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Abstract

Pre-trained language models (PLMs) exhibit
promising retrieval performance in various do-
mains. However, they struggle in domains un-
seen during training, since the word distribution
can shift significantly. To remedy this, GPL,
a generative domain adaptation (DA) method,
was proposed to generate pseudo queries and
labels for documents in unseen domains to
further train the retriever model. However,
the pseudo queries often do not resemble real
queries from the target domains, as they do
not integrate the domain’s distributional infor-
mation. we propose Distribution-Aware Do-
main Adaptation (DADA) to guide the model
to incorporate the term distributions at both
the document-level and the corpus-level, which
we refer to as observation-level and domain-
level feedback, respectively. Empirical results
on five distinct datasets demonstrate that our
method effectively adapts the model to target
domains and expands document representation
to unseen gold query terms. 1

1 Introduction

Recent advances in pretrained language models
(PLMs) (Devlin et al., 2018; Clark et al., 2020)
have significantly enhanced our ability to retrieve
information (Yates et al., 2021; Nogueira and Cho,
2019). These advancements are particularly pro-
nounced when the data closely aligns with what
the PLM was originally trained on, denoted as “in-
domain” data. However, challenges emerge when
dealing with “out-of-domain” (OOD) data, charac-
terized by substantial disparities from the training
data. Studies such as Thakur et al. (2021) have
highlighted these challenges.

In response to these issues, various domain adap-
tation (DA) methods have been proposed. A widely

∗Both authors contributed equally to this research.
†Corresponding Authors

1The code and experimental details are available at
https://github.com/ldilab/dada.

Method
Information Level Update

Observation Domain Data Loss

GPL ✓ ✓
DADA (Ours) ✓ ✓ ✓

Table 1: Taxonomy based on the information level
and update mechanism to classify the baseline method
(GPL) and our approach (DADA), following Chen et al.
(2023). The information level indicates whether the
method utilizes information specific to a particular data
point (observation-level) or encompasses broader data
trends (domain-level). The update mechanism illustrates
how this information is utilized, whether it involves up-
dating the training data or the loss function.

employed technique is Generative Pseudo-query
Learning (GPL) (Wang et al., 2021), which entails
generating pseudo queries linked to specific doc-
uments to enhance PLM learning. However, the
efficacy of these methods hinges heavily on the
quality of these pseudo queries. Poorly constructed
queries can significantly diminish the effectiveness
of the method.

DA techniques can be categorized by two main
axes, as illustrated in Table 1, based on Chen et al.
(2023). The first category examines the level of
information used by DA methods, either focusing
on individual document distribution (observation-
level) or broader corpus distribution (domain-level).
The second category considers how these meth-
ods integrate such feedback, either by updating the
training data or the loss function used for learning.

DA methods, like GPL, aim to generate pseudo
queries that approximate “gold query terms” from
users at test time. However, GPL fails to generate
terms that are unseen from in-domain training data,
when failing to capture the following signals:

• Expanded document observation: Gold query
terms may not appear in the observed docu-
ment, but it might be in its expanded vocabu-
lary including synonyms of the document.
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Datasets
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Figure 1: The number of gold query terms that are
not found in the document. GPL injects the query q
generated from the document d as the target, GPL+

uses q generated from d and the expanded terms.2

• Contrasted domain distribution: Gold query
terms may be infrequently seen in the training
corpus but more frequent in the target corpus,
as approximated from its subset.

Table 1 demonstrates that GPL concentrates on
observation-level feedback by providing expanded
terms through query generation. However, Fig-
ure 1 reveals that the query generated by GPL (or-
ange) includes only a subset of the gold terms that
observation-level can provide (light blue). Even
when leveraging the expanded terms from observa-
tion, such as synonyms, during the query genera-
tion process (blue), denoted as GPL+, the number
of generated gold terms does not exhibit a signif-
icant increase. In essence, the query generation
process results in a lack of crucial input at the ob-
servation level, diminishing the effectiveness of
data updating methods. This limitation motivates
the importance of implementing a loss updating
methodology.

