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Abstract

Data scarcity is a prevalent challenge in the
era of Large Language Models (LLMs). The
insatiable hunger of LLMs for large corpora
becomes even more pronounced when dealing
with non-English and low-resource languages.
The issue is particularly exacerbated in Seman-
tic Parsing (SP), i.e. the task of converting text
into a formal representation. The complexity
of semantic formalisms makes training human
annotators and subsequent data annotation un-
feasible on a large scale, especially across lan-
guages. To mitigate this, we first introduce the
Multilingual Semantic Layer (MSL), a concep-
tual evolution of previous formalisms, which
decouples from disambiguation and external
inventories and simplifies the task. MSL pro-
vides the necessary tools to encode the mean-
ing across languages, paving the way for devel-
oping a high-quality semantic parsing dataset
across different languages in a semi-automatic
strategy. Subsequently, we manually refine a
portion of this dataset and fine-tune GPT-3.5 to
propagate these refinements across the dataset.
Then, we manually annotate 1,100 sentences
in eleven languages, including low-resource
ones. Finally, we assess our dataset’s qual-
ity, showcasing the performance gap reduc-
tion across languages in Semantic Parsing. Our
code and dataset are openly available at https:
//github.com/SapienzaNLP/MSL.

1 Introduction

One of the long-term goals of AI is to enable ma-
chines to comprehend human text in any language.
At the core of Natural Language Understanding
(NLU) lies the task of Semantic Parsing (SP), aim-
ing to convert text into machine-interpretable rep-
resentations. Although Large Language Models
(LLMs) have advanced significantly in understand-
ing human text, semantic representations remain
crucial for various applications. These range from
chatbots and Virtual Assistants like Amazon Alexa,
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Figure 1: AMR of: "The football player jaywalks across
the street to the chiringuito."

Apple Siri, and Google Assistant, as underscored
in Rongali et al. (2020), to more specific tasks,
e.g., SQL queries (Dou et al., 2022) or machine-
interpretable commands (Wang et al., 2021).

Achieving proficiency in SP involves enabling
machines to understand semantic relations between
concepts in any language. Over the years, numer-
ous SP formalisms grounded in various linguistic
theories have emerged, such as the Discourse Rep-
resentation Theory (Kamp and Reyle, 1993, DRT),
Prague Dependency Treebank (Nedoluzhko et al.,
2016, PDT), Universal Conceptual Cognitive An-
notation (Abend and Rappoport, 2013, UCCA) or
Abstract Meaning Representation (Banarescu et al.,
2013, AMR), among others. Graph-based represen-
tations – e.g., AMR – have attracted most of the
attention since they can act as an interface that is
comprehensible for humans and interpretable for
machines (see Figure 1). The objective of graph-
based representations is to encode the meaning of
language into a directed acyclic graph, where nodes
represent concepts and edges represent semantic
relations between concepts. However, even if these
formalisms are able to encode the meaning in En-
glish effectively, they still struggle to scale to other
languages (Zhu et al., 2019).
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Form. Year Corpus Released Size Non-English languages Non-English size Quality Concepts Graph Arguments

DRT 1993 PMB 4.0 2021 16,712 3 6,000 Silver WordNet English Semantic
PDT 2003 PDT 3.0 2013 49,431 1 49,431 Silver – English Syntactic
UCCA 2013 Wikipedia 2020 7,934 – – – – English Syntactic
AMR 2013 AMR 3.0 2020 59,255 – – – PropBank English Semantic
UMR 2021 UMR 1.0 2023 2,186 5 1,993 Gold PropBank Non-specific Semantic
BMR 2022 BMR 1.0 2022 59,255 5 – Silver BabelNet English Semantic

Table 1: Main SP Formalisms. Columns: Formalism, year, large corpus available, corpus released to date, corpus
size (sentences), number of non-English languages, the total number of annotations in non-English languages,
quality, repositories of meaning, the language of the annotation (English/ non-specific), level of the annotation.

Over the years, multiple attempts have been
proposed to encode other languages: from adap-
tations based on language-specific repositories –
e.g., Spanish AMR (Migueles-Abraira et al., 2018)
with AnCoraNet (Aparicio et al., 2008) or the Chi-
nese AMR (Li et al., 2019) with Chinese Prop-
bank (Xue et al., 2005) – to interlingua formalisms,
such as the Uniform Meaning Representation (Gy-
sel et al., 2021, UMR) or the BabelNet Mean-
ing Representation (Navigli et al., 2022, BMR).
However, the main challenge persists: the scarcity
of annotated data keeps these formalisms in the
realm of abstraction, since annotated data is crucial
for training parsers. This scarcity is primarily at-
tributable to the high costs and complexity of man-
ual annotation. Annotators must thoroughly under-
stand each specific language’s rules, the formalism
and the meaning repository, making the process
highly labour-intensive. Moreover, even though
some projects have generated annotated data for
these formalisms – like AMR 3.0 (Knight et al.,
2020), BMR 1.0 (Martínez Lorenzo et al., 2022),
or UMR (Bonn et al., 2023b) – these datasets
are English-oriented and hindered by paywalls
or restrictive licenses. Furthermore, even though
there have been efforts to annotate non-English
languages – like UMR 1.0 (Bonn et al., 2023a),
Turkish (Azin and Eryiğit, 2019), Persian (Tohidi
et al., 2024), Portuguese (Sobrevilla Cabezudo and
Pardo, 2019), or Vietnamese (Linh and Nguyen,
2019) – they have not produced more than 200
examples per language, which is inadequate for ef-
fective parser training. This situation underscores a
critical bottleneck in employing these formalisms
for wider linguistic applications.

This paper introduces a practical solution for
tackling data scarcity, which can scale across differ-
ent languages. Firstly, we propose the Multilingual
Semantic Layer (MSL), an evolution of previous
formalisms, which acts as the necessary tool to en-
able data generation across languages. Secondly,

by leveraging this novel representation, we develop
a methodology for semi-automatically generating
a vast amount of high-quality annotations across
languages by making use of LLMs (under an aca-
demic budget). Lastly, we have annotated a gold
standard dataset of 1,100 graphs across eleven lan-
guages, including low-resource ones, allowing us
to assess the quality of our dataset.

2 Related Work

Even if multiple formalisms have been proposed
over the years, just a few of these provide annotated
data. Table 1 highlights their main features of the
largest dataset annotated for each formalism.

Discourse Representation Theory (Kamp and
Reyle, 1993, DRT) provides a framework for rep-
resenting the meaning of entire texts at the dis-
course level, which can be directly converted into
logical forms. The Parallel Meaning Bank (Bos,
2013, PMB) is the most recent dataset under the
DRT formalism, which incorporates word senses
from WordNet (Miller, 1992), and semantic roles
from VerbNet (Brown et al., 2019). However, the
multilingual annotations use the English graph as
the interlingua by automatically projecting the En-
glish annotations to other languages. Moreover, the
number of annotations is insufficient.

Prague Dependency Treebank (Hajič, 1998,
PDT) is a multi-layer formalism that defines a
syntactic analysis for the sentence. The Tectogram-
matical layer (Zeman and Hajic, 2020, PTG) cov-
ers semantic distinctions, such as the predicate-
argument structures, word senses or co-references.
The corpora are in Czech and English and rely on
language-specific repositories.

Universal Conceptual Cognitive Annotation
(Abend and Rappoport, 2013, UCCA) has
a foundational layer focusing on the predicate-
argument structure. However, it does not abstract
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Figure 2: Comparison across multilingual formalisms for the sentence in Figure 1 translated to Spanish. "El futbolista
cruza la calle de manera imprudente hacia el chiringuito.".

away from word order and from the actual words.

Abstract Meaning Representation (Banarescu
et al., 2013, AMR) provides a theoretical frame-
work that does abstracts away from the syntax level.
Some adaptations exist in other languages, but no
large corpora are annotated.

Uniform Meaning Representation (Bonn et al.,
2023a, UMR) is a semantic representation based
on AMR that expands the semantic range of AMR
at the sentence level by adding aspect and scope,
while also expanding AMR to a document-level
representation by incorporating co-reference, tem-
poral and modal dependencies through documents.
UMR also accommodates the formalism to other
languages, specifically low-resource ones, by incor-
porating new explicit argument relations that mit-
igate the lack of predicate repositories. However,
no large annotated datasets are available to train
LMs; there are only 2,186 pairs of sentence graphs
across six languages (Arapaho, Chinese, Cocama-
Cocamilla, English, Navajo and Sanapaná).

BabelNet Meaning Representation (Navigli
et al., 2022, BMR) extends AMR and aims to
be an interlingua representation by using BabelNet
concepts (Navigli and Ponzetto, 2010) and Ver-
bAtlas frames (Di Fabio et al., 2019). However, the
cross-lingual corpus is English-oriented, and Babel-
Net is not open-source (extended in Appendix A).

