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Abstract

Text2SQL is a task that translates natural lan-
guage into SQL statements. Context-dependent
Text2SQL offers a more natural database inter-
action by simulating dialogues between users
and databases, with CoSQL and SparC as rep-
resentative datasets. Yet, these datasets strug-
gle to accurately replicate real-world situa-
tions. To address this, we introduce Multi-
SQL, which extends them in three key aspects:
(1) Diverse SQL Operations. We incorporate
diverse SQL types such as Create, Update,
and Insert to broaden the scope of SQL op-
erations. (2) Schema-Integrated Context. We
integrated query context with database schema
dependencies to better depict database com-
plexity. (3) Extended Dialogues. We expand
dialogue length to better simulate long conver-
sations and complex interactions. This multi-
type, schema-integrated, context-dependent
Text2SQL dataset comprises nearly 800 dia-
logue groups and over 9,000 interaction turns
across 166 complex databases, offering a bet-
ter benchmark for interactive user-database di-
alogue. Addressing MultiSQL’s challenges,
we refined evaluation metrics to better cap-
ture diverse SQL types and schema dependen-
cies. We designed a prompt framework that
leverages historical data and self-refinement
to accurately capture the dependency between
text queries and database structures. Exper-
iments with GPT-3.5, GPT-4, and LLaMA2-
7B show both the effectiveness of our strate-
gies and the challenges of MultiSQL. The
datasets is available at https://github.
com/grandchicken/MultiSQL.

1 Introduction

In the information age, structured data is predomi-
nantly stored in databases. We interact with them
through SQL, a query language specifically de-
signed for managing and manipulating databases.
However, SQL is quite complex, requiring a deep
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User: Add a new column to store the 

average score

User: Update the value of this new 

column to the average score of Class 5

Answer: ALTER TABLE students ADD COLUMN 
average_score DECIMAL(5,2);

Answer: UPDATE students SET average_score
= (SELECT AVG(score) FROM students WHERE
class = ‘5’) WHERE class = ‘5’;

User: List all Class 5 students who 

scored above the average

Answer: SELECT * FROM students WHERE
class = ‘5’ AND score > average_score;

……

Figure 1: The example of our dataset, which displays
user interactions with a database in dialogue form, em-
ploying various SQL statement types.

understanding of database structures and query
syntax for effective data retrieval. To address
this, the Text2SQL (Katsogiannis-Meimarakis and
Koutrika, 2023; Qin et al., 2022; Dong et al., 2023;
Pourreza and Rafiei, 2023; Gao et al., 2023) task
was proposed, allowing direct conversion of natu-
ral language into SQL queries. This enables users
to interact with databases directly using natural
language, greatly facilitating data access.

To assess the effectiveness of Text2SQL, sev-
eral datasets have been developed. Spider (Yu
et al., 2018) is the first proposed dataset in a cross-
database context. It includes complex SQL types
like groups, joins, and nested queries, effectively
measuring model adaptability for this task. Bird (Li
et al., 2023) goes further towards real-world appli-
cation, incorporating noisy data and external knowl-
edge, to accurately depict the complexity of data
in real-world business scenarios, thus challenging
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models in processing real-world data.
However, the above datasets assume SQL

queries are stated in a single sentence, overlook-
ing the reality that Text2SQL interactions typically
occur as dialogues. In real-world scenarios, it’s a
more natural way for Text2SQL applications to in-
volve users dynamically interacting with databases
through dialogue. Therefore, context-dependent
Text2SQL has been developed, with SparC (Yu
et al., 2019b) and CoSQL (Yu et al., 2019a) serving
as pivotal datasets for this task. SparC simulates the
user-database interactive dialogues, while CoSQL
is a corpus developed for building cross-domain,
general-purpose database querying dialogue sys-
tems. In the context-dependent Text2SQL task,
models must understand the context to create the
right SQL statements for the current queries.

However, existing context-dependent Text2SQL
datasets still have limitations in accurately replicat-
ing real-world situations. To address this, we have
extended them in the following three aspects:

1. Diverse SQL Operations: Previous datasets
were limited to Select queries. In real situ-
ations, users engage with databases not just
for queries but also for modifying and manag-
ing database structures and content. There-
fore, we have incorporated SQL statement
types such as Create, Update, Insert, Alter,
and Delete, making our dataset more compre-
hensively reflect database interactions.