In contrast, our proposed DA method:
Distribution-Aware Domain Adaptation
(DADA), uniquely incorporates both observation-
and domain-level feedbacks. While GPL leans
more towards observation-level feedbacks, DADA
widens the observation-level feedback and even
integrates domain-level feedback, offering a
broader statistical perspective. The observation-
level feedback is widened by domain-level
feedback that can approximate the red bar on
Figure 1. To obtain such feedback without access
to entire OOD corpus, as some documents are
accessible in a real-world scenario, we utilize the

2The analysis of discrepant tendency in SciDocs compare
to other 3 datasets can be found on Appendix A.2

information obtained from the subset of OOD
corpus. Consequently, DADA prevents the loss
of essential information during query generation,
enhancing the efficiency and effectiveness of the
DA process, as demonstrated in experiments on
five corpora from the BEIR benchmark(Thakur
et al., 2021).

2 Related Work

This section delves into the landscape of PLMs
within information retrieval (IR) and examines the
evolution of DA techniques that have paved the
way for our proposed method.

2.1 PLMs in IR

The integration of PLMs, exemplified by
BERT (Devlin et al., 2018) and ELECTRA (Clark
et al., 2020), has revolutionized IR. These models
excel in understanding and processing complex
linguistic patterns, significantly enhancing docu-
ment retrieval and ranking processes. Despite their
advancements, challenges arise when applying
these models to OOD data, an issue highlighted
in studies such as Thakur et al. (2021). This
limitation has promoted research into effective
DA techniques to ensure the robustness of PLMs
across diverse domains.

2.2 DA for PLMs

Addressing the domain shift challenge has led
to the development of various DA strategies.
A prominent approach involves creating pseudo
queries (Ma et al., 2021; Liang et al., 2020) to
bridge the gap between the PLM’s training domain
and new target domains. This strategy is crucial in
ensuring the relevance and applicability of PLMs to
diverse datasets. GPL (Wang et al., 2021) is a note-
worthy example, utilizing a cross-encoder mech-
anism to enhance the alignment between pseudo
queries and target documents. However, these tech-
niques tend to focus on observation-level feedback,
often overlooking broader domain-level insights.

2.3 Our Distinction

Our method marks a significant departure from tra-
ditional approaches. It uniquely integrates both
observation-level and domain-level feedback, with
a focus on updating the loss function. This dual-
level feedback approach ensures comprehensive
DA, overcoming the limitations of previous meth-
ods that mainly rely on observation-level data up-
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dates. DADA’s innovative strategy enhances adapt-
ability and accuracy in handling OOD data, setting
a new precedent in DA techniques.

3 Proposed Method

In this section, we provide a detailed explanation
of the methods employed in our study, focusing on
the integration of the DADA into the GPL frame-
work. We begin with a concise overview of GPL,
followed by an in-depth description of how DADA
is integrated into GPL, covering both training and
inference perspectives.

3.1 Overview of GPL Training Process
Training process of the GPL framework is visually
represented in the top of Figure 2. The GPL frame-
work operates by calculating relevance scores be-
tween queries and documents using PLMs. Specifi-
cally, given a query q and a document d, the rele-
vance score S(q, d) is computed as the dot product
of their embedding vectors:

S(q, d;M) = M(q) ·M(d) (1)

where M denotes the PLM.
To differentiate between positive (d+) and nega-

tive (d−) documents, GPL employs a Margin MSE
loss, δ(q, d+, d−;M), defined as the difference be-
tween the relevance scores of each document:

δ(q, d+, d−;M) = S(q, d+;M)− S(q, d−;M)
(2)

Additionally, GPL utilizes a cross-encoder3 to
predict the relevance scores, resulting in the mar-
gin value δ̂(q, d). The loss function of GPL is to
minimize the loss function:

LGPL(q, d;M) = |δ̂(q, d)− δ(q, d;M)|2 (3)

Our goal is to utilize multi-level feedback to update
this loss function for more effective DA.

3.2 Integration of DADA into GPL
To enhance DA within GPL, we introduce the
DADA method, which incorporates multi-level
feedback and loss function update.

3.2.1 Multi-level Feedback Vector
To capture observation-level and domain-level feed-
back, each feedback is encoded as a vector. The
observation-level distribution encompasses terms

3The cross-encoder parameters are frozen, which is not
trainable.

appearing in a document d and augmented terms,
while the domain-level distribution approximates
the entire set of documents in the OOD corpus.

