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Abstract

Continual relation extraction (CRE) aims to
continuously learn relations in new tasks with-
out forgetting old relations in previous tasks.
Current CRE methods are all rehearsal-based,
which need to store samples and thus may en-
counter privacy and security issues. This paper
targets rehearsal-free continual relation extrac-
tion for the first time and decomposes it into
task identification and within-task prediction
sub-problems. Existing rehearsal-free methods
focus on training a model (expert) for within-
task prediction yet neglect to enhance the mod-
els’ capability of task identification.

In this paper, we propose an Ensemble-of-
Experts (EoE) framework for rehearsal-free
continual relation extraction. Specifically, we
first discriminatively train each expert by aug-
menting analogous relations across tasks to en-
hance the expert’s task identification ability.
We then propose a cascade voting mechanism
to form an ensemble of experts for effectively
aggregating their abilities. Extensive experi-
ments show that our method outperforms cur-
rent rehearsal-free methods and is even better
than rehearsal-based CRE methods. 1

1 Introduction

Relation extraction (RE) aims to identify the rela-
tion between two entities mentioned in the sentence,
which is essential for many tasks like knowledge
graph construction (Peng et al., 2020). Traditional
RE methods based on pre-defined relation sets have
achieved remarkable performance but cannot han-
dle emerging relations in the real world (Han et al.,
2020). Hence, continual relation extraction (CRE)
is proposed (Wang et al., 2019) to deal with such
a problem, with the goal of continuously learn-
ing new relations while not forgetting previously
learned ones.

∗Corresponding author.
1Our code and data are available at https://github.

com/NLPWM-WHU/EoE-CRE.
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Figure 1: Comparison between (a) existing rehearsal-
free methods for other tasks and (b) our rehearsal-free
method for the RE task.

Existing CRE methods need to store a few typi-
cal samples for each learned relation and then uti-
lize memory replay to avoid the catastrophic for-
getting problem in continual learning. However,
due to privacy and security issues, storing train-
ing data is not allowed in sensitive areas such as
finance and biology (Wang et al., 2023d). In light
of this, we consider the rehearsal-free continual
relation extraction (RFCRE) problem for the first
time, for which we expect to incrementally learn
new relations without storing any training data.

Following the pioneering work in continual
learning (Kim et al., 2022), we decompose RFCRE
into two sub-problems: task identification and
within-task prediction. Benefiting from parameter-
efficient tuning (Li and Liang, 2021; Hu et al.,
2021; Ding et al., 2022), the within-task predic-
tion problem has been well addressed by saving
the task-specific parameters of each task (named
as an expert). Then, the core challenge lies in the
task identification problem, i.e., how to identify the
task-id for each test sample.

Along this line, Wang et al. (2023d) employs a
pre-trained language model (PLM) (Devlin et al.,
2019) based method for task identification in con-
tinual text classification. However, when applying
this method to the RE task, we find its performance
is not very satisfying. The main reason is that
only one PLM is involved in task identification,
as shown in Fig. 1(a). The knowledge in PLM
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might be enough for the text classification task but
is insufficient for the RE task, whose performance
relies heavily on task-related knowledge.

To address this problem, we propose an
Ensemble-of-Experts (EoE) framework for
rehearsal-free continual relation extraction. Our
goal is to aggregate the experts of different
tasks from different stages during the continual
learning who already possess rich task-related
knowledge for both within-task prediction and task
identification, as shown in Fig. 1 (b). Despite the
appealing target, we now face two new research
questions.

[RQ1]: How to increase each expert’s task iden-
tification ability besides the original within-task
prediction ability?

[RQ2]: How to effectively aggregate multiple
experts’ abilities by assigning the right experts for
the given task?

For [RQ1], we find the challenge in task identifi-
cation mainly comes from the analogous relations
across tasks, e.g., father and sibling, and it
is pretty hard for an expert to discern such relations.
In view of this, we introduce a discriminative train-
ing (Zhan et al., 2021) approach to increase each
expert’s task identification ability. Specifically, we
develop a novel relation augmentation method to
generate two types of analogous relations. One is
to reverse the positions of two entities in an old
relation (Han et al., 2021; Wang et al., 2022a). The
other is to remove the context between two entities
in an old relation. Since these augmented relations
have not been seen by the expert of the current
task, they will force the expert to distinguish old
relations from the augmented ones during the dis-
criminative training process.

For [RQ2], we find that directly aggregating the
votes from all experts will bring about a transbound-
ary risk. This is because the scope of task identi-
fication varies among different experts due to the
temporal nature of continuous learning. For exam-
ple, the tth expert has not seen the (t − 1)th task,
so the (t − 1)th task is out of the scope of the tth

expert. To handle this, we propose a cascade vot-
ing mechanism consisting of a two-phase voting
procedure. Specifically, in the first phase, we use
the first expert and the PLM to make an initial de-
cision. Then, in the second phase, we dynamically
aggregate votes from qualified experts for the final
decision.

Our main contributions are as follows:

• To the best of our knowledge, we are the first
to propose the rehearsal-free continual relation
extraction (RFCRE) problem.

