sets of metrics, namely semantics 
preserving metrics and syntactics conformation 
metrics. The former includes BLEU (Papineni et al., 
2002), ROUGE (Lin, 2004) and METEOR (Iyer et 
al., 2016). The latter includes Tree-Edit-Distance 
(Zhang and Shasha, 1989) between constituency 
trees of generated sentences target sentences.  

Experiment Results. Experiment results are 
shown in Table 3. Through comparing semantically 
sand syntactically between different baselines and 
our models, we can see that our model achieves a 
significantly huger leap (more than 10 BLEU-4 and 
1.8 TED-R) and is far better than any of these base-
lines. This is caused not only by the powerfulness 
of T5 but also by our DSMT pre-training. We’ll dis-
cuss it in detail in section 7.  

6.2 Exemplar-Based SCPG 

To answer Q2, we first employ a series of heuristic 
filtering and calculating rules to add exemplar sen-
tences (Y) to each (𝑋, 𝑍) pair of ParaNMT-small’s 

training set, and then train and evaluate DSMT-T5 
under two settings, one taking exemplar constitu-
ency trees as syntactical inputs while the other di-
rectly taking exemplar sentence as syntactical in-
puts. We call them SCPG with Constituency Trees 
(SCPG/C) and SCPG with Exemplar Sentences 
(SCPG/S) 

Data Building. In order to get 𝑌s, we use the 
Sequence Edit Distance (Levenshtein distance) of 
LCTs as an approximated measure of syntactical 
similarity. We find a syntactically closest yet lexi-
cally (bag-of-words) varied sentence for each tar-
get sentence from (𝑋, 𝑍) pairs of ParaNMT-small 
training set and obtained a training set consisting of 
around 250k (𝑋, 𝑌, 𝑍) triplets. More details about 
triplet data building are described in Appendix D. 

Methods. For experiments of SCPG/C, we 
adopt almost the same settings with target-based 
SCPG as illustrated in Section 6.1, apart from re-
placing target LCTs with exemplar LCTs. For 
SCPG/S, we still adopt a text-to-text input/output 
scheme, with source sentences and exemplar sen-
tences as inputs and target sentences together with 
exemplar LCT as outputs. We add exemplar LCTs 
to increase the interpretability of SCPG/S since it 
doesn’t involve constituency structures in inputs. 
Exemplar LCTs and prepended before paraphrase 
sentence, splitting with a <tgt> token. Details 
about sample formats are discussed in Appendix D. 

Baselines. We compare our methods with previ-
ous exemplar-based SCPG advances, CGEN (Chen 
et al., 2019), SGCP (Kumar et al., 2020), AESOP 
(Sun et al., 2021), ParafraGPT (Bui et al., 2021) 
and GCPG (Yang et al., 2022b). 

Model B-4 R-1/R-2/R-L MTR TED↓ 
CGEN 13.6 44.8/21.0/48.3 24.8 6.7/6.0 
SCGP 16.4 49.4/22.9/50.3 28.8 8.7/7.0 

AESOP 22.9 54.5/29.8/56.4 32.7 6.9/5.7 
Parafra- 

GPT 14.5 49.7/22.4/51.3 27.8 8.2/- 

GCPG 26.2 63.6/40.8/ 65.0 39.8 8.3/- 
Target-
Based 26.8 58.0/34.1/60.0 35.2 6.4/5.5 

DSMT-
T5/C 27.8 59.2/35.6/61.1 36.5 6.5/6.1 

DSMT-
T5/S 30.3 60.9/37.7/62.4 38.2 6.1/5.9 

Table 4: Results of exemplar-based SCPG. TED 
is calculated between predicted paraphrases and 
gold paraphrases/exemplars. DSMT-T5/C(S) re-
fers to models trained on SCPG/C(S), while Tar-
get-Based stands for the inference result of pair-

wise trained model (as in 6.1) on SCPG/C. 

 

Model B-4 R-1/R-2/R-L MTR TED↓ 
SCPN 21.2 55.1 / 31.3 / 57.4 33.0 6.3 
GuiG 26.3 60.7 / 37.1 / 62.5 38.0 6.4 

SI-SCP 27.8 62.8 / 39.5 / 64.4 39.9 5.7 
DSMT 42.3 72.7/53.8/74.7 49.9 3.9 

Table 3: Results of target-based SCPG. Metrics 
stand for BLEU-4, Rouge-1/2/L, Meteor and Tree-

Edit Distance between model outputs and target 
sentences. ↓ means smaller is better. 