Observation-level Distribution As illustrated in
blue in Figure 2, observation-level feedback is a
process where we take information from a docu-
ment, d, and turn it into a vector form. This is done
using SPLADE 4, a method that allows us to ex-
pand the document’s original vocabulary, Vd, into
an augmented set, V̂d. Once we have this expanded
vocabulary, we then create observation-level feed-
back, Robs as follow:

Robs(d) = [SP(d, v1),SP(d, v2), . . . ,SP(d, vn)]
(4)

where vi and SP denote the i-th term of V̂d and
corresponding weight from SPLADE.

Domain-level Distribution The GPL empha-
sizes terms that are often not important in the given
document, hence having a low likelihood of being
included in the gold terms. This is due to the train-
ing approach that mostly treats most documents
as non-relevant. To overcome this limitation, we
provide domain-level feedback. The red lines and
shapes of Figure 2 shows the key role of domain-
level feedback. Domain-level feedback approxi-
mate the entire set of documents in the OOD corpus
and is not limited to a specific document d. To rep-
resent the distribution Rdom of these global terms,
we employ Inverse Document Frequency (IDF) in
this work, as follows:

Rdom = [IDF(v1), IDF(v2), . . . , IDF(vn)] (5)

where vi denotes a term originated from the given
OOD corpus and n denotes the number of terms
in the corpus. Note that we use up to 1,000 of
randomly selected documents to compute the IDF
since we assume the oracle IDF distribution is un-
known. Just as the use of SPLADE as observation-
level distribution can be straightforwardly changed,
IDF can be replaced by other domain-level statis-
tics, and key difference between the two that IDF
score does not depend on observation d.

Normalization One important consideration
when using both observation-level and domain-
level distributions together is that their scales can

4We selected SPLADE in this work, based on its strong
performance in predicting unseen query terms in empirical
results, but can straightforwardly support other observation-
specific statistics, such as DeepImpact (Mallia et al., 2021).
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Figure 2: Diagram depicting the overall structure of DADA. The red lines and shapes represent domain-level
information which is approximated from known subset (randomly selected maximum 1,000 documents), while the
blue lines and shapes represent observation-level (or document-level) information. These two pieces of information
are combined in the form of term distributions (purple) and injected into the language model encoder as a loss
function.

vary. The different scales of distribution, exceed-
ing the range of 0 to 1, can assign excessively
high weights to some specific terms, which will
unstabilize the model training. To ensure scale
consistency between the two distributions, we first
standardize the distribution with z-score normal-
ization, denoted as Z(·), then additionally normal-
ized with tanh, to ensure each term within a sin-
gle distribution has a weight value between 0 and
1. This two-step normalization can be stated as
Norm(·) = tanh (Z(·)).

Merging Two Distributions Finally, as shown
in purple in Figure 2, the two distributions Rdomain
and Robservation are integrated into a merged distri-
bution Runified through dot product as follows:

Runified(d) = Norm(Rdom) · Norm(Robs(d)) (6)

3.2.2 Loss function update

DADA updates the loss function by injecting com-
bined distribution Runified into GPL. This process
entails extracting the term distribution from the
model and incorporating it back, thereby aligning
the model’s distribution with that of the data. The
term distribution Rmodel represents what the model
has learned and serves as the foundation for up-
dating the loss function. Hence, updating the loss
function involves two steps: extracting the term
distribution from the model and injecting this dis-
tribution information back into the model.

Extraction from model One crucial considera-
tion when extracting term distribution from a model
is addressing the discrepancy between embedding
space and data space. Specifically, the represen-
tations generated by the model reside within the
embedding space, whereas the representations ob-
tained from the data exist within the vocabulary
space. To overcome this mismatch, we merge these
two representations into a single one while respect-
ing the information they both provide.

Taking inspiration from the Max-Sim operation
of ColBERT (Khattab and Zaharia, 2020), we can
compute the relevance score for each vocabulary
term by selecting the maximum value from the dot-
product between the embedding vector, generated
by the model, and the vocabulary vector obtained
from the intermediate output of the observation-
level distribution.

Rmodel(d;M) = max
i∈[|E|]

(ET
i · S) (7)

E = M(d), S = SP (d) (8)

where E is the embedding matrix generated by the
model M , and S is the vocabulary matrix from
the intermediate output of the observation-level
distribution.

Injection into model Incorporating data-driven
distribution into the model involves reducing the
difference between the two distributions. While
data distribution interprets the importance of each
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vocabulary term, considering both observation-
level and domain-level distributions, the model’s
distribution highlights the relationship between the
embedding and vocabulary. The highest value in
the vocabulary direction shows the terms the model
finds crucial. By minimizing the differences be-
tween these two distributions, the model learns
the significance of each vocabulary term. Each
distribution is normalized with softmax, denoted
as R(d), to ensure that the distribution represents
probabilities.

