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Abstract

Complex logical query answering (CLQA) is
a challenging task that involves finding answer
entities for complex logical queries over in-
complete knowledge graphs (KGs). Previous
research has explored the use of pre-trained
knowledge graph completion (KGC) models,
which can predict the missing facts in KGs,
to answer complex logical queries. However,
KGC models are typically evaluated using rank-
ing evaluation metrics, which may result in val-
ues of predictions of KGC models that are not
well-calibrated. In this paper, we propose a
method for calibrating KGC models, namely
CKGC, which enables KGC models to adapt
to answering complex logical queries. Notably,
CKGC is lightweight and effective. The adap-
tation function is simple, allowing the model to
quickly converge during the adaptation process.
The core concept of CKGC is to map the val-
ues of predictions of KGC models to the range
[0, 1], ensuring that values associated with true
facts are close to 1, while values linked to false
facts are close to 0. Through experiments on
three benchmark datasets, we demonstrate that
our proposed calibration method can signifi-
cantly boost model performance in the CLQA
task. Moreover, our approach can enhance
the performance of CLQA while preserving
the ranking evaluation metrics of KGC mod-
els. The code is available at https://github.
com/changyi7231/CKGC.

1 Introduction

Knowledge graphs (KGs) are composed of struc-
tured representations of facts in the form of triplets
and have been widely used in various domains. One
of the key tasks associated with KGs is complex
logical query answering (Ren et al., 2023). Com-
plex logical queries are typically expressed using
first-order logic (FOL), which encompasses logical
operations such as conjunction (∧), disjunction (∨),

*Corresponding author.

negation (¬), and existential quantifier (∃). For ex-
ample, the query "Which universities do the Turing
Award winners not in the field of deep learning
work in?" can be formulated as a FOL query, as
illustrated in Figure 1.

Many well-known knowledge graphs (KGs) suf-
fer from incompleteness, rendering it challenging
to answer complex queries through simple KG
traversal. Building on the accomplishments of
knowledge graph completion (KGC) methods (Bor-
des et al., 2013; Sun et al., 2018; Trouillon et al.,
2017) in addressing one-hop KG queries, a research
avenue has emerged focusing on learning embed-
dings for queries to handle complex logical queries
(Hamilton et al., 2018; Ren et al., 2020; Zhang
et al., 2021). Nonetheless, these methodologies
often require extensive training on numerous com-
plex logical queries, leading to substantial training
time overhead and limited generalization to out-of-
distribution query structures.

In addressing these challenges, CQD (Arakelyan
et al., 2020) introduces a method for CLQA by
leveraging one-hop atom results derived from a pre-
trained KGC model, thereby removing the neces-
sity for training on complex queries. CQD frames
CLQA as an optimization problem and employs
techniques like beam search or continuous approx-
imation to estimate the optimal solution. Despite
its effectiveness, the approximations made during
the process could lead to a decrease in accuracy
for CQD. Furthermore, CQD is reliant on a KGC
model whose values of output might not be specifi-
cally calibrated for CLQA, potentially resulting in
inaccuracies in the outcomes.

In this paper, we introduce a method for calibrat-
ing KGC models, namely CKGC, which can make
KGC models adapt to handling complex logical
queries. Our method is lightweight and effective. It
is lightweight, as the adaptation function is simple
and the model can quickly converge in adaptation
process. Moreover, it is effective in significantly
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enhancing the performance of CLQA.
We first represent every complex logical query

as a computation graph over fuzzy sets, of which
nodes represent fuzzy sets and edges represent the
fuzzy set operations over fuzzy sets. To obtain
the answers of a query, we traverse the computa-
tion graph and execute the fuzzy set operations
through a straightforward forward propagation pro-
cess, eliminating the need for optimization com-
pared to CQD (Arakelyan et al., 2020). We define
four fundamental fuzzy set operations for CLQA:
projection operation, complement operation, inter-
section operation, and union operation, all of which
require the KGC model to be calibrated.

However, a KGC model is typically measured
by the ranking metrics, which do not need it to be
calibrated. Thus, we propose a calibration method
for KGC models to make it adapted to CLQA. We
define the adaptation function as a monotonically
increasing function that preserves the ranking eval-
uation metrics of the KGC model. The main idea
of our method is to map the values of output of a
KGC model to the interval [0, 1], and makes the
values corresponding to true triplets be as close as
possible to 1, while the values corresponding to
false triplets be as close as possible to 0.

Our experimental evaluation on three standard
datasets demonstrates the efficacy of CKGC in
CLQA. The results reveal that CKGC achieves
state-of-the-art performance across all datasets,
showcasing an average relative improvement of
6.7% on existential positive first-order queries and
53.9% on negation queries compared to the prior
state-of-the-art method.