Even though certain formalisms have been devel-
oped to encode English semantics, their application
to other languages often remains theoretical. These
formalisms depend on external resources (e.g.,
WordNet, PropBank, or others), most of which are
only available in English. While initiatives like
Spanish AMR with AncoraNet or UMR 1.0 for
low-resource languages attempt to bridge this gap,
their annotations are limited (not exceeding 2,000
graphs), rendering them impractical for widespread

use and requiring trained annotators on both the
formalism and the external inventories. Moreover,
even though multilingual formalisms like PMB and
BMR exist, they essentially annotate English sen-
tences and employ the English graph as the repre-
sentation of parallel automatic translations. This
leads to language divergences, as demonstrated in
Figure 2 where "jaywalk" requires two nodes for
its non-literal Spanish translation, underscoring the
discrepancies and challenges in cross-lingual se-
mantic representation.

3 Our Contributions

In this section, we overcome the data scarcity in
SP by providing the novel Multilingual Semantic
Layer (MSL) – with the necessary tools to encode
the semantic relations between concepts across lan-
guages (Section 3.1) – and a multilingual dataset
with millions of high-quality annotations, includ-
ing manual annotations, that enables SP in different
languages (Section 3.2).

3.1 MSL

We introduce MSL as a means for decoupling SP
from the meaning behind concepts, focusing on
extracting semantic relations between concepts in
the sentence. MSL is built on top of previous graph-
based formalism theories (such as AMR, BMR or
UMR), and it employs a directed acyclic graph
with nodes representing concepts and edges de-
noting semantic relations. However, unlike pre-
vious formalisms, MSL leverages solely explicit
semantic relations without relying on external
repositories (e.g., PropBank or VerbAtlas), and
avoids using the English lexicon and English struc-
tures as an interlingua representation. MSL moves
away from verbal-predicate-oriented representa-
tions (e.g., AMR or UMR) where nominal struc-
tures and predicates are represented with verbal
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Figure 3: MSL graphs of the parallel sentences, showcasing the language divergences.
Catalan sentence: "El futbolista del Màlaga CF va travessar el carrer fora del pas de vianants cap al xiringuito."
Korean sentence:말라가 CF축구선수가해변바를향해무단횡단하고있습니다.
Chinese sentence: 马拉加足球运动员横穿马路向沙滩酒吧走去。
Arabic sentence: 
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predicates. Following BMR, MSL leverages ex-
plicit semantic relations that are consistent across
languages, making them understandable without
any repository and simplifying the data generation
for non-English languages. For example, we estab-
lish new nominal relations – such as :similar, :com-
pared, or :related – to enable nominal predicate
representations without a repository.1 Furthermore,
MSL leverages the sentence’s native lexicon and
structures, simplifying data generation across lan-
guages by eliminating the necessity for concept dis-
ambiguation in each language. Therefore, unlike
AMR or UMR, there is a direct correspondence
between graph nodes and sentence spans. For in-
stance, following BMR, the concept "the football
player" is represented as it occurs in the sentence,
not with two nodes, "person" and "football", re-
lated by "play" (Figure 2).

MSL does not attempt to be a unified meaning
representation across languages as BMR does, but
aims to provide the necessary tools to enable pars-
ing across languages. This is because the semantic
structure of parallel sentences across languages
might be different, so we cannot use only one of
these representations as unification as BMR does
(see Figure 3). MSL is an abstraction layer that
offers a vanilla representation – not tied to any
external repository – in more languages than any
previous formalism. As a result, MSL does not pro-
vide the complete meaning of text, since it does not
link words with their meaning. However, our inten-
tion is not to devise MSL as a new formalism, but
rather as a semantic layer which can easily be inte-
grated with other NLU layers, such as Word Sense
Disambiguation (WSD), Entity Linking (EL), and

1Appendix Section B.2 explains all the relations.

Entity Typing (ET), which connect the concepts to
external knowledge bases (e.g., Wikipedia, Word-
Net, BabelNet, etc.). Therefore, our goal with MSL
is to provide not only a readily available representa-
tion and multilingual open-access dataset, but also
a stepping stone towards a more flexible seman-
tic representation upon which to build narrower
or more specialized representations, improving the
broader research community’s utilization of Se-
mantic Parsing, even in low-resource languages.
Figure 3 illustrates an example of an MSL graph in
different languages.

3.2 MSL Dataset
In this section, we discuss the process of creat-
ing a corpus for MSL. First, we explain how we
semi-automatically produced a preliminary silver
annotation (MSLAMR). Second, how we used this
data to train a model and predict annotations over a
vast amount of data across languages (MSLsilver).
Third, how our annotators corrected the predicted
graphs, and we projected these corrections to our
corpus using LLMs (MSLHQ). Fourth, how we
used LLMs and parallel corpora to project our an-
notations to other languages (MSLHQE). Finally,
how we created 1,100 pairs of sentence graphs
from scratch across ten languages, all within an
academic budget.

Silver Dataset Creation Our initial goal was
to obtain annotations of sentences in various lan-
guages. We began with the AMR 3.0 corpus – the
largest AMR corpus, containing 59,255 English
sentence-graph pairs – to generate our prelimi-
nary silver dataset, MSLAMR in English, French,
German, Italian and Spanish. Firstly, 1 we trans-
lated the English sentences into French, German,
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Figure 4: Description of the creation process for our multilingual version of the AMR dataset in the MSL layer. We
(1) translate each sentence sample to 5 languages using DeepL, (2) align each English AMR graph to the sentence
in each language (3) apply the MSL-specific modifications, producing language-specific graphs per sentence.

Italian and Spanish using DeepL (DeepL GmbH,
2024). Then, 2 in order to align each language’s
sentence concepts with their respective English
graph nodes, we employed the method proposed
by Martínez Lorenzo et al. (2023), training a cross-
lingual AMR parser using the DeepL translations
and English graphs, and leveraging the model’s
cross-attention to extract alignments. We transi-
tioned from PropBank argument relations to our
cross-lingual and non-frame-dependent relations
through manual mapping, integrating MSL’s con-
ceptual alterations with AMR. This process in-
volved creating mappings and specific heuristics
for modifying nominal structures.2 MSL has a di-
rect correspondence between sentence concepts
and graph nodes, unlike AMR or UMR. Therefore,
we have to identify multi-word and idiomatic ex-
pressions in the sentence, and – leveraging the pre-
viously extracted alignment – collapse their related
graph nodes to represent them as single concepts.
However, linguistic divergences often lead to varia-
tions in conceptual representation across languages.
For example, Figure 2 shows how "jaywalk" is
translated into "cruzar de manera imprudente" in
Spanish, necessitating different graph representa-
tions. To address this, we devised a heuristic based
on the alignment, the graph structure and a set of
multi-word expressions in each language, that was
capable of splitting or merging graph nodes when
required.3 These modifications comprise the last
step 3 in creating MSLAMR.

Generating the Large Corpus MSLsilver Our
MSLAMR is still under the AMR’s license and
uses silver translations. Consequently, our aim is

2Appendix B provides all the details.
3Appendix C explains all details of this process.

to annotate a substantial corpus using non-AMR
licenced data, MSLsilver. We trained a seq2seq SP
parser in a multilingual fashion using mT5-large
(Xue et al., 2021) with MSLAMR.4 Subsequently,
4 we generated MSLsilver in German, English,

Spanish, French, and Italian gold sentences by pre-
dicting from two sources: i) a parallel corpus from
various OPUS datasets (Tiedemann, 2009) such as
TED, OpenSubtitles, Ubuntu, Bible, and Books;
and ii) a non-parallel corpus, from Wikipedia.

Manual Validation 5 At this stage, we have
millions of multilingual annotations that are
free from licensing restrictions, albeit still silver-
generated. To enhance their quality, we engaged
proficient annotators in AMR and trained in MSL
to manually validate a subset of the graphs in each
language.5 Throughout this process, these anno-
tators rectified numerous errors within MSLsilver,
integrated previously absent elements from the orig-
inal AMR corpus (such as tense, aspect, mood, and
modality for verbs), and revised structural represen-
tations. This process ended up correcting around
2,000 graphs, 400 per language.6

Replicating Changes 6 After rectifying errors
and updating structures in the manual validation
phase, we had to replicate all our corrections and
changes across the five languages to the rest of
MSLsilver. Previous studies have demonstrated the
efficacy of LLMs as zero-shot annotators (Zhang
et al., 2023), offering human-comparable labelling
at lower costs (Gilardi et al., 2023; Zhu et al.,
2023). Leveraging this and given the task’s sim-

4See Appendix G for more details.
5Each annotator was a native-speaker of their language.
6Appendix D explains this process and the annotators

guidelines in detail.

14060



Figure 5: Pipeline showing how to create a license-free automatically annotated MSL dataset and how to expand it to
new languages. From the creation of MSLAMR we (4) train a parser in the 5 available languages and use it to parse
license-free text from diverse sources, creating MSLSilver (5) manually revise a subset of those predictions with
expert annotators (6) propagate those corrections by teaching an LLM to apply the same fixes and create MSLHQ

(7) train another LLM to create a sentence and its graph for a target language when given a pair in a source language
from MSLHQ, and use this pair to expand it to new languages and create MSLHQE .

plicity compared to parsing from scratch, we used
GPT-3.5 to apply our corrections corpus-wide. The
model was tasked with generating accurate graphs
given as input sentences and their corresponding
silver graphs. Initially, a few-shot approach with
example prompts proved ineffective due to incon-
sistency with our MSL structure and high opera-
tional costs due to long prompts. Consequently, we
fine-tuned the model with our comprehensive set
of corrections in German, English, Spanish, Ital-
ian and French. The trained model is given the
original sentence and silver graph before correc-
tions, and tasked to output the corrected graph. We
validated this approach on a corrections subset, as-
sessing performance using perplexity.7 With the
model fine-tuned, we efficiently replicated all cor-
rections across the corpus, producing the MSLHQ

in German, English, Spanish, Italian and French.
The effectiveness of this approach will be further
validated by our ablation experiments.