• We present an ensemble-of-experts framework
for the RFCRE task, which aggregates experts’
knowledge from different stages in continual
learning for both task identification and within-
task prediction.

• Extensive experimental results on two datasets
show that our method not only outperforms the
state-of-the-art rehearsal-free methods but also
achieves better performance than rehearsal-based
CRE methods.

2 Related Work

Continual Learning (CL) The goal of contin-
ual learning is to extend knowledge from a con-
tinuous data stream without catastrophic forget-
ting (Wang et al., 2023a). Existing CL meth-
ods can be roughly categorized into three groups:
(a) Regularization-based methods mitigate catas-
trophic forgetting by introducing parameter regu-
larization terms (Kirkpatrick et al., 2017) or knowl-
edge distillation loss (Li and Hoiem, 2017), (b)
Rehearsal-based methods store a small set of old
training samples to assist the model in replaying
learned knowledge. Current CRE methods (Wang
et al., 2019; Han et al., 2020; Cui et al., 2021; Zhao
et al., 2022; Hu et al., 2022; Wang et al., 2022a; Xia
et al., 2023; Zhao et al., 2023; Xiong et al., 2023;
Song et al., 2023; Nguyen et al., 2023) mainly
focus on retaining or recovering the old relation
knowledge during the memory replay stage, such
as prototype learning (Cui et al., 2021), curricu-
lum learning (Wu et al., 2021), knowledge distilla-
tion (Zhao et al., 2022), contrastive learning (Song
et al., 2023). (c) Network-based methods dynam-
ically expand or split the network parameters to
learn new tasks. Thanks to the development of
parameter-efficient tuning (PET) methods (Li and
Liang, 2021; Liu et al., 2022; Hu et al., 2021), sev-
eral studies (Wang et al., 2023d,c, 2022c) try to
assign task-specific parameters to each task and
then query the task-id for the given test sample.

In contrast to existing rehearsal-based CRE
methods, we target rehearsal-free CRE, which is
the first attempt in this field.
Task decomposition in CL Based on the
parameter-efficient tuning technique, several CL
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Figure 2: Overall framework of the proposed method. We take task Tk (k=5) for illustration.

methods decompose the CL problem into task iden-
tification and within-task prediction (Kim et al.,
2022). For example, L2P (Wang et al., 2022d)
uses the PLM to retrieve a few prompts from a
fixed prompt pool. EPI (Wang et al., 2023d) uses
Mahalanobis distance for task identification, and
ESN (Wang et al., 2023c) uses energy scores to con-
duct identification. Several studies directly sum-
mate (Wang et al., 2023b) and concatenate (Raz-
daibiedina et al., 2023) parameters for task identifi-
cation.

Different from the above methods, we effectively
aggregate experts from different stages for task
identification via the discriminative training and
cascade voting mechanism tailored for this pur-
pose.

3 Problem Formulation

Relation extraction aims to determine whether
the relation y holds for the head and tail en-
tity in the given instance x. Continual relation
extraction (CRE) aims to train the model from
a series of class-incremental relation extraction
tasks {T1, T2, · · · , TN}, where N is the number
of tasks, each task Tk contains its training set
Dk = {(xi, yi)}Nk

i=1 and relation set Rk. Specif-
ically, xi is an instance of relation yi ∈ Rk, Nk

is the number of Dk and Rk is the label space of
Tk, where Ri ∩ Rj = ∅ for i ̸= j. The CRE
methods aim to learn new relations from Dk and
not forget previous relations. In other words, the
trained model needs to classify all observed rela-
tions R̂k = ∪k

i=1Ri correctly after learning task Tk.
Unlike existing CRE methods that store a small set
of representative samples to avoid catastrophic for-

getting via memory replay, we focus on rehearsal-
free setting without saving any original training
samples to prevent potential privacy safety issues.

4 Methodology

As shown in Fig. 2, when the new task Tk comes,
the overall framework is divided into three steps:
(1) Discriminative Training: This step strengthens
experts’ task identification ability when encoun-
tering inter-task analogous relations. (2) Param-
eter Estimation for Dataset Dk: This step stores
some statistics about the current training dataset
via experts {θi}ki=0 for later task identification. (3)
Inference: This step aims to aggregate the identifi-
cation ability of different experts and then makes
within-task predictions.

4.1 Discriminative Training
The core reason for the stability-plasticity dilemma
in continual learning is the interference between
old and new tasks (Wang et al., 2023a). Intuitively,
the simplest way to eliminate it is to train sepa-
rately with independent models, which may result
in huge resource consumption. Benefiting from the
PET methods, e.g., Prefix Tuning (Li and Liang,
2021; Liu et al., 2022), LoRA (Hu et al., 2021),
we can insert a few additional parameters θk into
the model and then only tune the inserted param-
eters to achieve the performance close to the full
fine-tuning. In this work, we use LoRA (A brief
introduction can be found in Appendix B) to obtain
θk for the current task.