2 Related Work

Knowledge Graph Completion The task of
KGC involves predicting missing triplets within a
knowledge graph, which can be viewed as predict-
ing answers for one-hop queries. Various method-
ologies have been proposed to address this task, en-
compassing embedding techniques (Bordes et al.,
2013; Sun et al., 2018; Trouillon et al., 2017), rein-
forcement learning approaches (Xiong et al., 2017;
Das et al., 2018; Hildebrandt et al., 2020; Zhang
et al., 2022), rule learning strategies (Yang et al.,
2017; Sadeghian et al., 2019; Qu et al., 2020), and
graph neural network methodologies (Schlichtkrull
et al., 2018; Vashishth et al., 2019; Teru et al.,
2020). Embedding methods aim to embed enti-
ties and relations into a continuous space and de-

fine a scoring function based on these embeddings.
Reinforcement learning methods train an agent to
explore the knowledge graph to predict the miss-
ing triplets. Rule learning methods adopt a distinct
approach by initially identifying confident logical
rules from the knowledge graph. These rules are
then utilized to infer missing triplets. Lastly, graph
neural network methods utilize graph neural net-
works to learn representations of entities and rela-
tions by leveraging the graph structure.

Complex Logical Query Answering CLQA
over KGs extends KGC to predict answers for FOL
queries, which additionally requires defining re-
lationships between sets of entities. Embedding-
based methods represent sets of entities as geo-
metric objects (Hamilton et al., 2018; Ren et al.,
2020; Zhang et al., 2021) or probability distribu-
tions (Ren and Leskovec, 2020), and then minimize
the distance between embeddings of queries and
embeddings of their corresponding answers. How-
ever, the quality of representation of sets may be
compromised when dealing with large sets. To
overcome this limitation, some studies have incor-
porated powerful fuzzy set theory to handle FOL
queries (Chen et al., 2022; Zhu et al., 2022). For in-
stance, FuzzQE (Chen et al., 2022) embeds entities
and queries into a fuzzy space and leverages fuzzy
set operations to perform logical operations on the
embeddings. Similarly, GNN-QE (Zhu et al., 2022)
decomposes the query into relational projections
operations and fuzzy set operations over fuzzy sets,
and subsequently learns a graph neural network to
execute relational projections.

Nevertheless, the aforementioned methods gen-
erally necessitate training on numerous complex
logical queries, resulting in significant training
time overhead and limited generalization to out-
of-distribution query structures. Another line of
methods first pre-trains a KGC model and then
integrates it with fuzzy set theory to infer an-
swers. CQD (Arakelyan et al., 2020) formulates
CLQA as an optimization problem and proposes
two strategies to approximate the optimal solution:
CQD-CO, which directly optimizes in the contin-
uous space, and CQD-Beam, which utilizes beam
search. Despite CQD avoiding the need to train
on complex logical queries, it suffers from accu-
racy loss due to the approximated optimization
and uncalibrated KGC models. To enhance ac-
curacy, Bai et al. (2023) introduce QTO, which
efficiently finds the theoretically optimal solution
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through a forward-backward propagation on a tree-
like computation graph. Additionally, Arakelyan
et al. (2023) propose CQDA, a parameter-efficient
adaptation method, to calibrate KGC models. How-
ever, the KGC model for QTO is not well calibrated
for complex queries, and the optimal solution for
CQDA is still approximated. In contrast, our pro-
posed model not only delivers accurate solutions
but also effectively calibrates the KGC models.

3 Background

In this section, we introduce the related background
of our method, complex logical query answering
on knowledge graphs and fuzzy sets.

3.1 Complex Logical Query Answering on
Knowledge Graphs

Knowledge Graphs Completion Given a set of
entities V and a set of relations R, a knowledge
graph G contains a set of triplets {(h, r, t)} ⊂
V ×R× V , where each triplet is a fact from head
entity h to tail entity t with a relation type r. KGC
models define scoring functions f(h, r, t) to mea-
sure the likelihood of triplets (h, r, t) based on their
corresponding embeddings.

First-Order Logic Queries Complex logical
queries can be represented by FOL queries with
logical operations including conjunction (∧), dis-
junction (∨), negation (¬), and existential quanti-
fier (∃). A first-order logic query q can be described
in its disjunctive normal form, which consists of
a set of non-variable anchor entities Va ⊆ V , ex-
istentially quantified bound variables V1, . . . , Vk

and a single target variable V?, which provides the
answers of query q. The disjunctive normal form
of a logical query q is a disjunction of one or more
conjunctions.

q = Vj .∃V1, . . . , Vk : c1 ∧ c2∧, · · · , cn.