Projecting to Other Languages 7 Having de-
veloped a high-quality dataset in five languages, we
address the data scarcity in other languages by gen-
erating high-quality annotations in Arabic, Catalan,
Korean, Galician, Portuguese and Chinese (Table 2
shows stats). Under the premise that projecting an-
notations across parallel languages is simpler than
starting from scratch (Barba et al., 2020; Daza and
Frank, 2020; Blloshmi et al., 2020), we leverage
our dataset’s parallel nature to project them. As

7Appendix E shows examples and performance details.

depicted in Figure 3, language divergences across
translations for the same sentence should be re-
flected in the graph. Therefore, we again fine-tune
GPT-3.5 using a subset of MSLHQ that has paral-
lel sentences in German, English, Spanish, Italian
and French. Given a sentence, its semantic graph
and the parallel sentence in another language, the
model has to generate the corresponding graph. We
use English as the source language with Arabic,
Chinese and Korean as the targets during inference.
Then, Spanish served as a pivotal source language
for Catalan, Galician, and Portuguese, due to their
linguistic proximity.8 The total cost for training
and inference to apply our corrections and project
to other languages was around 400$, 0.0013$ per
graph. For comparison, the license to use AMR 3.0
alone is 300$, 0.005 per graph.

3.3 Manually Annotated Test Set

To evaluate our dataset’s quality and establish
a gold standard benchmark, we tasked annota-
tors to manually annotate 100 parallel sentences
from OPUS in Arabic, Catalan, Chinese, English,
French, Galician, German, Italian, Korean, Por-
tuguese, and Spanish.9 Recognizing the high cost
of manual annotation, we reserved this task exclu-
sively for benchmark creation, ensuring our anno-
tators were proficient in generating MSL graphs
for all the listed languages.10 Moreover, we could

8Appendix F shows some data examples and more detail.
9The annotators are native speakers in each language.

10Appendix D explains the annotation guidelines.
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Dataset Arabic Catalan German English Spanish Korean French Galician Italian Portuguese Chinese Total

AMR3.0 – – – 59,255 – – - – - – – 59,255
MSLAMR – – 59,255 59,255 59,255 – 59,255 – 59,255 – – 296,275
MSLSilver – – 2,574,529 3,029,254 1,115,822 – 1,711,337 – 1,603,467 – – 12,655,303
MSLHQ – – 23,951 38,505 47,665 – 26,784 – 31.410 – – 168,315

MSLHQE 17,529 17,550 23,951 38,505 47,665 7,826 17,531 20,000 31.410 17,551 17,550 257,068

Table 2: Number of annotated Graphs per language in the different datasets.

calculate the inter-annotator agreement in Spanish
– 92.34 in SMATCH – as it was the only language
with native speaker overlap in the graphs (Gali-
cian and Catalan annotators are also native Spanish
speakers). We also reserved 1700 sentences per
language from OPUS to test our systems for back-
translation, and these sentences are not present in
any of our training sets.

4 Experiments

4.1 Experimental Setup

Tasks Our evaluation framework consists of two
parts: i) Parsing and Generation to ablate each
annotation step, and ii) Back Translation Experi-
ment to compare MSL against AMR and BMR.11

The objective of Parsing – transforming the text
into a graph representation according to a specific
formalism – is to assess the complexity of generat-
ing MSL graphs due to the nuanced characteristics
of MSL. Then, the Generation task – producing
the original text from the graph representation – has
the goal of appraising the effectiveness of MSL for
preserving information. Finally, we perform a Back
Translation Experiment – first parse and then gen-
eration – to compare the suitability of SP datasets,
such as AMR 3.0, BMR 1.0, and MSL dataset, for
training semantic parsers across languages.

Datasets For the Parsing and Generation study,
we use the four training sets described in the paper
(MSLAMR, MSLSilver, MSLHQ and MSLHQE),
for the test we use the gold test set annotated in
Section 3.3, that comprises 1,100 sentence graph
pairs, 100 sentences in each language (Arabic, Cata-
lan, Chinese, English, French, Galician, German,
Italian, Korean, Portuguese, Spanish). Then, for
back-translation, we use our MSLHQE and, to train
the other models, we use AMR 3.0 (Knight et al.,
2020)12 and the BMR 1.0 (Martínez Lorenzo et al.,
2022). However, since AMR 3.0 provides only En-
glish sentences, we use the DeepL translations from

11The only formalisms with available parsers to train.
12AMR 3.0 is licensed by LDC at https://catalog.ldc.

upenn.edu/LDC2020T02

1 . As test data we use the parallel sentences from
Abstract Meaning Representation 2.0 - Four Trans-
lations,13 that translated the AMR 3.0 test set into
German, Italian and Spanish (consisting of 1, 371
sentence in each language). Furthermore, we use
parallel sentences from the OPUS corpus to test the
performance in non-AMR data (Out-of-domain),
which was not included in MSL. To maintain a con-
sistent number of training samples across datasets,
we reduce MSLSilver to MSLHQ

Silver by selecting
only those sentence graphs that match the sentences
in MSLHQ (168,315).

Models For training the parsers across for-
malisms and languages, we leverage CLAP (Mar-
tinez Lorenzo and Navigli, 2024), where the pars-
ing task is framed as a seq2seq task for an Encoder-
Decoder system, where the model is trained to gen-
erate a linearized version of a graph from a sen-
tence and, vice versa, produce a sentence from a
linearized graph. We adapt the model’s vocabulary
to include our set of relations and use mT5-large as
the underlying language model, which supports all
our languages.14 First, given the datasets described
in Section 4.1, we train a model for each dataset,
AMR 3.0 and BMR 1.0 for each language (DE,
EN, ES, FR, and IT). Then, for MSL we train four
models on, respectively: i) MSLAMR (DE, EN, ES,
FR, and IT); ii) MSLHQ

Silver (DE, EN, ES, FR, and
IT); iii) MSLHQ (DE, EN, ES, FR, and IT); and iv)
MSLHQE (AR, CA, DE, EN, ES, KO, FR, GL, IT,
PT and ZH).

Evaluation Measures We evaluate Generation
and Back-translation by using the standard NLU
metric BLEU (Papineni et al., 2002). For Parsing,
we employ the SMATCH measure (Cai and Knight,
2013), which is the most famous metric for AMR
parsing. The SMATCH calculates the maximum
overlap between the predicted and reference graphs.
The SMATCH also works with MSL, since it fol-
lows AMR theory.

13https://catalog.ldc.upenn.edu/LDC2020T07
14Appendix G provides more details and hyperparameters.
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Parsing Arabic Catalan German English Spanish Korean French Galician Italian Portuguese Chinese AVG SD

MSLAMR 19.40 38.37 48.91 54.28 49.73 26.46 49.01 42.44 46.52 40.73 19.57 39.58 11.81
MSLSilver 20.12 37.41 48.82 55.12 49.34 27.04 51.52 41.12 47.32 41.23 20.12 39.92 11.86
MSLHQ 19.19 56.29 67.21 71.98 71.89 35.01 72.31 57.54 71.47 58.37 30.02 55.57 18.13
MSLHQE 56.36 72.38 66.94 71.35 72.86 56.38 71.91 69.31 71.83 72.26 58.36 67.26 6.48

Generation Arabic Catalan German English Spanish Korean French Galician Italian Portuguese Chinese AVG SD

MSLAMR 0.00 20.21 33.48 40.60 44.47 2.80 37.36 15.00 38.28 25.50 1.27 23.54 15.97
MSLSilver 0.00 18.20 32.47 44.24 48.02 1.08 39.82 16.04 41.23 25.89 0.98 24.36 17.41
MSLHQ 0.00 16.37 38.00 55.19 57.00 1.15 51.24 16.08 51.80 25.08 1.07 24.63 17.91
MSLHQE 30.84 57.30 40.46 57.26 57.23 22.62 51.62 54.31 51.31 49.57 48.48 47.36 10.93

Table 3: SMATCH score for Parsing (Top) and BLEU for Generation (bottom) per language for our ablation of
annotation steps. Columns: Results per language, Average and Standard Deviation.

4.2 Results

Parsing and Generation In Table 3, we ob-
serve that MSLSilver achieves results comparable
to MSLAMR, underscoring the success of distilling
MSLAMR. MSLHQ obtains better results across
all languages compared to MSLsilver in both direc-
tions (parsing and generation), showcasing the ben-
efits of cleaning the data thanks to our automatic
corrections. Furthermore, the benefits of MSLHQE

are clear; expanding the dataset with additional
languages enables semantic parsing capabilities in
these languages. Notably, MSLHQE demonstrates
a much smaller variance compared to other models.
For comparison, the current multilingual state-of-
the-art AMR parser by Cai et al. (2021) has a 9
SMATCH points gap between English (83.9) and
Spanish (75.9), German (73.1) or Italian (75.4),
while in MSL the gap is significantly smaller – con-
sidering that SMATCH values are not comparable
across formalisms.15 The text generation results
show even more dramatic improvements compared
to Martínez Lorenzo et al. (2022): AMR or BMR
never reached more than 37 BLEU on non-English
languages, while English attained 50 BLEU points.
This points to MSL being a more expressive seman-
tic layer, which benefits text generation.