 



8 
 
 

Experiment Setup and Evaluation Metrics. 
We employ similar metrics and other setups as our 
target-based experiments. Specially, we also com-
pare the results (on exemplar based SCPG) of mod-
els trained on triplet datasets and pairwise datasets, 
by applying models in Section 6.1, which are 
trained on (𝑋, 𝑌) pairs, on SCPG/C validation set 
consisting of (𝑋, 𝑌, 𝑍). This is the common prac-
tice of previous exemplar-based methods, yielding 
the train/validation gap as discussed in 1. 

Experiment results. Results are shown in Table 
4. In general, exemplar-based methods exhibit 
lower semantical and syntactical scores compared 
to target-based ones since exemplar sentences in-
evitably introduce syntactical noises, while we can 
still see a huge leap of performance of our methods 
compared with state-of-the-are baselines, except 
for GCPG (Yang et al., 2020b), which utilizes far 
more constraints other than syntactics, and per-
forms undoubtedly better than SCPG methods only 
involving syntactical constraints. Specially, there 
are also two noticeable phenomena: 1. Models 
trained on triplet datasets have better performance 
than those trained on pairwise dataset, even when 
trained on less data (our triplet dataset has ~250k 
triplets while the original training set has ~490k 
pairs). This is the well alleviation of the train-vali-
dation inconstancy discussed in Section 1. 2. Mod-
els have better performance when accepting sen-
tential syntactical inputs, meaning that models are 
understanding the underlying syntactics. There is 
no surprise since the stage-2 of DSMT consists of 
tasks incorporating LCTs with natural sentences. 

7 Ablation Studies 

In this section, we’re dedicated to answer the fol-
lowing questions: 

For DSMT pre-training: 

• Q1: Is structure-aware training stage (stage 
1) beneficial to task performances of syntax-
aware training stage (stage 2)? 

• Q2: Are tasks corresponding to each stage 
exhibit mutual benefits, i.e., does multi-task 
setting provide performance gains compared 
with single-task setting? 

For exemplar and target based SCPG: 

• Q3: Since T5 itself is a powerful model, is it 
good enough to directly fine-tune T5 on 
SCPG task, without DSMT pre-training?  

• Q4: If DSMT do gives a performance gain, 
in which situation will DSMT be more nec-
essary? 

Experiment Settings. To answer Q1, we di-
rectly train T5 model on stage 2 syntax-aware tasks 
using the same multitask training settings as what 
is described in Section 5.  

To answer Q2, we fine-tune vanilla T5 model on 
stage 1 tasks individually, and fine-tune T5 model, 
which is already trained on stage 1, on stage 2 tasks 
individually. We train using the same quantities of 
data, steps of optimization and hyperparameters as 
DSMT training for each task for fair comparison.  

To answer Q3, we directly fine-tune T5 model 
under target-based and SCPG/S (exemplar-sen-
tence-based) SCPG settings as shown in Section 6. 
We call it vanilla T5.  We compare SCPG perfor-
mance of vanilla T5 and our DSMT-T5.  

Results and Analysis. Results for DSMT pre-
training ablation studies are shown in Table 5. We 
can see that models’ performances degrade when 
individually trained on each task of each stage, or 
stripping out stage 1 pre-training, proving the ef-
fectiveness of DSMT pre-training.  

Model B-4 R-1/R-2/R-L MTR TED↓ 
Target-Based 

DSMT 42.3 72.7/53.8/74.7 49.9 3.9 
T5 41.7 72.1/52.7/74.1 49.1 4.1 

SCPG/S 
DSMT 30.3 60.9/37.7/62.4 38.2 6.1/5.9 

T5 30.0 60.6/37.0/62.1 38.1 6.1/6.0 

Table 6: Results of SCPG ablation studies. DSMT 
means our pre-trained model’s performance (same as 

that shown in section 6) while T5 means directly 
fine-tuning vanilla T5 on SCPG tasks. 