2. Schema-Integrated Context: Existing context-
dependent Text2SQL datasets focused solely
on natural language context dependencies.
However, dependencies also exist within the
database schema context. For instance, as
shown in Figure 1, a column added by the user
through an Alter Table in earlier dialogue may
change the structure of table schema, which
is essential when it is queried later by a Se-
lect statement. This requires the interaction
system to dynamically capture changes in the
database structure during the conversation. To
address this, we have integrated the dependen-
cies between database table structures into our
dataset, more accurately simulating the com-
plexity and dynamics of real-world databases.

3. Extended Dialogues: According to statistics,
existing datasets have a relatively low aver-
age number of dialogue turns. In our new

dataset, we have greatly increased the num-
ber of dialogue interactions to better simulate
long conversations and complex interactions
in real-world scenarios.

Consequently, we propose a Multi-type, schema-
integrated, and context-dependent Text2SQL
dataset, called MultiSQL covering various types
of SQL operations. It comprises nearly 800 dia-
logue groups, with over 9,000 turns spanning 166
complex databases. Table 1 shows its advantages
compared to existing datasets.

Our dataset brings new challenges to method de-
sign and evaluation system construction. For meth-
ods, the integrated context necessitates that predic-
tion processes thoroughly consider the semantic
context generated during dialogue and changes in
database structure. The presence of diverse SQL
types, along with longer dialogue histories, makes
it easier for models to accumulate errors during
interactions. To address this, we’ve developed a
prompt framework, integrating historical data and
a self-refinement (Peng et al., 2023) mechanism to
mitigate prediction errors.

For evaluation, traditional metrics include Exact
Set Match and Execution Accuracy. However, for
MultiSQL, the former does not account for struc-
tural changes, and the latter struggles to handle
issues with non-select statements that do not return
values. Consequently, we introduce Context-Aware
Match to track dialogue-induced table structure
changes, and Database State Match to assess SQL
execution effectiveness by comparing changes of
the database content.

Finally, our experiments on models like GPT-
3.5 (Ouyang et al., 2022), GPT-4 (Achiam et al.,
2023), and LLaMA2-7B (Touvron et al., 2023)
highlight the difficulties inherent in the MultiSQL
dataset and the effectiveness of our proposed ap-
proaches.

Our contributions are summarized as follows:

1. We present MultiSQL, a Multi-type, schema-
integrated, and context-dependent Text2SQL
dataset. By incorporating different types
of SQL operations and integrating database
schema dependencies in a long dialogue, we
make our dataset a more comprehensive re-
flection of the complexity and dynamism in
real-world database interactions.

2. In response to the challenges presented by our
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Dataset Cross Domain Context Dependent Schema Dependent Multi SQL Types
Spider ✔ ✘ ✘ ✘

Bird ✔ ✘ ✘ ✘

CoSQL ✔ ✔ ✘ ✘

SParC ✔ ✔ ✘ ✘

Ours ✔ ✔ ✔ ✔

Table 1: Comparison of various Text2SQL datasets, evaluating them against attributes such as cross-domain
versatility, context dependency for accurate SQL generation, schema dependency for query formation, and the
inclusion of multiple SQL types to assess the complexity of queries covered by each dataset.

I currently have a set of user interaction data with a database, 
where users pose questions to the database and the model 
generates …

System Info

In answering questions, the model needs to consider both the 
current question and the history of interactions to provide an 
answer. However, the current issue with the interaction data 
is …
Based on the original data, insert some new questions or 
requirements that users might ask in the context. 

# Database Name
college_2
# Tables (Each table is represented as a dict, the key represents 
column name, and the value is its type) and primary key
prereq:{‘course_id’: ‘text’, ‘prereq_id’: ‘text’}; primary_key: 
course_id … Table Schema

# Top 3 records of each tables (Be represented as a dict):
classroom(total 30 records)
[(‘Lamberton’, ‘134’, 10), (‘Chandler’, ‘375’, 10), (‘Fairchild’, 
‘145’, 27)]  … Table Content

### Interactive Data
User:How many instructors are there?
Answer:SELECT count ( * )  FROM instructor  …

Demonstration

Let’s think step by step. The corresponding SQL statements can 
be in the form of Select, Insert, Update, Create, … You …
For Insert or Update SQL Statements, You should …

Chain of Thought

Figure 2: Structured prompt design for MultiSQL dataset construction, detailing components such as system
information, table schema, and content, along with example interactions and chain of thought design.

dataset, we have accordingly developed meth-
ods and introduced new evaluation metrics.

3. Our experiments on models like GPT-3.5,
GPT-4, and LLaMA2-7B effectively show the
challenges posed by the MultiSQL dataset and
the efficacy of our methods.

2 Related Work

Text-to-SQL aims to automatically translate natural
language questions into SQL queries. The develop-
ment of text-to-SQL datasets has evolved to more
closely resemble real-world scenarios, reflecting an
increase in complexity and a move towards more
accurately simulating real-world data interactions.