Back Translation Experiment In Table 4, we
can observe the effectiveness of different parsers
in preserving information when back-translating
from and into the same language passing through
the graph using a cross-lingual model. We have
to clarify that Martínez Lorenzo et al. (2022) re-
ported BLEU scores of 45.3 for AMR and 50.1
for BMR in English using a monolingual model,
unlike our experiments, which use a shared cross-
lingual model for all languages. We can observe
how the model trained with the MSL dataset out-

15Explained in Appendix I.

performs not only in the AMR benchmark against
the model trained with this specific data by 19 and
15 BLEU points, respectively, but also maintains
the same performance across the Out-of-Domain,
where models trained in AMR 3.0 and BMR 1.0
drop around 10 points in average. Moreover, the
gap in non-English languages is more pronounced,
since AMR and BMR’s dependence on an English
graph structure as the interlingua introduces se-
mantic parsing inaccuracies similar to those en-
countered in machine translation. This attests to
the quality, diversity, and size of the MSL dataset
across languages compared to the previous dataset.
Additional metrics are presented in Appendix H.

4.3 A Case Study

To show the limitations of previous formalisms in
encoding the nuances of each language, consider
the next example from the TED parallel corpus:

English: We don’t really stop to think about a
raindrop the size of an actual cat or dog when we
hear ’it’s raining cats and dogs’, but as soon as I
do, I realize that I’m quite certain the dog has to
be a small one – a cocker spaniel, or a dachshund
– and not a golden Lab or Newfoundland.

Spanish: No pensamos en gotas de lluvia del
tamaño de un cántaro cuando escuchamos ’llueve
a cantaros’, pero al hacerlo, nos damos cuenta que
el cántaro debe ser uno muy pequeño; un botijo,
un tarro, y no ollas con asas laterales.

This example highlights how formalisms like
AMR and UMR will struggle with idiomatic ex-
pressions, often leading to literal interpretations
(e.g., rain-01 :theme (and :op1 (cat) :op2 (dog))).
Additionally, formalisms like BMR work under
the premise that parallel sentences in different lan-
guages should have the same representations and
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AMR Out Of Domain - ∩ Out Of Domain - ∪
DE EN ES IT AVG SD DE EN ES IT AVG STD AR CA KO FR GL PT ZH AVG

AMR 21.55 32.40 31.02 29.00 28.49 4.83 15.87 25.49 18.93 15.43 18.83 4.02 0.00 1.52 1.73 0.45 2.97 1.68 0.00 1.32
BMR 27.16 38.97 36.67 29.30 33.03 5.68 22.01 36.29 26.41 21.89 25.97 6.05 0.00 1.34 1.82 0.24 3.31 1.41 0.25 1.36
MSL 41.82 51.36 52.77 42.56 47.13 5.73 43.52 52.81 53.48 44.88 48.82 4.52 24.33 46.34 27.56 49.41 48.41 48.02 51.35 41.00

Table 4: BLEU result for the Back-translation experiment. Rows (Formalisms): AMR, BMR and MSL. Columns
(Datasets per language): AMR 4 translations, Out of Domain, Average and Standard Deviation. ∩ means languages
seen by all models at train time, ∪ rest of languages in MSL.

consequently fall short in practice. A major flaw
in BMR 1.0 is its reliance on English as the inter-
lingua graph, failing to capture nuanced semantics
across non-English languages effectively. Although
BabelNet links the English lemmatization of "rain-
ing cats and dogs" with the Spanish "llueve a cán-
taros", the English sentence associates the phrase
with specific dog breeds, while the Spanish refers
to types of jars ("botijo"), leading to fundamentally
different conceptual graphs even though the idioms
are equivalent across languages. This underscores
the limitations of using a single language-based
representation as a universal interlingua for com-
prehensive multilingual semantic understanding. It
reveals how language-specific divergences cause
different languages to represent ideas or concepts
uniquely – highlighting that human languages are
designed to model ideas and concepts, and not the
other way around.

This underscores our approach: (i) viewing MSL
not as an interlingua but as a layer for semantic rep-
resentation across languages, not focused on rep-
resenting the same idea equally across languages,
and (ii) refining graph structures using an LLM,
acknowledging that parallel annotations can vary
significantly, thus requiring more than just algorith-
mic adjustments as seen in the BMR 1.0 dataset.

5 Potential and Future of MSL

In the era of LLMs, we aimed to revamp the dream
of structuring natural text across multiple lan-
guages through the use of MSL. This work opens
up new possibilities for applying graph-based and
big-data analyses to multilingual content. We envi-
sion the potential of MSL as follows:

• NLP Task Integration: MSL can be inte-
grated with other resources like BabelNet to
generate BMR-like graphs and with predicate-
argument structures to yield AMR and UMR
representations. Furthermore, MSL could be
integrated with Entity Linking, Entity typing,
or Word Sense Disambiguation, among others,
to create a full semantic representation.

• Addressing Data Scarcity: The semantics
of sentences remain consistent across for-
malisms, though they are represented differ-
ently. Consequently, the MSL dataset could
be utilized for transfer learning. This in-
volves pre-training a model on MSL and sub-
sequently fine-tuning parsers for other for-
malisms. This approach reduces the need
for extensive data development by allowing
parsers to be fine-tuned using smaller, more
specific datasets.

• Linguistic Expansion: With current LLMs,
we can expand MSL to include more lan-
guages, thereby continuing to bridge the se-
mantic parsing gap across different linguistic
contexts.

• Parsing Efficiency: MSL enables the shift
from encoder-decoder to encoder-focused ar-
chitectures, thanks to the one-to-one corre-
spondence between sentence concept and
graphs nodes, reducing computational de-
mands and accelerating processing speeds.

6 Conclusion

This paper addresses the challenge of data scarcity
in multilingual SP. Given the complexity and cost
of training annotators for large-scale tasks, we in-
troduce i) the MSL layer and ii) provide a large,
high-quality corpus across languages. The layer
decouples SP from Word Sense Disambiguation
and Entity Linking, focusing on the extraction of
sentence-level semantic relations. Then, we au-
tomatically develop a preliminary silver dataset
across languages, refining it through manual cor-
rections and propagating these annotations using
fine-tuned GPT LLMs. We also manually anno-
tated 1,100 sentences in 11 languages, including
low-resource ones, to demonstrate the flexibility
of our layer and dataset over previous ones. Our
code and dataset are available at https://github.
com/SapienzaNLP/MSL.
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7 Limitations

While we lower the cost burden of manually anno-
tating training corpora for SP by leveraging LLMs,
expanding to further languages would still require
manual annotation to create new evaluation sets.
Furthermore, while we show the effectiveness of
relying on LM and LLMs to aid in annotation and
propagating manual corrections, these still rely on
access to either local computing or remote comput-
ing via third-party APIs. Nevertheless, as discussed
in Section 3.1 our approach is still more affordable
than previous SP annotation attempts. We default
to external APIs for LLMs in only two steps of
our dataset creation, a resource that we will re-
lease publicly, and therefore a step that does not
require to be replicated. All Parsing and Generation
models are trained with open-access models and
therefore can be trained and used in inference by
anyone with enough computing to do so. There-
fore, this may pose a limitation if there are changes
to OpenAI API and someone wants to replicate
or expand to new languages adopting the same
approach. We were limited to single-GPU exper-
iments with 24GB of memory, so we opted for
an external API rather than compromising quality
with smaller models. However, we are confident a
similar approach could be achieved using locally
available LLMs like LLaMA (Touvron et al., 2023)
or Mistral (Jiang et al., 2023).
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A BMR Issues

While BMR represents a significant advancement
in cross-lingual representation, it encounters sev-
eral challenges that limit its effectiveness and
scope:

• Dependency on BabelNet: BMR relies on the
BabelNet repository, which is not open-source.
This reliance on a proprietary resource limits
accessibility and modifiability for researchers
and developers.

• Limited scope of concepts and languages:
The number of concepts and languages cov-
ered by BabelNet is restricted. This limita-
tion constrains the representational breadth of
BMR, potentially leaving out diverse linguis-
tic and cultural nuances.

• English-centric development: The corpus
for BMR is derived automatically from the
AMR (Abstract Meaning Representation) cor-
pus, which is fundamentally English-centric.
Moreover, the AMR corpus itself is not pub-
licly available due to licensing restrictions,
which further limits the adaptability and us-
ability of BMR in diverse linguistic contexts.

• Challenges with LM-based parsers: Lan-
guage Model (LM) based parsers used in
BMR have limited capabilities in integrating
new BabelNet concepts. To compensate for
unavailable concepts, these parsers revert to
using an English lexicon, which may not ac-
curately represent meanings across different
languages. abelNet repository, which is not
open-source. This reliance on a proprietary
resource limits accessibility and modifiability
for researchers and developers.