However, previous work (Wang et al., 2023d)
only optimizes the θk based on the dataset Dk. Al-
though it is sufficient for within-task prediction,
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it does not perform satisfactorily on task identi-
fication when encountering inter-task analogous
relations. The reason is that the lack of supervision
for unknown analogous relations causes the expert
to learn shortcuts for classifying relations Rk based
on the dataset Dk. Hence, we introduce analogous
relation augmentation to generate new relations
based on the known relations to avoid expert learn-
ing from shortcuts. Then, we formalize |R̂k|-way
(|R̂k| > |Rk|) classification task via merging gen-
erated new relations and known relations to obtain
the expert θk.
➀ Analogous Relation Augmentation The key to
relation data augmentation lies in how to construct
challenging negative samples. Peng et al. (2020)
have pointed out that relation extraction models
tend to rely on shallow features leaked from entity
mentions for relation classification. Thus, we ap-
ply two strategies to encourage the expert to have
an in-depth understanding of entity and context in-
formation, including the reverse relation augmenta-
tion (Wang et al., 2022a) and undetermined relation
augmentation.

Following Wang et al. (2022a), given an instance
x from dataset Dk, we first determine whether its
relation is symmetric 2. If the relation is not sym-
metric, we can construct a new relation by swap-
ping the markers of the head and tail entities. For
example, for the sentence “[E11] Beijing [E12]
held the [E21] Winter Olympics [E22]”, the re-
lation changed from host to place of hosting when
we switched the markers of the head and tail enti-
ties. After that, we denote the dataset augmented
by this strategy as Dr

k.
Wang et al. (2022b) constructs counterfactual

examples by removing the context to eliminate
entity bias. This implies a hypothesis: If an
instance only retains entity information and re-
moves the context information, there should be
no relation between the entities. For example, it
is hard for us to determine the relation between
Beijing and Winter Olympics without context in-
formation; the relation may be host, participate,
or apply. In view of this, we build a new rela-
tion by removing the context information of the
instances named undetermined_relation.
Note that this strategy is applied to both
Dk and Dr

k, and we denote the dataset with
undetermined_relation as Du

k .
2Symmetric relations imply that swapping the order of the

head and tail entities does not change the relation, such as
per:siblings.

➁ Training After constructing the datasets Dr
k and

Du
k , we insert them into the original dataset. For

convenience, we denote relation-augmented dataset
as D̂k = Dk ∪Dr

k ∪Du
k and merged relation set as

R̂k, where the maximum size of R̂k is 2∗ |Rk|+1.
Given an input instance x = {w1, w2, · · · , wn} ∈
D̂k with the corresponding entity pair, we insert
two pairs of special tokens [E11]/[E12] and
[E21]/[E22] at the beginning and end of the
head entity and the tail entity, respectively. Except
for the first task, we inject additional parameters
θk into BERT (Devlin et al., 2019) as backbone to
encode the input to obtain the contextual represen-
tations fθk(x) = {w1,w2, · · · ,wn}. Then, we
directly concatenate the representation of [E11]
and [E21] as the relational representation of xi,
which is defined as

hi = w[E11] ⊕w[E21]. (1)

Then, we initialize the relation embeddings ϕk ∈
R|R̂k|×d as |R̂k|-way classifier weight to classify
both old relations and new relations. Therefore, we
can optimize θk and ϕk using cross-entropy loss,
with the training objective as follows:

Lce(θk, ϕk) = − 1

|D̂k|

|D̂k|∑

i=1

|R̂k|∑

j=1

I(yi = rj)logPθk (rj |xi),

(2)

where Pθk(xi) = softmax(hi ·ϕk) and yi denotes
the gold relation 3. Note that we use full fine-tuning
for the first task to provide a good initialization for
subsequent tasks.

4.2 Parameter Estimation for Dataset Dk

After training the k-th task, we need to save task-
specific information for subsequent task identifica-
tion due to the unavailability of the previous task
data. Inspired by Wang et al. (2023d), we assume
that the class-conditional distribution follows the
multivariate Gaussian distribution based on Gaus-
sian discriminant analysis. Then, with the task
dataset Dk and θj , we can utilize the maximum like-
lihood estimator to estimate |Rk| class-conditional
Gaussian distributions N (µj

k,c,Σ
j
k) with a shared

covariance Σj
k:

µj
k,c =

1

|Dk,c|
∑

yi=c

hi, c ∈ Rk, (3)

Σj
k =

1

|Dk|
∑

c

∑

yi=c

(hi − µj
k,c)(hi − µj

k,c)
⊤, (4)

3After training the k-th task, we discard the relation em-
beddings of augmented relations.
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where hi = fθj (xi) and Dk,c denotes samples with
a relation c in Dk. In practice, we further share
the covariance of seen tasks by θj to avoid numeric
deviation:

Σj =
1

k − j + 1

k∑

i=j

Σj
i (5)

4.3 Inference
Currently, we obtain experts {θ}ki=1 for each task,
but we cannot access the task-id of each test in-
stance at the testing stage. Thus, when given a test
instance, we must decide which expert to use for
within-task prediction. Wang et al. (2023d) rely
on the class-conditional Gaussian distribution esti-
mated by the original PLM and uses Mahalanobis
distance (Lee et al., 2018) for task identification.
However, the knowledge in PLM is insufficient for
RE, and it also ignores the potential identification
capability of experts with task-related knowledge
from different stages for task identification.