 

Model Avg. Metric 
DSMT Stage-1 97.88 ± 0.28 

Ind. Stage-1 94.85 
DSMT Stage-2 91.19 ± 0.21 

Ind. Stage-2 85.14 
w/o/stage-1 90.7 

Table 5: Results of DSMT ablation studies (± 
means the standard deviation of a metric). We 
only report average metrics of each task due to 

space constraints. Ind. Stage-1/2 means the aver-
age metric of individually fine-tuning vanilla 

T5/stage-1-trained-T5 on each task in Stage-1/2 
(for Q2) and w/o/stage-1 means directly training 

vanilla T5 model on stage-2 tasks (for Q1). 
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Results for SCPG ablation studies are shown in 
Table 6. Readers may notice that DSMT do pro-
vides a performance gain compared with vanilla T5, 
while seemingly marginal. Even though results are 
averaged over 5 runs, which alleviates the effect of 
randomness to a great extent, to make our work 
more rigorous, we yielded the following questions: 

• Q1: Are the seemingly marginal results sta-
tistically marginal, or explicit? 

• Q2: If not, in which case will DSMT offer an 
explicit, never to be doubted, performance 
gain compared to vanilla T5? 

To answer Q1, the obvious solution is perform-
ing statistical tests. Since we have metrics on 5 runs 
on different seeds, which constitutes a small sam-
ple count, we perform Student t-test, which well 
suits this case, on the metrics of target and exem-
plar based SCPG. To answer Q2, we make two as-
sumptions, that is, DSMT will be more necessary 
when 1. model cannot learn structures about LCT 
directly from SCPG training data (since target-
based SCPG data itself involves LCTs), or when 2. 
samples require understanding complex LCT struc-
tures. The corresponding cases are few-shot SCPG 
in which models are trained only on a proportion of 
SCPG training data, and hard-sample SCPG in 
which we evaluate the performance on the long 
samples of SCPG, which are commonly considered 
more syntactically complex. 

In practice, we train our models on 20%, 10% 
and 5% of the training data of target-based SCPG 
to justify assumption 1. We compare the perfor-
mances on top-400 (avg. 12.4 words), top-200 (avg. 
14.4 words) and top-100 (avg. 16.2 words) long 
samples of the test set of ParaNMT-small, which 
has average word count of 9.6 words, to justify as-
sumption 2. 

Besides, to explore the mutual effects between 
Q1 and Q2, we also combined the above solutions 
and perform t-tests on top-100 long samples. 

Results and Analysis. Results of t-tests of all 
samples and top-100 long samples are shown in Ta-
ble 7 of Appendix E. We can see that all p-values 
of target-based methods and most p-values of ex-
emplar-based methods indicate that DSMT pro-
vides statistically significant performance gains, 
since they are below 0.05, even with some of them 
rounded to 0.000. We can also see that the p-values 
of long samples are smaller, simultaneously an-
swering Q1 and Q2. Note that since we only have 

5 samples, p-values might still suffer from 
the small sample problem and some of them appear 
large, but still in a reasonable magnitude.  

Results of few-shot SCPG and hard-sample 
SCPG are shown in Figure 5 and Figure 6 of Ap-
pendix E. We can see that as training data reduces, 
vanilla T5's performance degrades quickly, and the 
improvements become significantly larger. This in-
dicates that DSMT gives our models general-pur-
pose knowledge about syntactic structures, and 
gives them few-shot abilities, which vanilla T5 
lacks, to adapt to syntax-intensive tasks rapidly. We 
can also see a growing trend for improvements 
when data becomes longer and longer. Since 
ParaNMT-small is far shorter than syntax-intensive 
datasets like PTB or SST, we believe the improve-
ments will become more significant if tested on 
longer datasets. These two cases well demonstrate 
DSMT’s effectiveness and necessity, drawing more 
research effort onto investigating the mutual rela-
tionship between our nova, DSMT pre-training, 
and various syntax-intensive tasks. 