• Complex annotation process: The annota-
tion process for BMR is significantly more
complex than that for AMR, posing a barrier
for scalability and ease of use in linguistic
research and applications.

B MSL Relations

As noted earlier, AMR leverages coarse-grained
frames and argument structures from the English
PropBank within OntoNotes, a resource-limited
to English. These frames denote predicate-specific
semantic relations and are often unclear without
a gloss. For instance, the subgraph in Figure 6

jaywalk-00

streetperson

have-org-role-91

bar

beach

team MalagaCF

person play football

:ARG0

:ARG1

:destination

:location

:ARG1 :name

:ARG0-of

:ARG2

:ARG0-of :ARG1

Figure 6: AMR of: "The Malaga CF football player jay-
walks across the street to the beach bar.". The named-
entity was simplified to enhance interpretability. In
AMR they annotate a frame with -00 when it is not
presented in Ontonotes.

representing "Malaga CF football player" cen-
ters around the frame have-org-role-91, with
relations :ARG0, :ARG1, and :ARG2 indicating the
person, the organization (Malaga CF), and the
role (football player), respectively, tying the argu-
ment’s meaning directly to the predicate. However,
language-specific repositories akin to PropBank,
used for annotating non-English sentences, lack a
precise one-to-one frame correspondence, compli-
cating direct mapping. We introduce our explicit
relations for universally applicable semantics in
order to address language specificity.

For constructing the MSL dataset, a linguist16

manually mapped PropBank arguments to our rela-
tions, replacing original AMR frames and roles
(e.g., mapping write-01’s ARG0 to agent and
ARG1 to theme). For non-verbal and special predi-
cates in PropBank that AMR employs for unique
semantic structures (like have-org-role-91), we
mapped these to our new nominal structures, en-
hancing their argument representation (Section B.1
lists the MSL semantic roles, and Section B.2 pro-
vides mapping examples. Figure 7 illustrates the
modified AMR graph from Figure 6.

B.1 Semantic Roles

Our new set of relations (Table 5) is adapted to
include non-verbal entities, drawing on property

16Annotators possess proficient English skills and were
compensated according to their local standards.
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jaywalk-00

streetperson

have-org-role-91

bar

beach

team MalagaCF

person play football

:agent

:theme

:destination

:location

:ARG1 :name

:ARG0-of

:ARG2

:agent_of :theme

Figure 7: Graph moving from PropBank to our MSL set
of relations.

lists from existing literature (Leone et al., 2020).
Like AMR, each relation in our framework has
an inverse, indicated by appending _of (e.g., :pur-
pose becomes :purpose_of ). Roles from AMR not
covered in Table 5 are retained in MSL, including
:degree, :frequency, and :manner. Figure 7 shows
the AMR of Figure 6 after moving to our relations.

B.2 Nominal Structures

Non-verbal predicates and special predicates found
within AMR 3.0 have been mapped to the set of se-
mantic relations described in Section B.1 by means
of an in-house annotation interface. See Table 6 for
an AMR 3.0 to MSL sample. Figure 8 shows the
AMR of Figure 7 after adapting to our new nominal
structures.

C MSL Concept Representation

As mentioned, unlike AMR or UMR, which decom-
pose concepts into multiple nodes using OntoNotes
for semantic encoding (e.g., representing a "Foot-
ball player" as a "person who plays football"),
MSL employs single nodes for concept represen-
tation. We detail the transition from AMR 3.0
to our dataset, focusing on node merging in Sec-
tion C.1. The language evolves to model the lan-
guage, so each language models concepts differ-
ently, so rather than conforming to a single lan-
guage’s structure for knowledge representation
across languages – such as BMR with the English
structures to encode meanings universally (e.g., us-
ing a single node to represent the concept of "jay-
walk" across languages, even when a direct equiv-

jaywalk-00

streetperson

play-01

bar

beach

team MalagaCF

football

:agent

:theme

:destination

:location

:m
em

bership
:name

:agent_of

:theme

Figure 8: Graph moving from AMR non-predicate struc-
tures to our MSL set of relations.

alent does not exist) – MSL adapts to language
divergences. When a concept in one language is
expressed through multiple concepts in another, we
divide the nodes accordingly. For details on this
process, refer to Section C.2, where we explain our
methodology for adapting AMR 3.0 to our dataset.

C.1 MSL Merging Concepts

In AMR, single concepts and multiword expres-
sions, including idioms, are often decomposed into
multiple nodes through node composition. How-
ever, two main issues arise: firstly, single concepts
are split to utilize external repositories for encod-
ing relations. For instance, the expression "football
player" in AMR 3.0 is depicted using three nodes
as:

(p / person :ARG0− of (p2 / play

:ARG1 (f / football)))

This representation implies "a person associated
with Malaga CF who plays football," where (i) the
football concept is not directly linked to Malaga,
and (ii) merely playing football does not equate
to being a football player. MSL addresses these
issues by merging such nodes into a single concept,
"football player," directly associated with Malaga
CF, thereby clarifying that (i) football is related to
Malaga and (ii) the individual is a football player
rather than just someone who plays football. Addi-
tionally, the reliance on external repositories makes
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MSL AMR Sentence Examples
against – They play against Real Madrid playV >Real MadridN

age – Perepli is 30 yo beV >30N

agent – he is studying studyV >heN

attribute mod They found it necessary findV >necessaryA

cause cause I arrived late since the traffic jam trafficjamN>arriveV

compared – He is faster than a horse fasterA>horseN

composition consist-of a 900-page book bookN>pageN

concession – I studied but I’ve failed studyV >failV

contrast – I love fish, not meat fishN>meatN

context location, topic They are good in sport theyN>sportN

coref – Malaga (...) the city cityN>MalagaN

cost cost This cost 5 euros costN>euroN

example – Imagine a dog, like a Bulldog dogV >BulldogN

experiencer – I see you seeV >youN

extent duration, extent He works during 5 days workV >dayN

identity domain/meaning/role Abelardo, my father is (...) AbelardoN>fatherN

instrument instrument I cook with the pan cookV >panN

location location the pen in the table penN>tableN

membership employed-by/have-org-role-91 The president of the company presidentN>companyN

part part/subset/superset The finger of his hand fingerN>handN

participant – the dinner with my parents dinnerN>parentN

patient – Kick the ball kickV >ballN

possession poss I have a house haveV >houseN

purpose purpose I went there to study goV >studyN

quality mod The red book bookN>redA

quantity quant Four days dayN>fourn

related have-rel-role-91 the mother of the guy motherN>guyN

result – I’ve ended up going there endupV >goV

product – He makes shoes makeV >shoeN

scale source He got 8 out of 10 8N>10N

similar – He acts like the leader actV >leaderN

source source I got funds from the university getV >universityN

target beneficiary/destination/direction I gave it to my students giveV >studentN

theme – I read the book readV >bookN

time time I went yesterday goV >yesterdayR

url hyperlink-91 The website https://time.is/ websiteN>https://time.is/

Table 5: Semantic roles in MSL. Left to right: MSL role names (MSL), AMR role(s) equivalent (AMR), example
sentence and role usage example (s). Examples read as follows: father nodePoS>child nodePoS .
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have_org_role.91
AMR: ARG0 (entity); ARG1 (organization), ARG2 (role)
MSL: ARG2 :membership ARG1
AMR: person :ARG0-of (have_org_role.91 :ARG1 (university) :ARG2 (professor))
MSL: professor :membership (university)

be_located_at.91 (reification of :time)
AMR: ARG1 (entity); ARG2 (location)
MSL: be :theme_of (ARG1) :location (ARG2)
Example: I am in the cinema
AMR: be_located_at.91 :ARG1 (I) :ARG2 (cinema)
MSL: be :theme (ARG1) :location (ARG2)

good.02 (generally positive: morally good, pleasing)
AMR: ARG1 (generally positive/pleasing entity); ARG2 (recipient/target of good behavior)
MSL: be :theme (ARG1) :attribute (good) :target (ARG2)
Example: My mother is good to me.
AMR: good-02 :ARG0 (mother) :ARG1 (I)
MSL: be :theme (mother) :attribute (good) :target (I)

Table 6: Mapping examples from AMR 3.0 to MSL. Each row block lists (top to bottom) original OntoNotes
predicate names and glosses, original glosses for the predicate arguments, and predicate rendering in MSL. Then, an
example sentence with the AMR and MSL.

these relations non-deterministic, varying with the
availability and nature of the repository. For exam-
ple:

(r / footbal_player)

Furthermore, AMR’s approach to splitting multi-
word or idiomatic expressions into multiple nodes
can lead to a literal, rather than meaningful, rep-
resentation. For example, "rains cats and dogs" in
AMR might be represented as:

(r / rain− 01 :ARG2 (a / and

:op1 (c / cat):op2 (c / dog)))

This fails to capture the idiom’s intended mean-
ing. Like BMR, MSL consolidates such expres-
sions into a single concept within the graph, ensur-
ing a more accurate representation of idiomatic or
complex expressions, exemplified by treating "foot-
ball player from Malaga CF" as a unified concept.
Figure 9 shows the AMR of Figure 8 after adapting
to our new nomical structures.