Limited by the sequential temporal nature of con-
tinuous learning, directly aggregating votes from
different experts suffers from transboundary risk.
For example, the 2nd expert has not seen the first
task, so the first task is out of the scope of θ2.
Hence, we proposed a cascade voting mechanism
to overcome it. For convenience, we sequentially
explain the voting protocol of θk, cascade voting
mechanism, and within-task prediction.
➀ Voting Protocol of θk Firstly, we map the test
instance x into the representation h by the ex-
pert model h = fθk(x). Then, with the above
induced class-conditional Gaussian distributions
{N (µk

i,c,Σ
k)}|Ri|

c=1 of task Ti by expert θk, we
can define the confidence score through com-
puting the Mahalanobis distance between h and
{N (µk

i,c,Σ
k)}|Ri|

c=1 :

CTi
k (x) = min

c

(
h− µk

i,c

)⊤
Σk−1

(
h− µk

i,c

)
, i ≥ k,

(6)

where CTi
k (x) denotes the confidence score of task

Ti by θk. Then, the voting result Vx
k of expert k

can be defined as:

Vx
k = argmin

i
CTi
k (x), i ≥ k. (7)

.
➁ Cascade Voting Mechanism As shown in Fig. 2,
if we directly allow experts at each stage to partici-
pate in voting, the available voting range for each
expert is inconsistent. To this end, we propose a
cascade voting mechanism to solve the transbound-
ary risk. Specifically, we first introduce the original

Algorithm 1 Cascade Voting Mechanism
Require: Voting results Vx

0 and Vx
1 of expert θ0 and θ1, Maxi-

mum allowed experts m, Confidence scores {CTi
j (x)|2 ≤

j ≤ k − 1, j ≤ i ≤ k}
Output: Voting result Vx

1: if Vx
0 = Vx

1 then
2: return Vx

0 ;
3: end if
4: start = 0;
5: end = min(min(Vx

0 ,Vx
1 ),m);

6: result = dict();
7: for e ∈ [start, end] do
8: Vx

e = argmini CTi
e (x), i ≥ end;

9: result[Vx
e ] += 1;

10: end for
11: return argmaxc result[c];

PLM θ0 as an additional expert4 to form a fair vot-
ing stage with θ1 in the first phase. Then, based
on the voting results of the first phase, we dynami-
cally aggregate votes from qualified experts from
the final decision in the second phase. The detailed
procedure of the cascade voting mechanism for the
task Tk is shown in Algorithm 1, which mainly
contains two phases:

First Phase (line 1 ∼ 5): If the voting results
of θ0 and θ1 are consistent, we directly return the
results. If inconsistent, the minimum value of the
voting result min(Vx

0 ,Vx
1 ) is taken as the maximum

range of allowed voting experts. Noted that to avoid
the surge in the number of voting experts as tasks
increase, we introduce an additional threshold m
to limit the maximum number of experts selected.

Second Phase (line 6 ∼ 11): For each expert
θj , j ∈ [start, end] is allowed to vote, we frame
its voting range at [end, k] to ensure the fairness,
and calculate the task with the highest votes as the
voting result.
➂ Within-task Prediction After obtaining the vot-
ing result Vx, we can use the expert θVx with the
corresponding relation embeddings ϕVx to predict
the relation of the given instance x.

5 Experiments

5.1 Experimental Setup
Datasets We employ two widely used relation ex-
traction datasets, i.e., TACRED (Han et al., 2018)
and FewRel (Han et al., 2018), to evaluate the per-
formance of our proposed method. To ensure a
fair comparison, we follow the order and the di-
vision of tasks in Cui et al. (2021) by dividing

4To adapt the PLM to the relation extraction, we have
tried several different representation extraction methods and
selected Entity Avg. finally. Please see Appendix A for details.
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FewRel Mem. T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

CEAR‡

10 ∗ |R̂k|

98.1
:::
95.8

:::
93.6 91.9 91.1 89.4 88.1 86.9 85.6 84.2

CDec‡ 98.2 94.9 93.2 91.9
:::
91.3 89.6 88.3 87.1 86.0 84.6

RationaleCL‡
:::
98.6 95.7 93.4

:::
92.3

:::
91.3

:::
89.7 88.2 87.3 86.3 85.1

CFDR ‡ 98.3 94.7 93.1 91.4 90.6 89.4 87.9 86.9 85.4 84.3
InfoCL‡ 98.3 95.2 93.4 92.1

:::
91.3

:::
89.7

:::
88.5

:::
87.7

:::
86.8

:::
85.4

FT

0

98.4 94.1 90.4 84.8 82.6 79.3 76.6 72.9 68.4 64.6
EWC 98.4 94.4 90.2 85.5 82.7 79.6 77.9 74.1 70.5 66.7
LwF 98.4 93.5 88.3 80.6 73.8 68.0 61.1 54.0 48.1 43.8
L2P 97.4 90.8 83.6 76.5 68.9 64.1 61.0 57.4 50.1 44.6
EPI (Prefix) 97.5 94.7 92.5 91.3 90.0 88.1 86.6 85.0 83.7 81.9
EPI (LoRA) 97.3 94.9 92.7 91.4 90.2 88.3 86.8 85.1 83.8 82.1