8 Conclusion and Future Work 

We found three issues of previous SCPG works. 
We proposed a novel dual-stage multi-task pre-
training framework which offers a possibility to ap-
ply pre-trained models on SCPG tasks with no ex-
ternal structures or specifically-designed input/out-
put schemes. Upon resolving the three issues and 
proving the effectiveness of our pre-trained models 
on SCPG tasks, we have two critical findings. First, 
we found that exemplar-based SCPG exhibits bet-
ter performance when trained on triplet dataset, or 
directly using sentential exemplars. This paved the 
way for subsequent exemplar-based SCPG re-
searchers and suggests them to pay more attention 
on how to better utilize natural language based syn-
tactical constraints and dive deeper on model’s un-
derstanding of syntactics of sentences. Second, we 
found that transformer based seq2seq models may 
also have strong performance on tree comprehend-
ing tasks even with constituency trees fully linear-
ized. This, to our best knowledge, is the first solid 
step on exploring the extent for seq2seq models to 
understand and generate LCTs, appealing for vari-
ous syntax-intensive downstream applications, and 
also appealing further constituency parsing works 
to focus not only on working under CKY frame-
work and taking neural models as a neural alterna-
tive of PCFG rules, but also focus on the networks 
themselves and explore various seq2seq solutions. 
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9 Limitations & Ethical Considerations 

We further pre-trained T5 model on ParaNMT-50m 
dataset using various tasks. Generally, pre-training 
involves training on a large-scale dataset thus ran-
domness such as model initialization or data re-
shuffling might have strong effects. Theoretically, 
it’s encouraged that we run every experiment on 
different seeds and calculate mean accordingly. 
However, it’s much too computational expensive 
for us so we only run the main DSMT pre-training 
experiments several times and record their means 
and variances. This is a similar practice as T5 (Raf-
fel et al., 2020) pre-training but might still intro-
duce the side-effects caused by randomness. 
What’s more, due to the computational resource 
limits, we only trained our model on a subset of 
ParaNMT-50m for experiments on different seeds 
and ablation studies. This might not fully showcase 
the powerfulness of DSMT pre-training and might 
increase the effect of randomness. Moreover, since 
DSMT pre-training, as well as obtaining exemplar 
sentences (𝑌s) requires constituency trees of sen-
tences, we used the trees produced by Stanford 
CoreNLP (Manning et al., 2014). Since it’s an au-
tomated toolkit, wrong constituency trees are inev-
itable and noise might thus be added to our training 
data. Finally, we’ve only trained our model on 
ParaNMT-50m/ParaNMT-small dataset. This sin-
gle-dataset setting might also introduce biases to 
our results and might hinder the demonstration our 
training framework’s generalization, and might 
also raise a data leakage issue, since ParaNMT-
small itself is a subset of ParaNMT-50m. However, 
since DSMT pre-training and SCPG exhibit quite 
difference formulations, we argue that the effect of 
data leakage is limited. 

Moreover, we’re using T5 model and ParaNMT-
50m dataset as model and dataset. The former one 
is unsupervised trained on a large unlabeled corpus 
C4 (Raffel et al., 2020) while the latter one is de-
rived from machine translation of a large corpus 
mainly consisting of movie subtitles. Partly due to 
the colloquial and dramatic nature of movie lines, 
through manually inspecting some of the samples 
from our training data, we found biased opinions or 
impolite words from those training samples. This 
means that we can’t deny the possibility that our 
models generate toxic or harmful contents. We 
strongly suggest following researchers do safety-
check prior than deploying DSMT-T5 on produc-
tion environments. 

Last but not least, as illustrated in Section 8, ap-
plications of DSMT pre-trained models on various 
downstream tasks (and various models, especially 
for LLMs which are ubiquitous nowadays) is desir-
able, but not explored by ourselves, due to the time 
and computational resource limit. Again, we would 
like to appeal for further researchers to explore 
more on this newly founded syntax-intensive pre-
training scheme and reveal the immeasurable pos-
sibilities beneath it. 
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Appendix A. DSMT Task Details 

Below are examples of each tasks’ training data and 
evaluation methods. If a involves sampling like 
choosing a span or a specified tree node, we’ll also 
introduce the introduction of sampling strategies. 

A.1  Treeeposition Indexing (Stage 1).  