The final loss funciton of DADA can be defined
as:

LDADA(d;M) = DKL(Runified(d) ∥ Rmodel(d;M))

(9)

where M states the model and DKL means the
Kullback-Leibler (KL) divergence (Shlens, 2014).

Therefore, the overall training objective of GPL
+ DADA is minimizing L(d;M) which is:

L(d;M) = LGPL(q, d;M) + LDADA(d;M)
(10)

where q, d, and M state the query, document, and
model, respectively.

3.3 Technique for Stable Training
Merging two distributions can be unstable, as some
documents align closely, while others diverge sig-
nificantly. Therefore, it is important to introduce
data in a specific sequence to prevent slow learning.
To address this, we use a curriculum that guides the
model from simple to complex concepts, enhancing
convergence and adaptability to the new corpus. In-
spired by curriculum learning (Bengio et al., 2009),
we gauge learning difficulty as follows:

DKL(Rdom ∥ Robs(d)) (11)

Gradually introducing increasingly challenging
document distributions during training optimally
improves performance, aligning with the concept
of the model learning progressively from simpler
to more complex data.

3.4 Inference Process of DADA
DADA impacts the training loss of GPL, leaving
the inference process unchanged. DADA offers
the advantage of enhancing DA without increasing
computational costs during inference, ensuring ef-
ficient and unaltered operation in this phase. Thus,
DADA facilitates optimized DA without compro-
mising the efficiency of inference tasks.

4 Experiments

4.1 Experimental Setup

Implementation Detail In our experiments, we
employed two types of feedbacks: SPLADE (For-
mal et al., 2021) for observation-level and IDF 5

for domain-level feedback.
Given that the target task involves DA, the model

was initially trained on the MS-MARCO, as an
in-domain dataset. Input document construction
involves concatenating document titles and bodies,
and truncating sequences longer than 256 tokens.
Queries are truncated to a length of 64 tokens.

The representation of query (q) and document
(d) are pooled from the output of the model as it
is designed. The relevant document is retrieved
using the dot product score, S = Eq ·Ed. Training
was performed on four RTX 3090 GPUs with DDP
setting, and any unspecified details in the paper
follow the same settings as GPL.

Datasets and Evaluation Metrics Our method
was evaluated using 5 datasets from the BEIR
benchmark (Thakur et al., 2021). Among these,
4 out of 5 datasets (SciFact, SciDocs, FiQA, and
NFCorpus) were chosen due to their smaller corpus
sizes in the BEIR benchmark datasets, as we focus
on scenarios requiring DA, which correlate to lim-
ited corpus size. Meanwhile, to observe whether
our observation is consistent in a large corpus re-
trieval scenario, we contrast with Robust04, where
the corpus is large and relevant documents can
match a query. Detailed information on our se-
lected subtasks is presented in Appendix A.1.

To adapt the model to the target domain, we em-
ployed training datasets pairing OOD documents
with the pseudo queries and pseudo labels gener-
ated by the GPL (Wang et al., 2021) and GPL+.

The evaluation utilized the nDCG@10 metric,
widely accepted for assessing the general quality
of predictions on the top-10 retrieved documents.

Baselines GPL (Wang et al., 2021) gen-
erates pseudo queries and labels using the
DocT5Query (Nogueira et al., 2019) query gen-
erator and retrievers, incorporating cross-encoders.
Both the query generator and retrievers are pre-
trained on the MS-MARCO dataset (Bajaj et al.,
2016). GPL+ closely resembles GPL, with the
distinction of incorporating the observation-level
distribution into the query generator. The resulting

5We use pyserini library to compute IDF.
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pseudo queries, generated with this awareness of
the observation-level distribution, are subsequently
utilized for hard negative mining and pseudo label-
ing, following the same procedural steps as GPL.

Retrievers (PLMs) To show the robustness of
applying DADA along with GPL, we have cho-
sen three different models: coCondenser (Gao and
Callan, 2022)6, COCO-DR (Yu et al., 2022)7 and
TAS-B (Hofstätter et al., 2021)8. All three mod-
els were trained on the in-domain dataset, MS-
MARCO. The models are chosen to show the ro-
bust performance across different sizes of model
parameters9.