EoE 0 97.8 95.0 93.6 92.5† 91.6† 90.0† 88.9† 87.9† 86.9† 85.5†

TACRED Mem. T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

CEAR‡

10 ∗ |R̂k|

97.7 94.3
:::
92.3

:::
88.4

:::
86.6 84.5 82.2 81.1 80.1 79.1

CDec‡ 97.9 93.1 90.1 85.8 84.7 82.6 81.0 79.6 79.5 78.6
RationaleCL‡

:::
98.6

:::
94.4 91.5 88.1 86.5

:::
84.9

:::
84.5

:::
82.5

:::
81.6

:::
80.8

CFDR ‡ 98.1 93.8 89.8 85.8 84.4 83.4 81.6 79.9 79.7 79.1
InfoCL‡ 96.3 92.4 88.9 87.3 83.9 82.4 82.0 79.7 78.4 78.2

FT

0

98.5 90.6 78.1 73.1 71.2 65.6 61.0 58.1 55.0 50.5
EWC 98.5 90.1 79.0 73.3 69.8 65.8 62.6 59.2 55.7 50.2
LwF 98.5 88.7 71.5 64.5 60.4 53.3 48.9 45.4 42.9 37.4
L2P 96.9 88.2 73.8 68.6 66.3 63.1 60.4 59.1 56.8 54.8
EPI (Prefix) 98.0 94.5 89.4 86.4 85.7 84.5 82.9 82.0 81.7 80.4
EPI (LoRA) 97.8 94.7 89.0 85.8 85.4 84.3 82.7 81.6 81.4 80.0

EoE 0 98.7 94.7 90.6 87.8∗ 87.2∗ 85.9∗ 84.3 83.2∗ 82.7∗ 81.5∗

Table 1: Classification accuracy (%) on all observed relations after learning each task. The baseline results with
“‡” are retrieved from Zhao et al. (2023); Song et al. (2023) while other results are reproduced using their released
code. The best and the second best accuracy scores under the rehearsal-free setting are in bold and underlined,
respectively. The best accuracy score under rehearsal-based settings is in

::::
wave. † and ∗ denote the statistically

significant improvements with p < 0.01 and p < 0.05 over the results by the best rehearsal-free baseline EPI.

each dataset into 10 sub-datasets according to rela-
tions, each representing a task. Please refer to the
Appendix C.1 for the details of the datasets.

Metrics We use two metrics for evaluating the per-
formance. Identification Accuracy (IA) denotes
the accuracy of the task identification; Classifica-
tion Accuracy (CA) denotes the relation classifica-
tion accuracy on observed relations, which serves
as the main metric.

Baselines We first compare our proposed EoE
method with rehearsal-free continual learning meth-
ods. Since there is no existing RFCRE method,
we migrate four rehearsal-free CL methods from
other fields to the relation extraction task, and di-
vide them into two groups: (1) Regularization-
based methods: EWC (Kirkpatrick et al., 2017)
and LwF (Li and Hoiem, 2017). (2) Network-
based methods: L2P (Wang et al., 2022d), and
EPI (Wang et al., 2023d). Both network-based

methods are implemented with prefix-tuning. For a
more fair comparison, we extend EPI with a LoRA
implementation.

We then compare our EoE method with five
latest rehearsal-based continual relation extrac-
tion (CRE), including CEAR (Zhao et al., 2023),
CDec (Xia et al., 2023), RationaleCL (Xiong
et al., 2023), CFDR (Nguyen et al., 2023), and
InfoCL (Song et al., 2023). 5

Implementation Details We implement the frame-
work based on Pytorch (Paszke et al., 2019)
and Huggingface (Wolf et al., 2020) and use
bert-base-uncased (Devlin et al., 2019) as
the backbone. For the first task, we use full
fine-tuning, with the learning rates of the back-
bone and classifier set to 1e-5 and 1e-3, respec-
tively. the number of epochs is set to 10, and the
Adamw optimizer is employed. For the subsequent

5Please refer to Appendix C.2for the details of baselines.
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Figure 3: Task identification accuracy ( %) on all ob-
served tasks after learning each task.

tasks, we freeze the backbone’s parameters and use
LoRA (Hu et al., 2021) to assign a small number
of task-specific parameters to each task, with its
learning rate set to 5e-4, rank set to 8, the alpha
parameter for Lora scaling set to 16, and dropout
set to 0.1. The number of epochs is set to 5, and
the learning rate of the classifier is set to 3e-2. All
experiments were conducted on an NVIDIA RTX
3090 GPU, and all results were averaged by taking
5 different task sequences.

For a more comprehensive comparison experi-
ment, we migrated four rehearsal-free methods to
relation extraction. Since the task boundaries are
known during training, we mask non-current task
relations at the training for FT, EWC, LwF, and
L2P. For EPI, which has the closest performance,
we additionally implement LoRA (Hu et al., 2021)
to guarantee a fairer comparison.