This section details how we transformed AMR
3.0 into MSLAMR by merging nodes.

Multiword Expression Identification We begin
by identifying single words or multiword expres-
sions within sentences across English and its par-
allel translations in German, Spanish, French, and

jaywalk

street

football

player bar

beachMalagaCF

:agent

:theme

:target

:location:membership

Figure 9: Graph moving from AMR non-predicate struc-
tures to our MSL set of relations.

Italian, which are represented by multiple nodes in
the AMR graph. We compile a list of multiword
and idiomatic expressions from open websites in
these languages. Using SpaCy 3.1, we lemmatize
sentences in each language.

Manual Validation Automatic detection of mul-
tiwords can lead to errors, such as incorrect node
mergers and sense assignments. To address this,
an expert linguist manually inspects all multiword
instances identified in AMR 3.0, deciding on their
retention, modification, or removal.

Lemmas projections After finalizing the multi-
word list and alignments, we segmented the sen-
tence spans having clusters of single concepts, then
we projected the lemmas of the cluster to their
nodes and merged nodes in AMR graphs that refer
to the same word or multiword expression. This
bottom-up approach starts with the leaves, moving
towards the root, to represent phrases like "football
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player" or "rains cats and dogs" as single concepts.

C.2 MSL Splitting Nodes

Unlike previous formalisms such as AMR, UMR,
BMR, and PMB, our approach does not rely on En-
glish as an interlingua, thereby addressing language
divergences more effectively. The challenge arises
because existing annotations are primarily based on
English, using the language to model knowledge
rather than the reverse. Consequently, we cannot ap-
ply a single language’s structure to represent knowl-
edge across multiple languages. For instance, BMR
encodes meanings using English structures, such
as representing the concept of "jaywalking" with a
single node, even though a single concept represen-
tation does not exist. In contrast, MSL utilizes par-
allel translations, splitting nodes when a concept
is represented by multiple concepts in other lan-
guages, ensuring a more accurate cross-linguistic
representation.

Starting with sentences segmented by concepts
in each language, we identify instances where
multiple clusters correspond to a single node and,
where this is the case, proceed to split the nodes.
Our initial step involves creating a heuristic that
examines the part-of-speech (POS) tag of each ele-
ment, alongside the arguments already utilized by
the node, followed by a manual classification to
determine the node encoding for such cases. For
instance, the English term "jaywalk" can have sev-
eral translations in Spanish, such as "cruzar la calle
imprudentemente" or "cruzar la calle de manera
imprudente". Here, the "jaywalk" node aligns with
"cruzar" and either "imprudentemente" or "impru-
dente", representing two distinct clusters in Span-
ish. The node is split based on the POS tags (verb
"cruzar" and adverb "imprudentemente"), consider-
ing existing relations like ":agent", ":theme", and
":destination". In cases where the main node is a
verb and the secondary is an adverb or adjective,
with these relations present, we use the ":manner"
relation to specifically modify the verb action.

(c / cruzar :manner (i / imprudentemente))

Figure 2 shows an example of the final represen-
tation after doing all the heuristics. We acknowl-
edge that while this heuristic works in many cases,
it may introduce errors due to the inability to cap-
ture all linguistic nuances, which are addressed
during the manual validation process.

D Manual Validation

After employing our model to produce a substantial
dataset with our parser trained on MSLAMR, we
acknowledge that these silver-generated graphs, de-
spite being effective in many cases, may not fully
capture the linguistic nuances across languages
due to heuristic limitations in MSLAMR’s creation.
Consequently, we extracted a subset of these mul-
tilingual graphs for manual validation, aiming to
refine them further before using LLMs to apply
corrections across the larger dataset. This valida-
tion process focused on three key areas: i) refining
the graph structure, ii) adding missing information
from AMR, and iii) modifying specific encodings
and introducing new relations based on insights
from real examples.

D.1 Refining Graph Structure

Since we have silver-generated graphs created from
a semi-automatically process (starting from a gold
graph, we transform this), there are some errors
in our silver data. Therefore, we analyzed a sub-
portion of this data to find graphs with structural
errors due to the fact that our model did not learn
to properly represent this knowledge. Therefore,
we ask proficient annotators to manually validate
this subportion, restructuring the graph if neces-
sary. The main errors found were i) the incorrect
identification of multi-word expressions, ii) the use
of incorrect relations, and iii) generating corrupted
structures.

D.2 Incorporating Missing Information

Although AMR effectively encodes textual infor-
mation within its semantic structures, it overlooks
essential word components like number, tense, as-
pect, and mood, crucial for fully grasping mean-
ing—a gap highlighted in existing literature (Bo-
nial et al., 2019). Recognizing the significance of
these grammatical categories, we integrate these
features to bolster the representational capability
of our formalism.

During the annotation validation process, anno-
tators across five languages are tasked with iden-
tifying and manually incorporating tense, aspect,
number, and mood. Acknowledging the diverse
mechanisms languages employ to convey this in-
formation, we provide tools for each language so
as to facilitate encoding, with subsequent map-
pings between representations (as detailed in Ta-
ble 8). For instance, we enhance verb nodes with a
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(a) Catalan MSL.
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(b) Basque MSL.
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(c) Chinese MSL.
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(d) Arabic MSL.

Figure 10: MSL graphs of the parallel sentences, showcasing the language divergences.
Catalan sentence: "El futbolista del Màlaga CF va travessar el carrer fora del pas de vianants cap al xiringuito."
Basque sentence: Malagako futbolistak kalea modu arduragabetsu batean gurutzatu du txiringitorantz
Chinese sentence: 马拉加足球运动员横穿马路向沙滩酒吧走去。
Arabic sentence: 
ù£A ��Ë@ �é 	K Ag èAm.�
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:tense role indicating future or past (defaulting
to present for its absence) and an :aspect rela-
tion marking imperfect, continuous, perfect,
or perfectcontinuous aspects. The :mood re-
lation captures the verb’s mood—subjunctive,
conditional, imperative, or by default, the in-
dicative. Additionally, the plurality of nouns is in-
dicated by adding a :quantity relation with a +
value for plurality.

D.3 Modifing Encoding Structures

The simplicity of our layer, allows new forms to be
easily evolved just by incorporating new relations.
Since it is impossible to understand all the nuances
of a language without going to the data, we allow
the annotators to incorporate new annotations only
when strictly necessary, such as when the previous
forms do not fit properly or because it would allow
easier use in the future.

Verb To Be In many formalisms, auxiliary verbs
like "to be" and "to have" are not directly encoded
but represented through relations (e.g., :domainin

AMR or :identity in BMR). However, such anno-
tation methods struggle to encapsulate negations
or probabilities within the node itself (e.g., "he is
not here"), leading to the creation of new nodes for
situations necessitated by negations, among other
reasons (e.g., the inclusion of nodes like be-located-
at-91 in AMR). This approach to reification results
in inconsistent annotation practices, as it allows
for multiple representations of similar concepts. To
address this inconsistency, we have opted to explic-
itly include the verb "to be" as a distinct node in
our formalism, requiring annotators to manually ad-
just this structure when encountered. However, in
instances of passive voice, we do not explicitly sep-
arate the nodes, treating sentences in direct voice
instead. We maintain that at our level of abstraction,
there is no semantic distinction that necessitates dif-
ferentiating between passive and active voices, as
"to be" serves merely as an auxiliary verb.

Mode Verb Structure In traditional formalisms,
the possibility of an action is represented using a
specific node, such as the possible-01 predicate in
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Relation Values

:tense (Present) Past Future
:aspect (Simple) Perfect Imperfect Continuous Perfect Continuous
:mood (Indicative) Imperative Conditional Subjunctive

Table 7: Table showing how we encode the Tense, Aspect and Mood. First column relation, next possible values.
Inside parentheses means it is empty since it is the base form.

AMR. For instance, "I can read" in AMR might be
depicted as:

(p / possible− 01 :ARG1 (r / read− 02

:ARG0 (i / I)))

In our approach, aiming to align concepts more
closely with sentence lemmas without relying on
an external repository, "I can read" is represented
as:

(p / can :theme (r / read:agent (i / I)))

However, "can" serves as an auxiliary verb mod-
ifying the main verb, leading to various potential
representations, such as "may" or "might". To ad-
dress this, annotators refined the encoding to specif-
ically denote the modal aspect of the verb, as in:

(r / read :mode possible

:agent (i / I)))

This approach has been extended to other modal-
ities, including Necessity, Obligation, Recommen-
dation, Possibility, and Permission, enhancing clar-
ity and consistency in representation.

Once all graph subsets have been validated, we
retain the incorrect silver instances, as they will be
used to train a large language model. This model
will then apply our validations across the entire
silver corpus.

E Projecting Corrections

After completing the manual validation phase recti-
fying errors and updating structures, our next step,
6 of Section 3.2, involved replicating these correc-

tions and changes across all five languages within
the MSLsilver dataset. As outlined in Appendix D,
tasks such as incorporating missing information
and modifying encoding structures are relatively

straightforward for humans, requiring only identi-
fication of the corresponding sentence part in or-
der to integrate the concept into the graph. How-
ever, the linguistic nuances and the need to ap-
ply these changes across languages render the pro-
cess impractical for algorithmic execution. To over-
come this, we leveraged Large Language Models
(LLMs), which have proven effective as zero-shot
annotators for tasks that are conceptually simple
and well-supported by sufficient examples.