Example: 
Inputs: treeposition indexing posi-

tion: 1 2 1: tree: (<node_1> (<node_3> 
<node_9> (<node_11> <node_13> 
<node_33>)) (<node_4> <node_27)) 
Outputs: <node_33> 

Sampling Strategy: Longer treepositions 
(treepositions of nodes close to leaf) are sampled 
more frequently. We sample from each treeposition 
of a tree, with the length of each treeposition as 
sampling weights. 

Evaluation Metrics: We calculate the accuracy 
(proportion of properly predicted nodes). 

A.2  Tree Forming (Stage 1): 

Example: 
Inputs: tree forming: <node_1> -> 

<node_2> <node_7> <sep> <node_2> -> 
<node_8> -> <node_11> <sep> <node_7> 
-> <node_25> 
Outputs: (<node_1 (<node_2> 

<node_8> <node_11>) (<node_7> 
<node_25>)) 

Evaluation Metrics: We calculate the bracket 
F1 score widely used by constituency works. 
Bracket F1 score is based on bracket precision and 
recall. They are defined as follows: 

𝐵𝑟prec =
#(correct	brackets)

#(brackets	in	predicted	LCT)
 

𝐵𝑟recall =
#(correct	brackets)

#(brackets	in	ground-truth	LCT)
 

𝐵𝑟F1 =
2 ⋅ 𝐵𝑟prec ⋅ 𝐵𝑟recall
𝐵𝑟prec + 𝐵𝑟recall

 

Where #(⋅) means the number of. 

A.3  Node Deleting (Stage 1): 

Example: 
Inputs: node deleting position: 1 2 

tree: (<node_1> (<node_3> <node_9> 
<node_13> <node_33>) (<node_4> 
<node_27)) 
Outputs: (<node_1> (<node_3> 

<node_9> (<node_11> <node_13> 
<node_33>)) (<node_4> <node_27)) 

Sampling Strategy: Nodes are sampled with 
even possibilities. 

Evaluation Metrics: We use bracket F1 de-
scribed in A.3 as evaluation metrics. 

A.4  Height Selection (Stage 1): 

Example: 
Inputs: height selection height: 3 

tree: (<node_1> (<node_3> <node_5> 
<node_11>) (<node_2> <node_4>) 
Outputs: <node_5> <node_11> 

<node_4> 

Sampling Strategy: We sample heights with 
number of nodes of each height as weights. 

Evaluation Metrics: We take output and label 
sentences as bag-of-words and calculate F1. 

A.5  Tree Interpreting (Stage 1): 
Inputs: tree interpreting: 

(<node_1> (<node_11> <node_21>) 
<node_12>)  
Outputs: (<node_1> <H_1> <S_1> 

<none> (<node_11> <H_2> <S_1> 
<node_1> <node_21> <H_3> <S_1> 
<node_11> <node_12> <H_2> <S_2> 
<node_1>) 

Evaluation Metrics: We calculate Bleu-4 (Pap-
ineni et al., 2002) between generated tree interpret-
ing sequences and ground truth sequences. 

A.6  Unsupervised Mask-Filling. 

Example: 
Inputs: low difficulty inter span: 

(ROOT (S (NP (<extra_id_0>)) <ex-
tra_id_1>am) (NP DT a) (NN student<ex-
tra_id_2> (. .))) 
Outputs: <extra_id_0>PRP I<ex-

tra_id_1>(VP VBP<extra_id_2>)))<ex-
tra_id_3> 

We have 4 sets of unsupervised mask-filling task 
settings: low difficulty intra span, low difficulty in-
ter span, high difficulty intra span, high difficulty 
inter span. Intra span and inter span means whether 
masked spans should be within brackets or across 
brackets. Low difficulty and high difficulty mean 
the different proportions of length of masked spans. 
Low means masking around 15% of the sequence 
while High means masking around 30% of the se-
quence. 

We do not evaluate mask-filling during evalua-
tion phases. 
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A.7  Tree Pruning. 

Example: 
Inputs: tree pruning: (ROOT (S (NP 

(DT these) (NNS people)) (VP (VBP 
have) (VP (VBN been) (NP (NP (DT an) 
(JJ integral) (NN part)) (PP (IN of) 
(NP (DT this) (NN program)))))) (..))) 
Outputs: (ROOT (S (NP (DT these) 

(NNS people)) (VP (VBP have) (VP (VBN 
been) (NP an integral part of this 
program))) (..))) 