5.2 Main Results

Table 1 presents the comparison results of our pro-
posed EoE method and baselines. Based on the
results, we have the following findings.

(1) Our EoE method achieves state-of-the-art
performance in almost all cases. It surpasses the
latest rehearsal-based methods focusing on rela-
tion extraction and the latest rehearsal-free meth-
ods adapted from other tasks. Moreover, on the last
T10 on FewRel, even the performance of the best
rehearsal-free method EPI is significantly worse
than all rehearsal-based methods. In contrast, our
EoE still wins in this case without the help of stored
samples. In summary, the improvements of our
method over both the rehearsal-free and rehearsal-
based methods clearly demonstrate the effective-
ness of our ensemble of expert approaches.

(2) As the task proceeds, there is a performance
decrease for all methods. For rehearsal-based meth-
ods, the reason lies in the interference between
old and new tasks. For network-based methods
like EPI and ours, the reason is mainly due to

CA T6 T7 T8 T9 T10

Fe
w

R
el

EoE 90.0 88.9 87.9 86.9 85.5

w/o DT 90.1 88.8 87.7 86.5 85.0
w/o UR 90.1 89.0 88.1 87.0 85.5
w/o RR 90.0 88.9 87.8 86.7 85.3
w/o CV 89.4 88.1 87.1 85.9 84.3
w/o All 89.2 87.8 86.7 85.5 83.9

TA
C

R
E

D

EoE 85.9 84.3 83.2 82.7 81.5

w/o DT 84.1 82.7 81.4 80.9 79.8
w/o UR 84.8 83.5 82.5 81.8 80.8
w/o RR 84.3 83.0 82.0 81.3 79.9
w/o CV 84.0 82.5 81.1 80.5 79.3
w/o All 82.6 81.2 79.9 79.5 78.2

IA T6 T7 T8 T9 T10

Fe
w

R
el

EoE 91.8 90.8 89.7 88.6 87.2

w/o DT 91.7 90.5 89.5 88.1 86.6
w/o UR 91.9 90.8 89.8 88.6 87.2
w/o RR 91.8 90.7 89.6 88.3 86.9
w/o CV 91.1 89.9 88.9 87.6 86.1
w/o All 90.8 89.6 88.4 87.1 85.5

TA
C

R
E

D

EoE 87.5 85.9 84.8 84.1 83.1

w/o DT 86.1 84.6 83.2 82.5 81.6
w/o UR 86.8 85.4 84.5 83.5 82.6
w/o RR 86.4 84.9 83.9 82.9 81.7
w/o CV 85.5 84.1 82.7 81.9 80.9
w/o All 84.5 83.1 81.7 81.0 79.9

Table 2: Results in terms of CA (upper part) and IA
(lower part) for ablation study.

the increase in the number of tasks, which con-
sequently brings about the increase in the difficulty
of task identification. To have a close look, we
compare the task identification accuracy between
our method and EPI in Fig. 3. It can be seen that
our method is significantly better than EPI which
only utilizes BERT for task identification. We can
conclude that the significant improvements in clas-
sification accuracy of our method over EPI can be
primarily attributed to the experts’ ability of task
identification.

6 Analysis

6.1 Ablation Study

To validate the effectiveness of each component in
our proposed framework, we conduct an ablation
study. Specifically, (1) w/o DT denotes we remove
the discriminative training, (2) w/o UR denotes
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Group Model FewRel TACRED

G1
EoE w/o DT 77.0 72.6
EoE 78.4 (+1.4) 74.3 (+1.7)

G2
EoE w/o DT 86.5 76.2
EoE 87.0 (+0.5) 77.9 (+1.7)

G3
EoE w/o DT 95.6 87.5
EoE 95.5 (-0.1) 89.0 (+1.5)

Table 3: Analysis results for discriminative training.
After training the last task, we divide all relations into
three groups according to the similarity between the
relation and the task.

we remove undetermined relation augmentation in
DT, (3) w/o RR denotes we remove reverse rela-
tion augmentation in DT, (4) w/o CV denotes we
remove the cascade voting mechanism and only
use the first model for task identification, (5) w/o
All denotes we remove DT and CV simultaneously,
which means we only optimize the expert with stan-
dard cross-entropy loss on each dataset and directly
use the first expert for task identification.

We present the ablation results in terms of clas-
sification accuracy (CA) and task identification ac-
curacy (IA) in Table 2. From these results, we
can observe that (1) Both DT and CV are effective,
and the impact of the cascade voting mechanism
is more significant. (2) Adding either reverse re-
lations (RR) or undetermined relations (UR) can
significantly enhance the experts’ task identifica-
tion capability. (3) Adding both RR and UR can
further improve the task identification capability of
the experts on TACRED, but the results on FewRel
do not meet our expectations. We believe the main
reason lies in the characteristics of the datasets.
FewRel is collected from Wikipedia, where many
samples involve commonsense relations between
entities and do not rely too much on the textual con-
text. (3) The removal of DT and CV results in the
biggest drop in performance. This proves that the
two components are inextricably linked and play
an important role.