Initially, datasets in this field were relatively sim-
ple and focused on single-domain scenarios. Early
datasets such as GeoQuery (Zelle and Mooney,
1996), ATIS (Price, 1990), and Restaurant (Dahl
et al., 1994)targeted specific information retrieval
tasks within a limited domain. These datasets laid
the groundwork for future advancements but were
limited in their scope and complexity.

Considering that Text2SQL in real scenarios
is an open-domain problem, the field has seen a
shift towards cross-domain datasets, exemplified by

WikiSQL (Zhong et al., 2017) and Spider (Yu et al.,
2018). These datasets broadened the scope from
single-domain to cross-domain, requiring models
to generalize across various domains. However, a
common limitation in many cross-domain datasets
is their focus on the database schema without ade-
quately considering the specific values within the
tables, diverging from the complexity of real-world
databases.

To address this, datasets like KaggleDBQA (Lee
et al., 2021), EHRSQL (Lee et al., 2022),
SEDE (Hazoom et al., 2021), and MIMIC-
SQL (Wang et al., 2020) were introduced. These
datasets focused on large-value databases and pro-
fessional SQL queries, thereby moving closer to
real-world database applications. Bird further ad-
vanced this trend by incorporating noisy data and
external knowledge into its structure to accurately
depict the complexity of data in real-world business
scenarios, making it more challenging and repre-
sentative of real-world data processing scenarios.

Another significant development in Text-to-SQL
datasets is the recognition that it’s more natural
for Text2SQL applications to involve users dy-
namically interacting with databases through di-

13859



alogue. Therefore, context-dependent Text2SQL
has been developed. SparC simulates user-database
interactive dialogues, requiring models to under-
stand and respond to context-dependent queries.
CoSQL, on the other hand, is designed for building
cross-domain, general-purpose database querying
dialogue systems. It challenges systems in SQL-
grounded dialogue state tracking, response gen-
eration, and user dialogue act prediction, closely
mimicking real-world dialogue scenarios.

3 Dataset Construction

Due to CoSQL being a representative example of a
context-dependent Text2SQL dataset, we adopted
its database in our work. Building upon this founda-
tion, we constructed a Text2SQL interaction dataset
to further explore and address the complexities of
natural language interfaces to databases. Due to the
high cost and extensive time requirements associ-
ated with manual data annotations, we use large lan-
guage models as an aid in the dataset construction
process like much recent research does (Akyürek
et al., 2023; Chen et al., 2023; Zhang et al., 2023b).
We designed a set of prompt frameworks and used
GPT-4 to generate data. Subsequently, we manu-
ally corrected and modified the generated data, and
iteratively checked and improved the quality of the
dataset. Below, we will provide a detailed descrip-
tion of the entire dataset construction process.

3.1 Prompt Design

Our prompt design, depicted in Figure 2, integrates
several key components: (1) System Information,
providing a task overview, dataset attributes, and
input-output formats; (2) Table Schema, detail-
ing the database structure including table and field
names, data types, and keys; (3) Table Content,
presenting the initial entries of each table and the
total count of entries; (4) Demonstrations, offering
initial Select queries from CoSQL to lay the ground-
work for the model’s understanding of database
queries; and (5) Chain of Thought, employing a
reasoning method to guide the model in formulat-
ing queries with accurate logic.

3.2 Data Generation

Here, we employed GPT-4 to generate data
based on the above-mentioned prompt framework.
Adding more detail to the situation, we generated
817 sets of dialogues, comprising a total of 9317
pairs of query-SQL data. Afterward, by filtering

out the duplicates, we ultimately obtained 783 sets
of dialogues, with 8923 pairs of query-SQL data.

3.3 Manual Correction and Improvement

However, the generation process by GPT-4 can
only serve as an auxiliary tool. The data produced
by GPT-4 still has some issues. Therefore, we
invested substantial human effort to refine the base
data generated by GPT-4, aiming to correct existing
issues and enhance the overall quality of the dataset.
This involved several key steps:

• Grammar Correction: We validated and cor-
rected grammatical errors in 12% of the gen-
erated SQL statements to ensure adherence to
SQL syntax standards. This included resolv-
ing 6% of errors due to conflicts in insert state-
ment numbering from inability to accurately
retrieve entry counts in the database, 4% for
non-compliance with SQL syntax rules, and
2% for inserting duplicate fields.