4.2 Results and Analysis
Research Questions To further validate the ef-
fectiveness of our proposed method, we assess
whether our goals have been achieved through the
following research questions.

• RQ1: Is domain-level feedback reflected as
intended?

• RQ2: Does DADA generate more gold terms
as intended?

• RQ3: Does DADA adapt better to a new do-
main as intended?
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Figure 3: The IDF similarity between datasets is mea-
sured using JS-divergence. The scale of each unit is
1e-7. Brighter areas have smaller numbers, indicating
that the two IDF distributions are more similar.

6Luyu/co-condenser-marco
7OpenMatch/cocodr-base-msmarco
8sentence-transformers/msmarco-distilbert-base-tas-b
9coCondenser and COCO-DR have 110 million parameters

while TAS-B has 67 million parameters.

4.3 RQ1: Is domain-level feedback reflected
as intended?

To assess the effective integration of domain-level
feedback into the model, we employ the transfor-
mation technique introduced by Ram et al. (2022),
which extracts vocabulary distribution vector v
from the model.

This procedure utilizes the Masked Language
Modeling (MLM) head of the model to carry out
the projection. More precisely, an embedding vec-
tor e of a document is subjected to transformation
by the MLM Head, leading to its projection onto a
vector v with dimensions according to the vocabu-
lary size.

Jaccard similartiy of IDF distribution between the model and dataset
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Figure 4: Jaccard Similarity of top-1,000 high-IDF
terms distribution between the model and datasets.

Figure 3 illustrates the difference of model-
extracted distributions from the IDF distribution
of new domain (oracle, which cannot be observed
during training), measured using Jensen-Shannon
divergence (Nielsen, 2020). Notably, SciDocs,
which shows the greatest domain difference from
in-domain dataset MS-MARCO, exhibits the low-
est GPL performance. Our goal is to adapt the
model to perform well in OOD datasets by mini-
mizing these differences in IDF distributions.

To verify whether DADA minimizes the dispari-
ties between the IDF distributions depicted in Fig-
ure 3, we compare the model-extracted distribution,
with the oracle IDF distribution, focusing on the
top 1,000 terms with high IDF values.

Figure 4 illustrates the Jaccard similarity (Jac-
card, 1912) between the two IDF distributions 10.
The results reveal that DADA demonstrates greater
similarity than the baseline models in both the NF-
Corpus and SciFact datasets, with an increase of

10Jaccard similarity quantifies the resemblance between
two distributions by calculating the intersection divided by the
union, where a higher number of overlapping terms between
the two distributions indicates a greater level of similarity
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more than two times.
However, GPL exhibits lower overall similarity

since it does not incorporate domain-level feedback.
GPL+ demonstrates greater similarity compared to
GPL due to the inclusion an observation-expanded
set of terms that includes more relevant phrases.
In terms of similarity, the comparison between
GPL and GPL+ indicates that the incorporation
of domain-level feedback significantly enhances
the similarity of IDF distributions.

4.4 RQ2: Does DADA generate more gold
terms as intended?

To evaluate whether DADA generates more gold
terms, we compare the term distribution from the
model (as done in RQ1) and the gold terms query.

Figure 5 illustrates the gold term recall of the
top 1,000 terms generated by DADA. Significantly,
DADA exhibits superior recall on all OOD datasets,
with an improvement ranging from 10% to 20%
compared to GPL. This suggests that DADA is
more proficient in identifying a larger collection of
gold query terms.

Moreover, as depicted in Figure 5(c), the en-
hanced recall is not solely dependent on identi-
fying seen terms, which are query terms already
included in the document. To identify unseen but
valuable query terms, both observation-level and
domain-level feedback are utilized in DADA, to
demonstrate improved ability to identify both seen
and unseen terms in comparison to GPL.

For seen terms, DADA not only includes more
gold query terms than GPL but also exhibits a sim-
ilarity of approximately 80% with the oracle IDF
distribution. This suggests that using IDF distri-
bution as domain-specific feedback is helpful in

determining the weight for seen terms.

4.5 RQ3: Does DADA adapt better as
intended?

In order to evaluate how effectively DADA per-
forms in adapting to different domains, we eval-
uated its performance on five specific subsets of
the BEIR benchmark dataset. Table 2 shows the
nDCG@10 scores of GPL and DADA for each sub-
set and each retriever. DADA demonstrates signifi-
cant improvements in the BEIR subset, presenting
a distinct advantage over both GPL and GPL+, on
various retrievers.