6.2 Analysis on Discriminative Training

To further exploit why the discriminative training
can improve the task identification capability of the
expert when encountering analogous relations, we
employ a relation-task similarity metric to divide
all observed relations into three nearly equal-size
groups, where the similarity between the i-th rela-
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Figure 4: Task identification accuracy on each task after
training all tasks. E1, E2, and E1&E2 denote results by
the expert θ1, θ2, and θ1 and θ2 (intersection).

tion in a task t and the j task is defined as:

sim(i, j) = CTj
0 (µ0

t,i), j ̸= t, (8)

where CTj
0 (µ0

t,i) is the Mahalanobis distance be-
tween the i-th relation and the j-th task computed
by BERT. Then, we sort all relations based on
minj sim(i, j), i /∈ Rj and divide them into three
groups, and present the task identification results
in Tab. 3.

From these results, we can conclude that the
analogous relations between tasks are the key rea-
son for the decline in identification accuracy. Note
that the relation-task similarity decreases from G1
to G3, while the increase of EoE with the discrim-
inative training becomes more significant, e.g., a
1.4, 0.5, -0.1 gain on G1, G2, G3, respectively. The
effect of DT is more obvious on the FewRel dataset
than that on TACRED. The reason might be that
the amount of each relation is the same for all tasks
on FewRel, and thus the trend is much clearer.

6.3 Analysis on Cascade Voting

Overall, the generalization ability of an ensemble
of multiple experts is greater than that of a single
expert. Still, two points need to be verified. (1)
The identification accuracy of experts should not
be too bad and should be similar. (2) The identifi-
cation results among different experts must have
certain differences. Hence, to further explore why
the cascade voting mechanism can bring perfor-
mance gains, we report the identification accuracy
only with θ0 or θ1 on each task after all tasks are
finished.

From the results in Fig. 4, we can observe that:
(1) There is no significant performance difference
in identification accuracy between θ1 and θ2. We
can also find that the expert θk significantly out-
performs {θi}k−1

i=1 on the task Tk. For example, θ2
outperforms θ1 on the T2 task by a large margin.
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Figure 5: Impact of the threshold m.

(2) There is a large variability in the prediction
results of θ1 and θ2, which is the source of the im-
provement in identification brought about by the
subsequent cascade voting.

6.4 Analysis on Computational Cost
The inference in our RFCRE task is divided into
two steps: task identification and within-task pre-
diction. The main difference between the best
rehearsal-free baseline (EPI) and our EoE is that
we aggregate experts from different stages for task
identification. However, our EoE needs to use all
previous experts to estimate the distribution pa-
rameters of the dataset after training at each stage,
which may bring about extra computational cost.
To reduce the overhead, we introduce a threshold m
to limit the number of models that can participate
in estimation. Fig. 5 shows the changes in classifi-
cation accuracy under different thresholds. m = 1
denotes we only use θ1 for task identification 6.
m = 2 denotes we incorporate {θ0, θ1, θ2}.

From Fig. 5, we can find that: (1) Using only one
expert for identification has a significant drop com-
pared to multi-expert identification since experts
trained on different tasks have their own biases. (2)
Simply adding one additional expert like the expert
θ2 to select the results of the first phase in cascade
voting can effectively improve the performance.
(3) As more experts participate in the voting, the
performance increases, but it is limited in magni-
tude. Thus, the number of experts can be selected
according to the real world scenario.

The cascade voting mechanism consists of two
phases, and only tasks with conflicting results in
the first phase proceed to the second phase. To
analyze the efficiency of the cascade voting mecha-
nism, we calculate the percentage of each task that
requires a two-phase voting procedure, as shown
in Tab. 4. We can find that: (1) The proportion
of two-phase voting rises as the number of tasks

6The reason θ0 is not needed here is that a cascade voting
mechanism is not possible with only two experts.

Dataset T2 T3 T4 T5 T6 T7 T8 T9 T10
FewRel 3.01 4.80 5.79 6.88 8.31 9.35 10.64 11.55 12.72

TACRED 3.15 8.19 10.17 10.54 11.72 12.54 13.24 13.82 13.96

Table 4: The proportion (%) of test samples that need a
two-stage voting during cascade voting.

increases. This is because the increase in the num-
ber of tasks leading to an increase in the difficulty
of task identification. (2) Even up to the 10-th
task, the proportion of two-phase voting is about
12-14%, so nearly 85% of test samples only need
the first phase to complete the task identification.

7 Conclusion

In this work, we make the first attempt on the
rehearsal-free continual relation extraction prob-
lem. We propose an ensemble-of-experts frame-
work consisting of discriminative training and cas-
cade voting. Specifically, we first introduce dis-
criminative training to enhance the identification
ability of experts when facing inter-task analogous
relations. We then propose a cascade voting mech-
anism to aggregate experts’ abilities from differ-
ent stages. Extensive experimental results show
that our method significantly outperforms existing
rehearsal-free and rehearsal-based continual rela-
tion extraction methods.