• Semantic Correction: We identified and rec-
tified semantic misalignments in 4% of the
data, such as mapping queries to the incor-
rect tables, failing to understand temporal in-
formation in questions, and inferring missing
context from the queries inaccurately

• Contextual Relevance Improvement: We
inserted 334 query-SQL interactions based
on dialogue context to enhance the relevance
of semantic association within the dialogue
context and the dependency on table schema,
addressing the complexities of real-world
database interactions.

Building on the previously mentioned steps,
our team dedicated 114 person-hours to the post-
processing, correction, and improvement of the
generated data. This substantial effort in grammar
correction, semantic accuracy, and contextual rele-
vance was instrumental in ensuring the high quality
of the dataset.

4 Data statistics and analysis

Table 2 presents the statistical information of our
dataset and compares it with existing datasets. It
reveals that our dataset comprises a total of 9257
query turns, covering 166 databases. This scale of
query turns is comparable to mainstream datasets.

13860



Ours Spider Bird CoSQL SParC
Database nums 166 200 95 200 200
Table/DB 5.23 5.1 7.3 5.1 5.1
Total query turns 9257 10181 12751 11039 11257
Average query turns 11.82 – – 3.67 3.0

Table 2: Statistical overview of our dataset and comparison with existing datasets

Figure 3: Distribution of SQL types in our dataset

Moreover, it’s notable that our dataset has an aver-
age of 11.81 query turns per dialogue group, which
is significantly higher than CoSQL and SParC.

Figure 3 shows the distribution of SQL types in
our dataset, excluding Delete statements which are
rare in practice. The balance among other opera-
tions is notable, with Insert at 25.83%, Select at
25.8%, and UPDATE at 23.19%. This reflects the
varied use of SQL in real situations, enhancing our
dataset’s relevance and providing a broad testing
ground for systems handling diverse SQL queries
within dialogues.

5 Method

MultiSQL, with Diverse SQL Operations, Schema-
Integrated Context, and Extended Dialogues,
presents unique challenges to the method design.

First, the challenge arises from the need to un-
derstand the semantic context within dialogues and
adapt to database schema changes. To address
this, we integrate historical data, a strategy that
involves incorporating past interactions into the
model’s current decision-making process. This ap-
proach ensures that the model not only grasps the
immediate query but also contextualizes it within
the dialogue’s history, enhancing its ability to adapt
to and reflect changes in the database structure ac-

curately. By doing so, we mitigate issues related
to semantic understanding and database adaptation,
ensuring more accurate and contextually relevant
predictions.

Second, the diversity in SQL types and the po-
tential for error accumulation through extended
dialogues require a robust mechanism to maintain
model accuracy. Here, our solution is the imple-
mentation of a self-refinement mechanism. This
process involves continuously analyzing model pre-
dictions for errors and refining the model’s strate-
gies based on feedback. Such a mechanism directly
tackles the accumulation of errors by enabling the
model to learn from its mistakes and adjust its ap-
proach for future queries, thus enhancing its reli-
ability and accuracy in handling a wide range of
SQL operations within prolonged dialogues.

Thus, we have devised a prompt framework that
integrates historical data and incorporates a self-
refinement mechanism. The framework contains
several parts as shown in Figure 4:

• System Initialization: Starts with a prompt
that outlines the task, database schema, and
initial data context.

• Integrating Dialogue History: Adds previ-
ous dialogue excerpts to the current query for
context.

• Self-Refinement Mechanism: Uses an SQL
executor to validate and provide feedback on
the model-generated SQL for correction and
improvement.

In this way, our approach systematically ad-
dresses the challenges posed by MultiSQL through
initial setup, context integration, and iterative re-
finement. Section 7 experiments further validate
the effectiveness of our methodology.

6 Evaluation Metrics

In Text2SQL tasks, traditional evaluation metrics
include Exact Set Match and Execution Accuracy.
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Dialogue

<System info> 

<Table schema> <Table content>

<History>

<Feed Back>

Refined Answer

<User Query>

Pre-Answer

Record

Answer

History

Query

Prompt

Answer

Table info

Answer

Feedback

Figure 4: Our prompt framework for dynamic SQL query generation, including a user’s queries and system’s
records, which in turn, synthesizes an answer from a database, with the ability for refined answers based on feedback
loops

• Exact Set Match: This metric assesses the
equivalence of the predicted query to the
gold query across specific SQL components:
FROM, WHERE, GROUP BY, etc. Each com-
ponent is evaluated for an exact match be-
tween the predicted and gold queries. The
predicted query is deemed correct if, and only
if, all components match exactly with their
counterparts in the gold query.

• Execution Accuracy: This metric executes
both the predicted and gold SQL queries on
the database and compares the result sets. If
the result sets are identical, the queries are
considered equivalent.