Evaluation Metrics: We use bracket F1 de-
scribed in A.3 as evaluation metrics. 

A.8  Pruned Tree Completion. 

Example: 
Inputs: pruned tree completion: 

(ROOT (S (NP (DT these) (NNS people)) 
(VP (VBP have) (VP (VBN been) (NP an 
integral part of this program))) 
(..)))  
Outputs: (ROOT (S (NP (DT these) 

(NNS people)) (VP (VBP have) (VP (VBN 
been) (NP (NP (DT an) (JJ integral) 
(NN part)) (PP (IN of) (NP (DT this) 
(NN program)))))) (..))) 

Evaluation Metrics: We also use bracket F1 de-
scribed in A.3 as evaluation metrics. 

A.9  Production Detection. 

Example: 
Inputs: production detection: （ROOT 

(S (NP (PRP I)) (VP (VBP am) (NP (DT 
a) (NN student))) (. .))) 
Outputs: ROOT -> S <sep> S -> NP 

VP . <sep>  NP -> PRP <sep> PRP -> I 
<sep> VP -> VBP NP <sep> VBP -> am 
<sep> NP -> DT NN <sep> DT -> a <sep> 
NN -> student <sep> . -> . 

Evaluation Metrics: We calculate the F1 score 
of productions. Recall and Precision is calculated 
by #(exactly matched productions) divided by 
#(ground truth productions) and #(predicted pro-
ductions), where #(⋅) means the number of. 

A.10  POS Tagging. 

Example: 
Inputs: pos tagging: I am a student. 
Outputs: PRP I VBP am DT a NN stu-

dent . . 

Evaluation Metrics: We calculate Bleu-4 (Pap-
ineni et al., 2002) between generated sentence-
POS-tag sequences and ground truth sequences. 

A.11  Constituency Searching. 

Example: 
Inputs: constituency searching 

node: NP sentence: I am a student. 
Outputs: I <sep> a student 

Sampling Strategy: We sample from each con-
stituency node with equal possibilities. 

Evaluation Metrics: Like production detection, 
we calculate the F1 score of constituency spans. 

A.12  Constituency Discrimination. 

Example: 
Inputs: constituency discrimination 

node: NP span: I am sentence: I am a 
student. 
Outputs: False 

Sampling strategy: We sample the node using 
the same strategy as constituency searching. We 
sample 50% positive samples and 50% negative 
samples. For negative samples, we sample two off-
sets from {-3, -2, -1, 0, 1, 2, 3} and move the left 
bound & right bound according to offsets and 
clamp them within [0, length of sentence). This 
sampling strategy will produce harder samples than 
random sampling. 

Evaluation Metrics: We calculate the accuracy, 
that is, proportion of correct predictions as metrics. 

A.13  Pruned Tree Parse. 

Example: 
Inputs: pruned tree parse: I am a 

student. 
Outputs: (ROOT (S (NP (PRP I)) (VP 

(VBP am) (NP (DT a) (NN student))) 
(. .))) 

Note that we use a fixed prune height of 5, which 
is the optimal or sub-optimal prune height of previ-
ous SCPG tasks (Kumar et al., 2020; Sun et al., 
2021). 

Evaluation metrics: We use bracket F1 de-
scribed in A.3 as evaluation metrics. 

Appendix B. DSMT Training Strategies 

This section of appendix will be discussing the 
training strategies, like proportions of each task in 
dataset, the overall proportion of dataset together 
with training and evaluation strategies, of DSMT 
training. 

B.1  Data Preprocessing & Filtering 

The original ParaNMT-50m dataset is a noisy da-
taset consisting of 50-million <reference-sentence, 
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translate-sentence> pairs. We adopt the following 
filtering strategies: 

• We filter out sentences shorter than 5 tokens 
and longer than 25 tokens. 

• Some sentences contain repeatedly gener-
ated tokens due NMT model’s limitations. 
We filter out sentences consisting of 5 or 
more repeat tokens. 

• Some sentences are barely upper-case. We 
lowercase these sentences. 

• We filter out sentences having 40% or the 
characters as digits, since these sentences are 
numerical sentences which might corre-
spond to serial numbers or bookpages. 