Each c represents a conjunctive query with one or
more literals e, i.e., ci = ei1 ∨ ei2 ∨ · · · ∨ eim.
Each literal e represents an atomic formula or its
negation, i.e., eij = R(va, V ) or ¬R(va, V ) or
¬R(V

′
, V ) or ¬R(V

′
, V ), where va ∈ Va, V ∈

{V?, V1, . . . , Vk}, V ∈ {V?, V1, . . . , Vk}, V ̸= V
′
,

R(·, ·) is a binary function R : V × V −→ {0, 1}.
Each relation r ∈ R corresponds to a binary func-
tion R(·, ·). If (h, r, t)is a true fact, then R(h, t) =
1. If (h, r, t)is a false fact, then R(h, t) = 0.

Computation Graph Given a FOL query, we
can represent it as a computation graph, of which
nodes represent sets of entities and edges repre-
sent set operations over sets of entities. The set
operations include the complement operation, inter-
section operation, union operation and projection
operation. The root node represent the set of an-
swer entities. See Figure 1 for an example. We
map logical operations to set operations according
to the following rules.

• Negation−→ Complement Operation:
Given a set of entities S ⊆ V , the comple-
ment operator performs set complement to
obtain S = V\S.

• Conjunction−→ Intersection Operation:
Given n sets of entities {S1, S2, . . . Sn}, the
intersection operator performs set intersection
to obtain ∩n

i=1Si.

• Disjunction−→ Union Operation: Given
n sets of entities {S1, S2, . . . Sn}, the union
operator performs set union to obtain ∪n

i=1Si.

• Relation Projection−→ Projection Opera-
tion: Given a set of entities S ⊆ V and a re-
lation r ∈ R, the projection operator outputs
all the adjacent entities ∪v∈SN(v, r), where
N(v, r) is the set of entities such that (v, r, v

′
)

are true triplets for all v
′ ∈ N(v, r).

In order to answer a given FOL query, we can
traverse the computation graph and execute the set
operations. The answers of a query can be obtained
by looking at the set of entities in the root node.

3.2 Fuzzy sets

Definition A fuzzy set is a pair (U,m), where U
is a set and m : U −→ [0, 1] is a membership func-
tion. For each x ∈ U , the value m(x) measures the
degree of membership of x in (U,m). The function
m = µA is called the membership function of the
fuzzy set A = (U,m). Classical sets are be seen
as special cases of fuzzy sets, if the membership
functions only takes values 0 or 1.

Fuzzy Set Operations Fuzzy set operations are a
generalization of classical set operations for fuzzy
sets. The three primary fuzzy set operations are
fuzzy complements, fuzzy intersections, and fuzzy
unions. For a given fuzzy set A, its complement A
is commonly defined by the following membership
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Which universities do the Turing Award winners in the field of deep learning work in?

Computation Graph

Query

First-Order Logic q=V?. V:Win(V,Turing Award) Field(V,Deep Learning) University(V,V?)

Turing Award

Deep Learning

Win-1

Field-1

University

Figure 1: An query, its corresponding FOL form and its corresponding computation graph.

function:

∀x ∈ U, µA(x) = 1− µA(x)

Given a pair of fuzzy sets A,B, their intersection
A ∩ B is defined by a t-norm T (Klement et al.,
2004):

∀x ∈ U, µA∩B(x) = T (µA(x), µB(x))

Prominent examples of t-norms include product
t-norm T (a, b) = ab, Gödel t-norm T (a, b) =
min{a, b} and so on (Klement et al., 2004). Given
a t-norm T and a pair of fuzzy sets A,B, their
union A ∪B is defined by De Morgan’s law:

∀x ∈ U, µA∪B(x) = 1− T (1− µA(x), 1− µB(x))

4 Method

We first define four fuzzy set operations over fuzzy
sets in Section 4.1, and then propose a calibration
method for KGC models in Section 4.2.

4.1 Fuzzy Set Operations

As demonstrated in Section 3.1, a query can be
represented as a computation graph. To obtain
the fuzzy sets of answers, it is necessary to define
the fuzzy set operations utilized in computation
graphs. These operations encompass the projection
operation, intersection operation, union operation,
and complement operation.

We represent every fuzzy set of entities as a vec-
tor e ∈ [0, 1]d, where d = |V| and ei denotes the
grade of membership of entity i. The anchor entity
is represented by a vector with a single element set
to 1 and all other elements set to 0.