However, these metrics encounter specific chal-
lenges when applied to our dataset.

• Challenges with Exact Set Match: First,
Create and Alter statements can lead to nam-
ing variations in fields, as depicted in Figure
5(a), where different but valid table names
reflect the same query’s intent. Second, as ta-
ble structures change during dialogues (Figure
5(b)), accurately matching subsequent queries
necessitates considering previous modifica-
tions

• Challenges with Execution Accuracy: Be-
yond Select statements, other types of SQL
queries do not produce a direct return value,
making it challenging to evaluate their execu-
tion effectiveness.

Consequently, to address the distinctive chal-
lenges of our dataset, we introduce two novel evalu-
ation metrics: Context-aware Match which gauges

User: Create a new table for conference info
rmation …
Answer: CREATE TABLE Conferences (conf
ID number …)
Predict: CREATE TABLE conference_info
(confID number …) a

b

User: Let's add a column for the number of s
easons to the TV_series table。
Answer: ALTER TABLE TV_series ADD Seas
ons number
Predict: ALTER TABLE TV_series ADD num
ber_of_seasons number
User: Can we record a new season for the TV
series with id 3? Let's set the number of se
asons to 4
Answer: UPDATE TV_series SET Seasons =
4 WHERE id = 3

Predict: UPDATE TV_series SET number_o
f_seasons = 4 WHERE id = 3

Figure 5: Evaluation challenges of MultiSQL: (a) The
red circle indicates different table names can reflect the
same query intent. (b) The red arrow shows changes in
table structure across dialogue

the alignment of predicted and actual table struc-
tures within dialogue contexts, and Database State
Match, which measures SQL effectiveness by ex-
amining database state alterations. Further details
are provided in the following subsections.

6.1 Context-aware Match
To tackle the issue of field naming discrepancies,
we first introduce fuzzy matching which aims to
accommodate variations in naming conventions by
allowing for a more flexible comparison between
predicted and actual field names. Fuzzy matching
operates under the principle that a match is recog-
nized if:

1. The field name in the answer (s) is contained
within the predicted field name (c), or vice
versa;
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2. Parts of s split by underscores (_) are found
within c, or parts of c split by underscores are
found within s.

Additionally, for operations like Create and Alter
that change table structures, we track structural
modifications by recording added (Tadd and Cadd),
deleted (Tdel and Cdel), and altered (Calt) elements.
This leads to the creation of a mapping dictionary
(M ) that correlates predicted and actual database
elements. During SQL evaluation, a context-aware
match score of 1 is awarded for exact field matches
as per Mcolumn, with any deviation resulting in a
0.

Score =





1 if named fields match according to
Mcolumn and all non-named fields
align perfectly

0 otherwise

6.2 Database State Match
For evaluating non-Select statements, we refine
our approach with the Database State Match met-
ric. This metric contrasts the database states after
executing the predicted SQL statement and the ref-
erence SQL statement, aiming to verify if these
resulting states are identical. This comparison is
essential for operations such as Create, Alter, and
Delete, which impact the database’s structure, and
for Insert and Update, which alter its content.

The matching score K is thus recalculated to
reflect the alignment between the predicted and
actual outcomes on the database. The formula is
adjusted as follows:

K =





Structural Match(Dpred, Dgold),
for Create, Alter, Delete

Content Match(Dpred, Dgold),
for Insert, Update

In this context, Dpred and Dgold represent the
database states after executing the predicted and
gold standard SQL statements respectively. The
Structural Match verifies the structural integrity
and schema modifications aligned between Dpred

and Dgold. while the Content Match ensures an
exact content match in the database following the
execution of both predicted and gold SQL state-
ments.

7 Experiments

7.1 Experimental Setup
In our experiments, we employed GPT-
3.5 (Ouyang et al., 2022), GPT-4 (Achiam et al.,

2023), and LLAMA2-7B (Touvron et al., 2023).
Additionally, we introduced domain-specific mod-
els for the code domain: TableLlama-7B (Zhang
et al., 2023a), CodeLlama-7B (Roziere et al.,
2023), and Deepseeker-Code-7B (Guo et al., 2024).
We used a prompt framework and in-context
learning to interact with these Large Language
Models, maximizing their response capabilities to
structured prompts. Specifically, for LLAMA2-7B,
we adopted two approaches: a zero-shot setting
where prompts were directly inputted for inference,
and an instruction-tuned setting, where we utilized
662 groups from our dataset to construct 8006
instruction-tuning pairs. The remaining 121
groups were then employed for testing. For more
implementation details, see Appendix A.