• We clean the punctuations to make quotes or 
double tildes match. 

After filtering and processing, a dataset consist-
ing of around 22-million sentences is obtained. 

B.2  Data Partitioning & Training Strategies 

Structure Aware Training Stage. We perform 
training on a portion of the processed (like shown 
in section 4.2) ParaNMT-50m dataset, with around 
250k linearized tree sequences. We divide out 25k 
LCT sequences from that dataset as validation sam-
ples (5k for each task) and do evaluation every 
8192 steps. In terms of the proportions of each task, 
we first split samples equally, observe validation 
performance alongside training, and adjust data 
splitting strategy accordingly in order to make 
model’s performance harden on each task. As a 
trade-off between sufficient learning and prevent-
ing overfitting, we choose to train on around 15% 
data of our processed ParaNMT-50m dataset 
(around 3.2M samples), after which our model’s 
validation performance harden. What’s more, Fol-
lowing T5’s multi-task training practice (Raffel et 
al., 2020), we separately fine-tune our model on 
each task and after multi-task training regard 
model’s corresponding performance as final per-
formance. 

Syntax-Aware Pre-Training Stage. For mod-
els used as seed repetition experiments and ablation 
studies, we train them on around 20% of our dataset 
(around 4.3M samples). For models used for SCPG 
fine-tuning, we train them on 80% of our dataset 
(around 17M samples). 60% of the sentences are 
randomly selected and masked as unsupervised 

samples while the rest of them are equally parti-
tioned for each auxiliary and comprehensive task. 
These samples are pre-processed and converted 
from constituency annotated sentences to samples 
corresponding to each auxiliary/comprehensive 
tasks. Like what has been done in stage 1 pre-train-
ing, we also picked out 35000 sentences of our 
training set as the validation set, which are also 
equally partitioned for each auxiliary/comprehen-
sive tasks (total 7 tasks).  

Appendix C. DSMT Implementation De-
tails 

C.1  Training Hyperparameters. 

We use PyTorch T5 model implemented by hug-
gingface transformers (Wolf et al., 2020) library. 
Our transformers library version is 4.27.1 and our 
PyTorch version is 1.13.1. We expand the tokenizer 
vocabulary and model embedding layers prior than 
each stage’s training as described in Section 4 and 
Section 5. We use Adam optimizer with 𝛽! = 0.9 
and 𝛽" =0.99 and use a learning rate of 5𝑒 − 5 in 
constant schedule with 1000-step warmups. We use 
a per-device batch size of 16 and set gradient accu-
mulation steps to 16. During the evaluation phase, 
we use greedy decoding with genera-
tion_kwargs as default settings. 

C.2  Computational Costs. 

Our models are trained on machines with 2 ×32G 
Nvidia V100 GPUs with Distributed Data Parallel 
implemented by huggingface accelerate library. 
Training elapses around 10-15 hours for stage 1 
and stage 2 pre-training on a 15%/20% subsets and 
around 2 days on 80% of our dataset. This is 
roughly 4 ×  computational costs of target-based 
SCPG, which, in our opinion, is acceptable consid-
ering its gains. 

Appendix D. SCPG Implementing Details. 

D.1  Building of Triplet ParaNMT Dataset. 

The procedure of building a training set consisting 
of (𝑋, 𝑌, 𝑍) triplets is that for each (𝑋, 𝑍) pair, find 
a 𝑌 which has the least syntactical variance com-
pared to 𝑍 according to a specific syntactical meas-
urement 𝐷-(𝑌, 𝑍) , while having enough lexical 
variance according to lexical measurement 
𝐷.(𝑌, 𝑋; 𝑍), in order to effectively prevent tem-
plate sentence word copying problem (Chen et al., 
2019; Yang et al., 2022b). 
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 Now that deciding 𝑌 involves Θ(n") outer loop 