When applied to GPL, DADA enhances retrieval
performance in most subsets, resulting in an aver-
age nDCG@10 gain of 0.5 in coCondenser, 0.6 in
COCO-DR, and 0.1 in TAS-B. Compared to the
other two retrievers, where the model size may
affect performance, TAS-B exhibits a relatively
small performance gain overall and experiences a
slight drop in performance on SciFact and FiQA.
Since our approach is intended to incorporate ad-
ditional distribution information through updates
to the loss function, smaller models like TAS-B
may encounter challenges in integrating this ad-
ditional information into their parameter updates.
However, despite this challenge, there is still an
overall improvement.

While DADA also yields performance improve-
ments on coCondenser with GPL+, there is a slight
drop in performance on a few datasets. This dis-
crepancy is attributed to the bias in GPL+ construc-
tion, focusing too much on expanding document-
specific synonyms while missing gold query terms,
as also illustrated in Figure 1. FiQA and NFCor-
pus are such datasets, where the number of unseen
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Retriever Method SF SD FQ NF RB Avg.

coCondenser (Gao and Callan, 2022)
GPL 67.5 17.1 32.8 33.7 42.7 38.8
Ours: GPL + DADA 67.9 16.4 34.1 35.1 44.7 39.6

COCO-DR (Yu et al., 2022)
GPL 69.7 17.1 33.9 34.4 42.2 39.5
Ours: GPL + DADA 69.8 17.1 35.6 34.7 42.9 40.0

TAS-B (Hofstätter et al., 2021)
GPL 67.0 16.1 32.9 33.9 40.4 38.1
Ours: GPL + DADA 66.5 16.6 32.2 34.1 40.5 38.0

coCondenser (Gao and Callan, 2022)
GPL+ 63.2 16.2 32.2 33.7 39.9 37.0
Ours: GPL+ + DADA 64.1 17.0 31.8 33.4 41.2 37.5

Table 2: Comparative evaluation of nDCG@10 scores across different datasets. Experimental settings and parameter
configurations used for each algorithm are described in Section 4. The best performance on each dataset for each
retriever is highlighted in bold. (SF: SciFact, SD: SCIDOCS, FQ: FiQA, NF: NFCorpus, RB: Robust04)

Method SF NF FQ SD
GPL + DADA 67.9 35.1 34.1 16.4

– Rdomain 67.3 34.2 33.3 17.0
– CL 66.3 34.3 33.0 16.1

Table 3: An ablation study to assess the effects of two
new elements introduced by our method (DADA) added
to the baseline (GPL): domain-level feedback (Rdomain)
and curriculum learning (CL). For the retriever, coCo-
denser is used. The best-performing result in each
dataset is indicated in bold. (Abbreviation of each
dataset follows Table 2 notation.)

query terms in GPL+ is fewer than in GPL, where
the adverse effect of GPL+ bias overshadows the
positive gains from DADA.

We additionally performed an ablation study to
assess the influence of two novel components intro-
duced by DADA into the GPL framework: domain-
level feedback and curriculum learning. The re-
sults, presented in Table 3, showcase the perfor-
mance of DADA on the SciFact, NFCorpus, FiQA
and SciDocs datasets as each of these elements is
selectively excluded.

The observed decrease in performance when
both elements are omitted serves as compelling
evidence of their beneficial impact on model train-
ing. This analysis offers valuable insights into the
individual contributions of these elements and their
collective effect on enhancing the overall efficiency
of the model.

Unlike other datasets’ performance tendency,
SciDocs shows the best performance when the
Rdomain is omitted, which may caused by the nearly
uniform Rdomain, which makes model suffers learn-
ing which terms are important in the target domain.
The SciDocs corpus includes scientific articles and
papers from various fields, which means that vari-

SF NF FQ SD

12.55 12.60 8.84 6.76

Table 4: Entropy of term distribution of tokenized doc-
ument in each dataset. All term counts are augmented
by 1, to prevent zero logarithm. (Abbreviation of each
dataset follows Table 2 notation.)

ous unique words are shown on the corpus unlike
other datasets, this can be rephrased as flat term fre-
quency distribution. Measuring the entropy of term
frequency of tokenized document in each dataset,
as illustrated in Table 4, SciDocs shows the lowest
entropy which ensures the nearly uniform distribu-
tion of term frequency.