For prompt configurations, we experimented
with several settings: (1) Baseline, which processes
text directly to generate SQL statements without
additional context; (2) History, which enhances
inputs by appending historical dialogue data before
SQL generation; and (3) Self Refine, which intro-
duces a feedback loop from executing generated
SQL to refine subsequent outputs.

Our main evaluation metrics are as follows: (1)
Execution Accuracy, which focuses on the pre-
cision of executing SQL select statements; (2)
Context-aware Match, adopting the previously
mentioned strategy and assessing accuracy across
all types of statements; and (3) Database State
Match, evaluating the congruence of the database
state post-execution, applicable to all statement
types except select statements.

7.2 Experimental Results

Table 3 offers insightful results regarding the perfor-
mance of different models and methods across key
metrics such as Context-aware Match, Execution
Accuracy, and Database State Match. In compar-
ing models GPT-3.5, GPT-4, and LLAMA2-7B,
the Self Refine method generally outperforms the
Baseline and History methods across the board.
For Context-aware Match, Self Refine achieves top
scores in the Create and Update categories, with
GPT-4 reaching 0.345 and 0.786 respectively. The
Execution Accuracy for Select is also highest with
Self Refine, scoring 0.701 for GPT-4 and 0.653 for
GPT-3.5. Database State Match scores indicate
Self Refine leads in Insert, Create, and Update ac-
tions, with GPT-4 scoring 0.586, 0.529, and 0.735
respectively.
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Table 3: Comparative analysis of SQL generation performance among different models: GPT-3.5, GPT-4, and
LLAMA2-7B, with a focus on context-aware matching, execution accuracy, and database state match for various
SQL operations. Results are segmented into three methodologies: Baseline, History, and Self Refine, highlighting
the incremental performance improvements with each approach.

Context-aware Match Execution Acc Database State Match
Models Method Select Insert Create Update Alter Delete Select Insert Create Update Alter Delete

GPT-3.5
Baseline 0.313 0.336 0.273 0.595 0.288 0.911 0.536 0.358 0.437 0.520 0.723 0.929
History 0.402 0.432 0.289 0.704 0.288 0.911 0.639 0.506 0.430 0.654 0.740 0.947

Self Refine 0.408 0.427 0.287 0.728 0.316 0.926 0.653 0.514 0.428 0.673 0.747 0.946

GPT-4
Baseline 0.496 0.326 0.307 0.438 0.288 0.875 0.385 0.353 0.498 0.438 0.708 0.750
History 0.497 0.423 0.313 0.704 0.292 0.911 0.600 0.522 0.479 0.642 0.695 0.911

Self Refine 0.475 0.469 0.345 0.786 0.308 0.911 0.701 0.586 0.529 0.735 0.780 0.929

LLAMA2-7B
Baseline 0.000 0.020 0.013 0.035 0.039 0.000 0.000 0.012 0.040 0.011 0.070 0.000
History 0.000 0.006 0.003 0.007 0.012 0.000 0.000 0.002 0.000 0.006 0.005 0.000

Self Refine 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LLAMA2-7B(tuned)
Baseline 0.036 0.023 0.011 0.176 0.096 0.000 0.025 0.023 0.018 0.088 0.208 0.250
History 0.029 0.068 0.042 0.268 0.115 0.125 0.030 0.072 0.079 0.150 0.152 0.000

Self Refine 0.059 0.074 0.039 0.155 0.107 0.000 0.025 0.077 0.079 0.111 0.219 0.125

LLAMA2-7B, even when tuned, shows a stark
contrast in performance compared to GPT mod-
els. The tuned LLAMA2-7B’s best Context-aware
Match scores after Self Refine are 0.059 for Se-
lect and 0.155 for Update, a considerable gap
from GPT-4’s performance. This highlights the
LLAMA2-7B’s limitations in complex SQL tasks
and underscores the challenging nature of the
dataset which demands robust contextual under-
standing and adaptability from models. The clear
disparity in the results illustrates the importance
of methodological refinement in achieving high
accuracy on this demanding dataset.

Table 4 and Table 5 offer insightful results
regarding the performance of different models
and methods across key metrics such as Context-
aware Match, Execution Accuracy, and Database
State Match. These tables compare the models
TableLlama-7B, CodeLlama-7B, and Deepseeker-
Code-7B using Baseline, History, and Self Refine
methodologies.