Limitations

The main limitation of our proposed framework
lies in the extra time and space cost. Though we
introduce a threshold to limit the number of ex-
perts participating in task identification, additional
overhead is unavoidable as long as multiple experts
are involved. Besides, except for the first task, we
do not consider inter-task knowledge transfer of
the subsequent tasks’ training while only assigning
independent task-specific parameters for each task
via PET methods.
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Figure 6: Changes in task identification accuracy (%)
with different representation extraction methods for TA-
CRED dataset.

A Impact of Different Representation
Extraction Methods

EPI (Wang et al., 2023d) applies the original
BERT (Devlin et al., 2019) to model the repre-
sentation space of each relation as a multivariate
Gaussian distribution. However, it uses the average
representation of the last layer for each instance for
coarse-grained text classification tasks, which is
insufficient for relation extraction. For a fair com-
parison, we utilize several different methods to test
the original BERT’s ability of task identification in
continual relation extraction, including:

• CLS: Referring to the pre-training objective, we
directly use the [CLS] vector as the representa-
tion of the instance.

• Avg.: Following Wang et al. (2023d), we use
the average representation of the last layer as the
representation of the instance.

• Prompt: Following Genest et al. (2022), we con-
vert the input instance with the prompt template
“[CLS] x h [MASK] t [SEP]” where x is the
input text, h is the head entity and t is the tail
entity. Then, we use the [MASK] vector as the
representation of the instance.

• Entity Avg.: We concatenate the average repre-
sentation of the head entity h and tail entity t as
the representation of the instance.

As shown in Figure 6, the task identification
accuracy of CLS and Avg. decreases rapidly as the
number of tasks increases because they ignore the
task-related knowledge of relation extraction. In

addition, we can find that Entity Avg. shows better
identification performance than Prompt, so we use
Entity Avg. as the default extraction method of the
original BERT.

B Brief introduction of LoRA

Pre-trained language models have a low intrinsic
dimension during the adaption of the downstream
task (Aghajanyan et al., 2021). The essence of
LoRA lies in introducing additional parameters
A ∈ Rd×r and B ∈ Rr×k to supplement the pre-
trained weight matrix W0 ∈ Rd×k, where rank
r ≪ min(d, k). At the training stage, LoRA freeze
the update of W0 and utilize a low-rank decompo-
sition W0 + ∆W = W0 + AB to represent its
update. This means that the forward pass h = Wx,
where x is the input vector, is modified as follows:

h = Wx+∆Wx = Wx+ABx (9)

C Details of Experimental Setups

C.1 Datasets

FewRel (Han et al., 2018): is a large-scale and bal-
anced relation extraction dataset that contains 80
relations and 700 instances for each relation. Fol-
lowing Cui et al. (2021), we partitioned the dataset
into 10 sub-datasets, each containing 8 relations.
For each relation, we sampled 420 samples as the
training set and 140 as the test set.
TACRED (Han et al., 2018): is a widely used
RE dataset containing 42 relations (including
no_relation). Following Cui et al. (2021), we
remove no_relation in our experiments and
partition the dataset into 10 sub-datasets, each con-
taining 4 relations. The number of training samples
of each relation is limited to 320, while the number
of test samples of each relation is limited to 40.

C.2 Baselines
In this work, we compare five rehearsal-free meth-

ods as follows:

• FT: directly fine-tune the model without any
strategy to prevent catastrophic forgetting, which
can be viewed as the lower bound of continual
learning.

• EWC (Kirkpatrick et al., 2017): maintains an
importance matrix with the same scale as the
model first and then uses L2 loss to constrain the
update of important parameters.
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• LwF (Li and Hoiem, 2017): utilizes knowledge
distillation to force the predicted probability of
the old relations between the old model and the
current model to be the same.

• L2P (Wang et al., 2022d): introduces a prompt-
based continual learning framework that freezes
the pre-trained encoder and then adapts to differ-
ent tasks via a shared prompt pool.

• EPI (Wang et al., 2023d): leverages the pre-
trained language model to estimate the input dis-
tribution for each task with a Gaussian and then
uses the Mahalanobis distance for task identifica-
tion.

Besides we also compare five rehearsal-based con-
tinual learning methods focus on relation extraction
as follows:

• CEAR (Zhao et al., 2023): proposes memory-
insensitive relation prototypes and memory aug-
mentation during rehearsal replay to alleviate
catastrophic forgetting.

• CDec (Xia et al., 2023): proposes a classifier de-
composition framework with empirical initializa-
tion and adversarial training to alleviate classifier
bias and representation bias.

• RationaleCL (Xiong et al., 2023): proposes a
rationale-enhanced framework to improve the
model’s robustness in the face of future analo-
gous relations via multi-task rationale tuning and
contrastive rationale replay strategy.

• CFDR (Nguyen et al., 2023): proposes a class-
wise feature decorrelation regularization to boost
eigenvalues.

• InfoCL (Song et al., 2023): exploits fast-slow
contrastive learning during new task training and
current-past contrastive learning during rehearsal
replay to learn more comprehensive representa-
tions.
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