among the training set, as a balance between syn-
tactical representation and computational effi-
ciency, we regard the edit distance of the LCT se-
quences of 𝑌, 𝑍  LevEdit(𝐿𝐶𝑇/, 𝐿𝐶𝑇0)	 as 
𝐷-(𝑌, 𝑍), and regard bag-of-word F1 as 𝐷.(𝑌, 𝑋). 
For each (𝑋, 𝑍) pair, we apply the aforementioned 
heuristics on {𝑌|𝑌 ∈ {𝑋} ∪ {𝑍}, ^|𝑌| − |𝑍|^ <
2, 𝑌 ∉ {𝑋, 𝑍}} , that is, sentences in training set 
within 2-token length difference and other than 
(𝑋, 𝑌), to find the appropriate 𝑌. Pairs which have 
little syntactical variance are filtered out by calcu-
lating Tree-Edit Distances between (𝑋, 𝑍)s and fil-
tering out the low-distance ones. Eventually, 
around 250k (𝑋, 𝑌, 𝑍) triplets are obtained. 

D.2  Model Inputs & Outputs. 

For target-based SCPG, we use the special token 
<sep>, as used in DSMT pre-training, to split 
source sentences and LCTs. Inputs & outputs are 
shown as follows: 
Inputs: [source sentence] <sep> 

[source LCT] <sep> [paraphrase LCT]. 
Outputs: [parphrase sentence]. 

Note that compared with source LCT, para-
phrase LCT has stripped leaf nodes (words) out. 

For SCPG/C, we use similar input/output 
schemes as target based SCPG. Inputs & outputs 
are shown as follows: 
Inputs: [source sentence] <sep> 

[source LCT] <sep> [exemplar LCT]. 
Outputs: [parphrase sentence]. 

For SCPG/S, we use different input/output 
schemes, which is shown as follows: 
Inputs: no-tree-scpg source sen-

tence: [source sentence] template 
sentence: [exemplar sentence]. 
Outputs: [parphrase sentence] <tgt> 

[exemplar LCT]. 

Note that this text2text format is similar to those 
of DSMT pre-training tasks but different from tar-
get-based SCPG. Actually, during experiments, we 
tried a great many formats and found that sample 
formats has quite limited effect on task perfor-
mance. Therefore, for target-based SCPG and 
SCPG/C, we choose a similar scheme as AESOP 
(Sun et al., 2021), which is the previous text2text 
SOTA (corresponding to methods adapting to 
model structures mentioned in Section 1), for better 
comparison. 

D.3  Training Details. 

We use the same hyperparameter settings in all sets 
of experiments. We train our model 8 epochs with 
a batch size of 16 and gradient accumulation steps 
of 8. We use Adam Optimizer with (𝛽! = 0.9, 
𝛽" = 0.99)  using cosine schedule. We also use 
Nvidia V100-32G for training, which elapses 
around 24 hours for target based SCPG on original 
ParaNMT-small dataset and 9 hours for exemplar 
sentence based SCPG, 12 hours for exemplar tree 
based SCPG on our processed and filtered triplet 
ParaNMT-small dataset. 

Appendix E. SCPG Ablation Results. 

E.1  Student t-Test Results. 

Below are results of Student t-Test of whether or 
not model results of DSMT-T5 are significantly 
higher than those of vanilla T5, under target-based 
and sentential exemplar based (SCPG/S) settings: 

E.2  Few-Shot / Hard-Sample SCPG Results. 

Below are results of vanilla T5 together with 
DSMT-T5 under few-shot and hard-sample SCPG 
settings: 

Few-shot SCPG: 

Model B-4 R-1/R-2/R-L MTR TED↓ 
Target-Based 

DSMT 42.3 72.7/53.8/74.7 49.9 3.9 
T5 41.7 72.1/52.7/74.1 49.1 4.1 

SCPG/S 
DSMT 30.3 60.9/37.7/62.4 38.2 6.1/5.9 

T5 30.0 60.6/37.0/62.1 38.1 6.1/6.0 

Table 7: p-values of ablation study results of target-
based SCPG and SCPG/S. 

 

 

Figure 5: Results (BLEU-4) of vanilla/DSTM-T5 on 
target-based SCPG, when trained on all, 20%, 10% 
and 5% of ParaNMT-small training data. 
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Hard-Sample SCPG: 

 

 

Figure 6: Results of vanilla/DSMT-T5 (in blue and 
orange solid lines) and their differences (in grey 
dashed lines) when evaluated on all, top-400, top-
200 and top-100 long samples. 

 