5 Conclusion

We have introduced a novel method called DADA
with the specific aim of enhancing the capabili-
ties of PLMs for addressing domain shifts in in-
formation retrieval. Unlike traditional methods
that resolve domain shifts through dataset updates
based on observation-level feedback, DADA takes
a direct approach by updating the loss function
with a multi-level feedback vector, which integrates
domain-level feedback and observation-level feed-
back. This innovative approach enables DADA
to dynamically adjust to varying data landscapes,
making it particularly effective in scenarios where
rapid adaptation is essential. Compared to an
existing method like GPL on the BEIR bench-
mark, DADA demonstrates superior performance
across various subtasks, highlighting its potential
in handling unseen domains. While DADA shows
promise, further research could investigate inte-
gration with other dataset update adaptation tech-
niques, contributing to the development of more
robust and versatile information retrieval systems.
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6 Limitations

We use DocT5Query to generate queries in exper-
imental setups following the GPL to align with
the baseline method. As this query generator has
a limitation in effectively generating OOD terms,
though we provide domain-level distribution, we
overcome this limitation, by directly injecting the
domain-level distribution into the PLM. Another
possible approach wouldbe upgrading the query to
generate OOD terms effectively when such distri-
butions are provided, potentially by utilizing PLMs.
We leave this as a future work but expect similar
enhancements due to the orthogonal contributions
our method offers to GPL.
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A Appendix

A.1 Target Datasets

In this paper, we aim to address our experiment on
5 BEIR benchmark datasets (Thakur et al., 2021):
SciFact (Lo et al., 2019), SciDocs, FiQA (Maia
et al., 2018), NFCorpus, and Robust04. The statis-
tics, including domain information, total number of
queries, total number of documents, average query
length, average document length, and number of
relevant documents for a query, of each dataset can
be found on Table 5.

The main focus of our method is improving IR
performance in circumstances of small corpus size,
where it is difficult to adapt the model to the tar-
get domain. For this reason, we initially target 4
datasets that have a smaller corpus size, less than

60k documents: SciFact, SciDocs, FiQA, and NF-
Corpus. In addition to the 4 datasets, we also in-
cluded 1 large corpus dataset, Robust04, which
has more than 60k documents and many relevant
documents that match a query, to demonstrate that
DADA can also achieve improvements in a large
corpus.

A.2 Discrepant Tendency of Unseen Gold
Query Term Comparing GPL and GPL+

The SciDocs dataset, as depicted in Figure 1, con-
tains a slightly larger number of gold query terms,
that are not present within the corpus, in GPL (light
blue bar) compare to GPL+ (blue bar). GPL+ is de-
signed to include expanded terms during the query
generation process, expecting it to capture a wider
range of possible queries, which will retrieve more
relevant information. However, as the query gen-
erator works as a proxy for incorporating the ex-
panded terms, it can neglect or dilute the impor-
tance of the terms. In addition, because the other
three datasets’ corpus term frequency distribution
is slightly skewed, which can be found as a high en-
tropy of term frequency in Table 4, it can be more
statistically reasonable for the query generator to
select seen terms from the given document. For this
reason, in most cases, such as NFCorpus, Scifact,
and FiQA, the GPL+ shows that the number of un-
seen gold query terms decreases compared to GPL.
Besides the three datasets showing the decrement,
the SciDocs shows an increment as the distribution
is near uniform, expanding some unseen term can
easily increase the value. This marginal improve-
ment in unseen gold query terms, however, does
not result in a retrieval performance improvement,
in practice, as opposed to the expectation.

A.3 Experiment Results on Additional
Metrics

The experiment results are evaluated by various
metrics that are often used to evaluate informa-
tion retrieval performance, such as MRR@10,
MRR@100, and nDCG@100. The evaluation re-
sults can be found on Table 6, Table 7, and Table 8.
The abbreviation of datasets is given as follows. SF:
SciFact, SD: SCIDOCS, FQ: FiQA, NF: NFCorpus,
RB: Robust04, TC: TREC-COVID)

A.4 Experiment with different observation
feedback

The main experiment result shows the impact of
using naver/splade_v2_distil for observation feed-
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SciFact SciDocs FiQA NFCorpus Robust04 TREC-COVID
Domain Scientific Scientific Financial Bio-Medical News Bio-Medical
Total # Queries 300 1000 648 323 249 50
Total # Documents 5.2k 25.7k 57.6k 3.6k 528.2k 171.3k
Average Query Length (words) 12.4 9.4 10.8 3.3 15.3 6.6
Average Document Length (words) 213.6 176.2 132.2 232.3 466.4 160.8
Relevant Document / Query 1.1 4.9 2.6 38.2 69.9 15.17

Table 5: Detailed statistics of the six subtasks included in the BEIR Benchmark as employed in our experiments.
This table presents the number of queries, number of documents, average length of query and document, and
the number of relevant documents for a query, for each subtask. Our experiments adopt the same preprocessing
procedure as described in the GPL framework by Wang et al. 2021.