Initially, we utilized a few-shot approach with
GPT-3.5, providing the model with instructions
and examples of the modifications needed. While
this method sometimes led to accurate captures of
meaning and appropriate changes, it often resulted
in structural disruptions within the graph, deviating
from our MSL framework and generating incorrect
graphs. Furthermore, the necessity for a large num-
ber of examples in order for effective learning to
take place led to unwieldy prompts and the inability
to encompass all modification examples in a single
prompt, thereby necessitating extensive examples
and, in turn, leading to significant costs.

Therefore, we shifted to fine-tuning GPT-3.5 us-
ing the silver graphs, the corresponding sentences,
and our corrections across German, English, Span-
ish, French, and Italian. This approach does not
require a high volume of examples in order for
GPT-3.5 to grasp the task, making it an efficient
method for replicating human-like corrections. Sub-
sequently, we validated this refined method on a
subset of corrections, assessing its effectiveness
through perplexity measures.

Table 9 outlines the hyperparameters fine-tuned
in GPT alongside the final losses, indicating these
are the only parameters available for fine-tuning.
Notably, Experiments 1 and 2 exhibit a higher vali-
dation loss than the training loss, suggesting over-
fitting. This outcome may stem from training for 3
epochs with only 2,000 samples (400 corrections
per language), which, despite GPT-3.5’s efficiency
with fewer examples, proves insufficient. Experi-
ments 5, 6, and 7 achieved lower validation losses,
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Modality Necessity Obligation Recommendation Possibility

Auxiliary need have/must should can/might/could/may
Example I need to read I have to read I should read I might read
AMR need-01 obligate-01 recomend-01 possible-01
MSL :mode necessity :mode obligation :mode recommendation :mode possibility

Table 8: Table showing how we encode the Modality. Rows: Modality, Auxiliary verb, example sentence, AMR
representation, MSL representation. Column: row type, and modalities.

Experiment Epochs Batch Training Loss Validation Loss

Experiment 1 3 2 0.0019 0.5876

Experiment 2 3 2 0.0271 0.4033

Experiment 3 2 2 0.0961 0.3069

Experiment 4 2 2 0.2138 0.1875

Experiment 5 2 4 0.1567 0.1538

Experiment 6 2 4 0.1405 0.1425

Experiment 7 2 4 0.6379 0.3071

Table 9: Hyper-parameters for fine-tuning GPT-3.5.

which can be attributed to increased batch sizes,
which reduced the number of steps and enhanced
model generalization.

Delving into specifics with Table 10, Experiment
1 attempted to include two types of message: one
with all possible graph relations and another with-
out. The model was tasked with generating the cor-
rect graph from the original sentences, leading to
high computational costs and poorer performance
compared to Experiments 2 and 3. These latter ex-
periments opted for a simplified message format,
excluding extraneous relations, which improved
outcomes.

Experiments 4 and 6 introduced the silver sen-
tences as input to simplify the task, prompting the
model to replicate modifications in the graphs. This
approach improved performance over previous ex-
periments. Experiment 5, building on Experiment
4’s prompts by adding more task context, unfortu-
nately, increased computational costs and worsened
losses. Experiment 7 aimed to minimize redundant
spans in graph linearization to reduce decoding to-
kens, but this led to poorer performance, which is
hypothesized to be due to increased difficulty in
understanding the graphs. This suggests GPT-3.5’s
familiarity with AMR linearization might be lever-
aged, as it likely forms part of its training corpus.

F Projecting Annotations to Other
Languages

Here we give more details for step 7 of Sec-
tion 3.2, where the corrected graphs created in the
previous step are projected to other languages by
leveraging the parallel corpus. For any given pair
of sentence and graph in English, German, Span-
ish, French or Italian in our parallel data, we have
a sentence in Arabic, Korean, Catalan, Chinese,
Galician and Portuguese. To finetune GPT3.5 for
the task we follow a very similar approach as 5 ,
where the LLM receives as input the sentence and
graph in the same language, but here it also receives
the sentence in another target language and instead
of generating a corrected version of the graph, we
prompt the model to output the graph in the tar-
get language. Table 11 shows an example. At train
time we use 400 corrected graphs per language in
English, German, Spanish, French and Italian to
create pair-wise training samples per pairs of lan-
guages, either as source or target, creating 3,960
training samples. At inference time we set English
as the source, and Arabic, Korean, Catalan, Chi-
nese, Galician and Portuguese as target ones to
obtain their annotations for MSLHQE .

G Architectures used

Throughout our experiments two kinds of archi-
tectures are used. All our LLM-based annotations,
used in steps 6 and 7 of Section 3.2 are based
on GPT3.5, finetuned using OpenAI API in which
only the number of epochs and batch size can be
defined and are reported in Table 9. For the rest of
the experiments described in this paper, we employ
CLAP (Martinez Lorenzo and Navigli, 2024), an
efficient implementation of SPRING (Bevilacqua
et al., 2021), where the parsing task is framed as
a seq2seq task for an Encoder-Decoder system. In
our case, we use mT5-large (Xue et al., 2021) as
the underlying LM with an expanded vocabulary
with the necessary extra tokens specific to our MSL
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Experiment 1
Message Type 1
role: "system", content: "You are a Semantic Parser."
role: "user", content: "Sentence: We have said: It’s raining cats and dogs."
role: "assistant", content: "Graph: (z1 / say :aspect perfect :agent (z2 / we) :content (z3 / rain_cats_and_dog
:aspect continuous))"

Message Type 2
role: "system", content: "You are a Semantic Parser tasked with transforming natural language sen-
tences into semantic graphs. Each graph comprises nodes that represent lemmatized concepts from the
sentence, and edges depicting various relations between these concepts. The potential relations include:
[:against, :age, :appearance, :composition, :context, :cost, :degree, :extent, :frequency, :identity, :par-
ticipant, :location, :membership, :ord, :part, :path, :polarity, :possession, :purpose, :quality, :quantity,
:related, :subevent, :target, :time, :scale, :compared, :content, :similar, :year, :month, :day, :hour, :contrast,
:regardless, :agent, :co-agent, :patient, :co-patient, :theme, :co-theme, :accompanier, :experiencer, :stimu-
lus, :manner, :medium, :source, :product, :instrument, :cause, :concession, :condition, :result, :and, :or,
:multi-sentence, :op1, :op2, ..., :opX, :snt1, :snt2, ..., :sntX, :tense past, :tense future, :aspect continuous,
:aspect imperfect, :aspect perfect, :aspect perfect_continuous, :mood imperative, :mood conditional, :mood
subjunctive, :mode necessity, :mode obligation, :mode recommendation, :mode probability]. Each relation
has its inverse form, which is denoted by adding _of at the end."
role: "user", content: "Sentence: We have said: It’s raining cats and dogs."
role: "assistant", content: "Graph: (z1 / say :aspect perfect :agent (z2 / we) :content (z3 / rain_cats_and_dog
:aspect continuous))"

Experiment 2 & Experiment 3
role: "system", content: "You are a Semantic Parser."
role: "user", content: "Sentence: We have said: It’s raining cats and dogs."
role: "assistant", content: "Graph: (z1 / say :aspect perfect :agent (z2 / we) :content (z3 / rain_cats_and_dog
:aspect continuous))"

Experiment 4 & Experiment 6
role: "system", content: "You are a Semantic Parser."
role: "user", content: "Sentence: We have said: It’s raining cats and dogs. Silver Graph: (z1 / say :agent
(z2 / we) :theme (z3 / rain :theme (z4 / and :op1 (z5 / cat) :op2 (z6 / dog))))"
role: "assistant", content: "Graph: (z1 / say :aspect perfect :agent (z2 / we) :content (z3 / rain_cats_and_dog
:aspect continuous))"

Experiment 5
role: "system", content: "You are a Semantic Parser. Given a sentence and its potentially incorrect silver
graph representation, correct the graph to accurately reflect the sentence’s meaning."
role: "user", content: "Sentence: We have said: It’s raining cats and dogs. Silver Graph: (z1 / say :agent
(z2 / we) :theme (z3 / rain :theme (z4 / and :op1 (z5 / cat) :op2 (z6 / dog))))"
role: "assistant", content: "Graph: (z1 / say :aspect perfect :agent (z2 / we) :content (z3 / rain_cats_and_dog
:aspect continuous))"

Experiment 7
role: "system", content: "You are a Semantic Parser."
role: "user", content: "Sentence: We have said: It’s raining cats and dogs. Silver Graph: say :agent we)
:theme rain :theme and :op1 cat) :op2 dog))))"
role: "assistant", content: "Graph: say :aspect perfect :agent we) :content rain_cats_and_dog :aspect
continuous))"

Table 10: Example of prompts for training GPT. For predicting is the same format but with the role assistant
message.