We can find that Deepseek-Coder-7B consis-
tently performs the best, demonstrating its ro-
bust capability in handling various types of
Text2SQL tasks. In contrast, CodeLLAMA-7B
and TableLLAMA-7B struggle to match this per-
formance, highlighting the challenging nature
of our dataset. For the less capable models,
CodeLLAMA-7B and TableLLAMA-7B, sophisti-
cated prompt methods like History and Self Refine
do not always yield the best results. This may
reflect their weaker instruction comprehension ca-
pabilities. However, for Deepseek-Coder-7B, and
the previously discussed GPT-3.5 and GPT-4, the
benefits of the Self Refine method become increas-
ingly apparent as their instruction comprehension

Table 4: Context-aware Match performance of different
methods across TableLlama-7B, CodeLlama-7B, and
Deepseeker-Code-7B

Context-aware Match
Models Method Select Insert Create Update Alter Delete

CodeLLAMA-7B
Baseline 0.027 0.052 0.017 0.130 0.173 0.250
History 0.032 0.024 0.020 0.041 0.081 0.200

Self Refine 0.020 0.009 0.000 0.003 0.000 0.000

TableLLAMA-7B
Baseline 0.333 0.051 0.006 0.029 0.051 0.250
History 0.000 0.000 0.003 0.000 0.000 0.000

Self Refine 0.000 0.000 0.000 0.000 0.000 0.000

DeepSeek-Coder-7B
Baseline 0.000 0.004 0.003 0.004 0.000 0.000
History 0.095 0.062 0.032 0.235 0.170 0.344

Self Refine 0.302 0.353 0.018 0.622 0.335 0.625

Table 5: Select Exec. Acc & Database State Match
performance of different methods across TableLlama-
7B, CodeLlama-7B, and Deepseeker-Code-7B.

Exec. Acc Database State Match
Models Method Select Insert Create Update Alter Delete

CodeLLAMA-7B
Baseline 0.064 0.101 0.072 0.102 0.257 0.500
History 0.037 0.073 0.051 0.055 0.128 0.400

Self Refine 0.006 0.006 0.000 0.003 0.000 0.000

TableLLAMA-7B
Baseline 0.010 0.049 0.012 0.021 0.062 0.375
History 0.000 0.023 0.000 0.018 0.017 0.000

Self Refine 0.000 0.023 0.000 0.018 0.017 0.000

DeepSeek-Coder-7B
Baseline 0.457 0.402 0.326 0.600 0.750 0.750
History 0.322 0.563 0.369 0.642 0.697 0.625

Self Refine 0.429 0.466 0.179 0.541 0.588 0.625

abilities improve. This trend indicates that the per-
formance of these models can be significantly en-
hanced with better contextual understanding and
methodical refinement.

7.3 Detailed Analysis

We provide a detailed assessment of the Create and
Insert SQL statements for models GPT-3.5, GPT-4,
and LLAMA2-7B, with a focus on Table Name
Accuracy, which is the correct prediction rate of
table names, and Field Match Ratio, which is the
precision of field name prediction. These detailed
metrics are designed to finely gauge the models’
predictive capabilities regarding database structure.

The experimental outcomes for GPT-3.5 and
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Table 6: Detailed analysis of the Create and Insert SQL
statements across GPT-3.5, GPT-4, and LLAMA2-7B.
The Table Name Accuracy is the correct prediction rate
of table names , and Field Match Ratio is the accurate
ratio of field names in the Create and Insert statements.

Table Name Acc. Field Match Ratio
Models Method Create Insert Create Insert

GPT-3.5
Baseline 0.975 0.954 0.722 0.930
History 0.973 0.971 0.727 0.947

Self Refine 0.968 0.956 0.728 0.933

GPT-4
Baseline 0.915 0.731 0.701 0.724
History 0.891 0.893 0.693 0.873

Self Refine 0.984 0.988 0.769 0.963

LLAMA2-7B
Baseline 0.191 0.464 0.070 0.458
History 0.129 0.270 0.020 0.268

Self Refine 0.027 0.146 0.012 0.146

LLAMA2-7B (tuned)
Baseline 0.075 0.199 0.032 0.194
History 0.207 0.416 0.115 0.409

Self Refine 0.185 0.239 0.126 0.236

GPT-4 demonstrate their proficiency. GPT-4 with
the Self Refine method reaches near-perfect Ta-
ble Name Accuracy scores of 0.984 for Create and
0.988 for Insert, and Field Match Ratio scores of
0.769 for Create and 0.963 for Insert. These find-
ings robustly validate the effectiveness of the Self
Refine, especially in predicting table names, where
it exhibits an almost flawless performance.