Retriever Method SF SD FQ NF RB TC Avg.
coCondenser GPL 64.7 30.6 41.1 52.4 69.5 88.6 57.82
coCondenser Ours: GPL+DADA 64.5 29.6 42.2 52.5 70.0 91.0 58.3
COCO-DR GPL 66.3 31.1 42.2 52.3 68.7 93.1 58.95
COCO-DR Ours: GPL+DADA 66.5 30.5 41.2 53.8 67.4 93.4 58.8

TAS-B GPL 63.6 28.7 40.8 52.8 68.0 88.6 57.08
TAS-B Ours: GPL+DADA 63.6 30.0 39.7 54.5 66.7 89.2 57.28
coCondenser GPL+ 59.5 28.7 40.2 52.7 65.3 90.5 56.15
coCondenser Ours: GPL+ + DADA 60.1 30.4 39.0 52.4 67.2 90.1 56.53

Table 6: Evaluation of MRR@10 scores across different datasets. The best performance on each dataset for each
retriever is highlighted in bold.

back. As we stated on §3.2.1, the observation
feedback can be replaced by other statistics, we
also experimented with naver/splade-cocondenser-
ensembledistil and the result can be found on Ta-
ble 9.
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Retriever Method SF SD FQ NF RB TC Avg.
coCondenser GPL 65.2 31.6 42.1 52.9 70.0 88.6 58.4
coCondenser Ours: GPL+DADA 65.0 30.8 43.2 52.8 70.5 91.0 58.88
COCO-DR GPL 66.8 32.1 43.1 53.0 69.0 93.1 59.52
COCO-DR Ours: GPL+DADA 67.0 31.6 42.1 54.3 68.0 93.5 59.42

TAS-B GPL 64.0 29.8 41.6 53.4 68.5 88.6 57.65
TAS-B Ours: GPL+DADA 64.1 31.2 40.6 55.0 67.1 89.2 57.87
coCondenser GPL+ 60.0 29.8 41.1 53.1 65.9 90.5 56.73
coCondenser Ours: GPL+ + DADA 60.6 31.4 40.0 53.0 67.6 90.1 57.12

Table 7: Evaluation of MRR@100 scores across different datasets. The best performance on each dataset for each
retriever is highlighted in bold.

Retriever Method SF SD FQ NF RB TC Avg.
coCondenser GPL 70.4 23.6 39.6 30.6 35.4 52.1 41.95
coCondenser Ours: GPL+DADA 70.2 23.1 40.7 30.5 35.5 53.4 42.23
COCO-DR GPL 72.3 23.8 40.4 31.2 35.0 54.6 42.88
COCO-DR Ours: GPL+DADA 72.5 23.8 39.9 31.4 35.3 53.7 42.77

TAS-B GPL 69.4 23.0 39.2 30.1 33.6 50.9 41.03
TAS-B Ours: GPL+DADA 69.3 23.5 38.6 30.4 33.5 50.2 40.92

coCondenser GPL+ 66.2 22.7 38.7 29.8 32.3 50.6 40.05
coCondenser Ours: GPL+ + DADA 66.7 23.7 38.4 28.8 32.1 52.0 40.28

Table 8: Evaluation of nDCG@100 scores across different datasets. The best performance on each dataset for each
retriever is highlighted in bold.

Retriever Method SF SD FQ NF RB TC Avg.

coCondenser (Gao and Callan, 2022)
GPL 67.5 17.1 32.8 33.7 42.7 71.2 44.2
Ours: GPL + DADA 67.8 16.9 33.1 34.5 41.7 73.6 44.6

Table 9: Comparative evaluation of nDCG@10 scores across different datasets. The experiment is conducted with
naver/splade-cocondenser-ensembledistil as observation feedback.
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