14077



role: "system", content: "You are a Multilingual Semantic Parser."
role: "user", content: "English Sentence: We say: It’s raining cats and dogs out. English Graph: (z1 / say
:agent (z2 / we) :content (z3 / rain_cats_and_dog :aspect continuous)) Spanish Sentence: Decimos: Llueve
a cántaros’. Spanish Graph:"
role: "assistant", content: "Spanish Graph: (z1 / decir :agent (z2 / nosotros) :content (z3 /
llover_a_cantaros))"

Table 11: Example of prompts for training GPT to project to other languages. For predicting is the same format but
with the role assistant message.

layer, as SPRING did for AMR. For all experiments
we use the Adam (Kingma and Ba, 2015) optimizer
with a 5x10−5 learning rate, 2048 token batch size
and a beam size of 5 at inference time. We train ev-
ery model on a single NVIDIA® RTX 3090 graphic
card with 24GB of VRAM. The average time to
train each model was 48h.

H More Results Generation

Table 12 and Table 13 present additional results
for the Generation and Back-translation ex-
periments, using other evaluation metrics: Bert-
score (Zhang et al., 2020), Chrf++ (Popović, 2017),
and Rouge-L (Lin, 2004). Interestingly, the BLEU
score for Arabic in MSLHQE is notably lower
compared to other languages, reflecting BLEU’s
known limitations for Arabic (Bouamor et al.,
2014). However, other metrics such as Bert-score in
Table 13 reveal a much narrower performance gap,
with MSLHQE achieving the highest performance
across all languages.

I More Results Parsing

When we compare the SMATCH score of our sys-
tem trained with MSLHQE (71.35) against the sys-
tem trained in AMR score using the exact same
architecture for English (83.0), we can observe how
there are around 12 points of difference. However,
as we mentioned in the paper, SMATCH values are
not comparable across semantic representations.
Our merging nodes and inclusion of multi-word
expressions reduce the number of nodes in the
graphs, reducing the number of matches between
the gold and other reference graphs, and making
the error have a bigger impact. For example, in
Figure 11 we can see the impact of having an error
in an AMR graph structure and having an error on
the MSL representation. In the example, we ob-
serve how the predicted graph for MSL and AMR
wrongly expresses the named entity of "Malaga
CF" as "Malaga". However, since AMR tends to

have more graph nodes to represent the same idea
than an MSL, the error’s impact in MSL is much
higher (We can observe how 11(d) has 6 points
lower than 11(c)). Analyzing the node counts in
the training AMR 3.0 corpus graphs, AMR graphs
contain 641,431 nodes, while MSL graphs for the
same sentences have 423.485.
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BLEU Arabic Catalan German English Spanish Korean French Galician Italian Portuguese Chinese AVG SD

MSLAMR 0.00 20.21 33.48 40.60 44.47 2.80 37.36 15.00 38.28 25.50 1.27 26.06 16.74
MSLSilver 0.00 18.20 32.47 44.24 48.02 1.08 39.82 16.04 41.23 25.89 0.98 24.36 18.26
MSLHQ 0.00 16.37 39.00 55.19 57.00 1.15 51.24 16.08 51.80 25.08 1.07 28.54 23.07
MSLHQE 30.84 57.30 40.46 57.26 57.23 22.62 51.62 54.31 51.31 49.57 48.48 47.36 11.46

Bert-score Arabic Catalan German English Spanish Korean French Galician Italian Portuguese Chinese AVG SD

MSLAMR 58.76 85.14 88.76 94.60 90.14 68.31 90.11 86.46 90.64 84.97 45.65 80.31 15.71
MSLSilver 56.27 85.91 88.71 94.44 90.74 68.31 91.38 86.98 90.59 86.72 45.29 80.48 16.35
MSLHQ 55.35 85.69 90.12 95.58 91.92 69.01 91.57 86.84 91.10 87.01 45.68 80.90 16.44
MSLHQE 89.88 92.11 90.00 96.22 92.01 84.96 91.90 91.62 91.19 91.10 89.30 90.94 2.69

Chrf++ Arabic Catalan German English Spanish Korean French Galician Italian Portuguese Chinese AVG SD

MSLAMR 3.98 55.93 67.61 68.62 71.69 27.82 69.64 57.72 70.61 57.48 3.07 50.38 26.27
MSLSilver 7.35 54.27 66.93 71.36 73.49 29.63 73.57 57.81 74.61 59.13 4.51 52.06 26.22
MSLHQ 6.67 54.60 69.85 75.86 75.90 30.07 74.12 58.71 74.87 59.47 4.67 53.16 27.09
MSLHQE 64.83 76.01 69.76 76.05 76.70 58.68 73.97 73.76 75.27 72.45 41.93 69.04 10.55

Rouge-L Arabic Catalan German English Spanish Korean French Galician Italian Portuguese Chinese AVG SD

MSLAMR 1.57 44.97 63.64 69.31 70.16 17.83 61.95 44.66 63 51 51.39 9.68 45.76 23.60
MSLSilver 1.57 45.08 63.33 73.65 72.67 16.00 65.56 44.73 69.26 54.03 14.71 47.32 25.69
MSLHQ 1.62 44.72 66.47 77.23 75.82 16.19 70.12 46.53 72.31 54.47 15.67 49.19 27.01
MSLHQE 55.33 75.25 67.17 78.94 75.82 47.68 71.76 72.84 73.07 71.01 77.44 69.67 9.69

Table 12: Additional Evaluation Metrics for the Generation Experiment. Row Blocks: BLEU, Bert-score, Chrf++,
and Rouge-L. Each block consists of four rows corresponding to each semantic representation: MSLAMR,
MSLSilver, MSLHQ, and MSLHQE . There is one column per language, alongside columns for the average
value across languages and the standard deviation. Best result per language and per Block in bold.

AMR Out Of Domain
BLEU DE EN ES IT AVG SD AR CA DE EN ES KO FR GL IT PT ZH AVG SD

AMR 21.55 32.40 31.02 29.00 28.49 4.83 0.00 1.52 15.87 25.49 18.93 1.73 0.45 2.97 15.43 1.68 0.00 7.64 9.48
BMR 27.16 38.97 36.67 29.30 33.03 5.68 0.00 1.34 22.01 36.29 26.41 1.82 0.24 3.31 21.89 1.41 0.25 10.45 13.40
MSL 41.82 51.36 52.77 42.56 47.13 5.73 24.33 46.34 43.52 52.81 53.48 27.56 49.41 48.41 44.88 48.02 51.35 44.56 9.73

Bert-score DE EN ES IT AVG SD AR CA DE EN ES KO FR GL IT PT ZH AVG SD

AMR 89.84 94.01 92.34 90.91 91.76 1.01 73.74 82.52 89.32 92.49 90.31 80.40 81.98 84.85 89.20 83.11 71.15 83.55 6.75
BMR 91.58 94.62 93.28 92.14 92.90 1.44 73.20 82.64 91.04 93.84 91.93 78.45 80.78 85.16 90.96 83.44 70.83 83.84 7.70
MSL 94.49 93.64 94.92 94.09 94.28 0.49 96.94 94.51 95.52 96.03 96.15 93.01 95.93 95.19 95.11 95.53 95.54 95.40 1.15

Chrf++ DE EN ES IT AVG SD AR CA DE EN ES KO FR GL IT PT ZH AVG SD

AMR 56.16 70.60 63.52 59.77 62.51 6.17 0.26 28.17 49.74 62.63 52.44 26.45 22.84 33.71 50.64 28.77 0.67 31.39 20.36
BMR 62.50 74.34 68.17 65.58 73.83 5.03 0.20 27.18 57.03 71.06 60.76 19.10 19.71 34.94 58.32 28.94 0.48 34.33 24.44
MSL 76.25 72.04 78.06 76.84 75.79 2.62 67.57 78.49 79.06 80.91 82.40 75.61 80.30 80.38 78.44 80.13 51.71 75.90 8.95

Rouge-L DE EN ES IT AVG SD AR CA DE EN ES KO FR GL IT PT ZH AVG SD

AMR 46.77 61.12 56.64 53.12 54.51 6.05 0.77 16.40 43.72 58.64 45.41 17.53 8.38 22.07 40.97 17.37 2.93 24.92 19.24
BMR 53.85 66.42 63.14 55.03 59.61 6.14 0.72 17.08 52.15 67.69 55.07 11.96 6.73 25.13 50.21 19.05 2.04 27.99 23.91
MSL 67.45 67.71 72.04 66.01 68.30 2.60 62.33 74.40 74.02 80.80 78.27 61.57 75.75 76.16 72.35 75.50 79.78 73.72 6.39

Table 13: Additional Evaluation Metrics for the Back-translation Experiment. Row Blocks: BLEU, Bert-score,
Chrf++, and Rouge-L. Each block includes three rows, each representing a semantic formalism: AMR, BMR, and
MSL. Column Blocks: AMR for four translation datasets and Out of Domain data (non-AMR). Each block presents
a series of languages from the test set, followed by the average across these languages and the standard deviation.
Best result per language and per Block in bold.
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(c) Predicted AMR Graph. SMATCH = 98.0
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(d) Predicted MSL Graph. SMATCH = 92.0

Figure 11: Example of differences SMATCH scores across formalisms. 11(a) Reference AMR graph. 11(b) Reference
MSL Graph, 11(c) predicted example AMR graph. 11(d) predicted example of MSL graph.
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