In contrast, LLAMA2-7B’s performance paints
an interesting picture. The model, without any
fine-tuning, records substantial Field Match Ra-
tio scores of 0.464 for Table Name Accuracy in
Create and 0.458 in Insert. These figures stand
out against the backdrop of nearly zero scores in
the primary experimental metrics of Context-aware
Match and Database State Match. This indicates
that LLAMA2-7B possesses a partial ability to pre-
dict Insert statements and shows a preference for
generating table names and some database fields
accurately. However, after fine-tuning, there is a
noticeable decrease in performance, possibly be-
cause such tuning leads the model to approach In-
sert statement prediction from a more global per-
spective. This change might undermine its earlier
predictive abilities, pointing to a nuanced trade-off
between general and detailed SQL skills influenced
by fine-tuning.

7.4 Case Study

In our case study on GPT-4 in Figure 6, we com-
pared Baseline, History, and Self Refine methods
using the same query. The Baseline method fails to
deduce the correct table and column names due to
lack of context. The History method corrects the
table name but uses NULL for the ID, violating the
non-null primary key constraint. The Self Refine

User: Add an instructor named 'John Doe' with email 
'john.doe@example.com'.

Predict of GPT-4 under different methods

Answer: INSERT INTO Instructors (instructor_id, 
name, email_address) VALUES (201, 'John Doe', 
'john.doe@example.com')

Baseline

History

Self Refine

Answer: INSERT INTO People (first_name, 
last_name, email_address) VALUES ('John', 'Doe', 
'john.doe@example.com')

Answer: INSERT INTO Instructors (instructor_id, 
instructor_name, email) VALUES (NULL, 'John 
Doe', 'john.doe@example.com');

Answer: INSERT INTO Instructors 
(instructor_id, instructor_name, email) VALUES 
((SELECT IFNULL(MAX(instructor_id), 0) + 1 
FROM Instructors), 'John Doe', 
'john.doe@example.com’)

Figure 6: A case study shows SQL predictions by GPT-
4 using Baseline, History, and Self Refine methods for
the same query. Red circles mark errors: Baseline fails
to identify the correct table, and History can’t generate
a valid primary key. The green checkmark shows Self
Refine’s success, accurately predicting the table name
and dynamically calculating the next primary key.

method successfully rectifies the table name and
uses a subquery to compute the next ID, generating
the correct SQL statement. This study highlights
that the History method improves context percep-
tion over Baseline, while Self Refine excels by
using database feedback to correct errors. Incorpo-
rating such feedback is crucial for generating con-
textually accurate and constraint-respecting SQL
queries.

8 Conclusion

In conclusion, we introduce MultiSQL, a Multi-
type, schema-integrated, and context-dependent
Text2SQL dataset, designed to closely mirror the
complexities and dynamism of real-world database
interactions. By incorporating a diverse range of
SQL operations and embedding database schema
dependencies within extended dialogue interac-
tions, MultiSQL offers a significantly more nu-
anced and challenging environment for Text2SQL
applications.

Limitations

The MultiSQL dataset, while advancing the
Text2SQL domain, encounters limitations in fully
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replicating the complexity of real-world database
scenarios, potentially affecting its generalizability.
With 166 databases, the variety, although extensive,
may not encompass the vast diversity of real-world
database schemas, limiting the dataset’s applica-
bility across different domains. Additionally, the
refined evaluation metrics, though improved, might
not capture all aspects of SQL query quality such
as runtime efficiency and adherence to SQL writing
best practices. This could lead to a gap in measur-
ing the true effectiveness of SQL queries generated
from natural language interactions, highlighting
areas for future enhancement to bridge the gap
between simulated environments and real-world
database usage.
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A Implementation Details

In our Text2SQL experiments, we implemented
specific configurations for models in the GPT se-
ries. For GPT-3.5, we employed the GPT-3.5-turbo
model, and for GPT-4, we used the GPT-4-1106-
preview version. Both models were set with a tem-
perature of 0 to ensure the determinism and stability
of the generated results.

For fine-tuning LLAMA2-7B, we crafted a
dataset comprising 783 groups. To prepare for in-
struction tuning, we utilized 662 of these groups to
construct 8006 instruction-tuning pairs. This was
done by segmenting user-answer pairs within dia-
logues. The remaining 121 groups were reserved
for testing purposes. The fine-tuning process was
carried out using the LoRA technique, with a LoRA
rank of 8 and a LoRA alpha of 32. We set the
batch size to 4 and the learning rate to 1e-4. The
fine-tuning was conducted on an NVIDIA Tesla
V100 32GB GPU. For the inference output from
LLAMA2-7B, due to the model’s limitations, the
generated content contained some redundant infor-
mation. To address this, we employed GPT-3.5 to
extract the SQL statements from the generated con-
tent, which were then used as the predictive results
of the model.
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