Complement Operation: The complement op-
eration maps a fuzzy set to the complement of the
fuzzy set. We define the complement operation as

C : [0, 1]d −→[0, 1]d

C(e) =1− e

Intersection Operation: The intersection oper-
ation maps several fuzzy sets into the intersection
set of these fuzzy sets. We define the intersection
operation by utilizing the product t-norm, which is
as follows:

I : [0, 1]nd −→[0, 1]d

I(e1, e2, . . . , en) =e1 ⊙ e2 ⊙ · · · ⊙ en

where {ei ∈ [0, 1]d|1 ≤ i ≤ n} are vector rep-
resentations of fuzzy sets and ⊙ is the Hadamard
product.

Union Operation: The union operation maps
several fuzzy sets into the union set of these fuzzy
sets. Due to the De Morgan’s Law, we do not need
to define the union operation directly. We define
the union operation by utilizing the intersection
operation and complement operation as follows:

U :[0, 1]nd −→ [0, 1]d

U(e1, e2, . . . , en) =C(I(C(e1), C(e2), . . . , C(en)))

Projection Operation: The projection operation
maps a fuzzy set into another fuzzy set with a rela-
tion type r. We implement the projection operation
by utilizing the Gödel t-norm as follows:

Pr :[0, 1]
d −→ [0, 1]d

Pr(e)j =1− min
1≤i≤d

(1− eiXi,r,j)

= max
1≤i≤d

eiXi,r,j
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where X ∈ [0, 1]|V|×|R|×|V| is the KG tensor and
Xi,r,j denotes the likelihood of a triplet (i, r, j),
which is provided by the KGC model. We do not
use product t-norm here because continued prod-
uct often leads to accumulated errors for large d.
Compared to QTO (Bai et al., 2023), we define the
projection operation and the complement operation
separately, which make our method more flexible.

In the training process, since the value of Xi,r,j

is constantly changed, we need to recompute the
value of Xi,r,j . The primary bottleneck of the pro-
jection operation is the computation. We can take
the nonzero entries of e and multiply them with the
corresponding entries in X to get results. Thus, the
computational complexity of projection operation
is O(|V||{ei|ei > 0}|).

In the test process, since the value of Xi,r,j is
fixed, we pre-compute the value of Xi,r,j to reduce
the computation. The primary bottleneck of the
projection operation is the memory consumption of
tensor X . Xcontains |V|2|R| entries. Due to the
sparsity of the KG, most entries of X have small
values, which can be filtered to 0 by a threshold ϵ >
0 while maintaining precision (Bai et al., 2023).

4.2 Calibration

Upon establishing the four fuzzy set operations,
the sole requirement for computing the results of
queries is a calibrated KG tensor X . The entries
of a calibrated KG tensor X are expected to fall
within the range of 0 to 1, with values associated
with true triplets approaching 1, and those linked to
false triplets nearing 0. In the event of possessing
a fully calibrated KG tensor X , accurate answers
of queries can be attained through the utilization of
the four fuzzy set operations.

The KG tensor X is furnished by a KGC model,
which defines a scoring function f(h, r, t) to mea-
sure the likelihood of a triplet (h, r, t). The ranking
metrics, MRR and H@N (Bordes et al., 2013), are
commonly used to evaluate KGC models. For ex-
ample, the definition of MRR is as follows:

MRR =
∑

(h,r,t)∈G

1

|G|
1

rank(h, r, t)

where G is a dataset and rank(h, r, t) is the rank
of tail entity t in the predicted list for the query
(h, r, ?). rank(h, r, t) is computed based on the
scoring function f(h, r, t). The ranking metrics
mainly focus on ranking rather than the specific
numerical value of f(h, r, t), which is important

for complex query answering. Subsequently, an
illustrative example is provided to elucidate this
concept.

For example, supposing we have a query

q = V? : R1(a1, V?) ∧R2(a2, V?)

where entity a1 can be represented by a vector
a1 = [1, 0, 0, 0], entity a2 can be represented by a
vector a2 = [0, 1, 0, 0]. Assuming the KG tensor
X is satisfied with X1,1,: = [0.6, 0.4, 0.2, 0.1] and
X2,2,: = [0.5, 0.7, 0.2, 0.1]. Then, we have that
P1(a1) = X1,1,: = [0.6, 0.4, 0.2, 0.1], P2(a2) =
X2,2,: = [0.5, 0.7, 0.2, 0.1] and the predicted an-
swers

I(P1(a1),P2(a2)) = [0.30, 0.28, 0.04, 0.01]

Then the largest entry in I(P1(a1),P2(a2)) is the
first entry.

If we let X̂1,1,: = 0.1X1,1,: + 0.1, then we have
that P1(a1) = X̂1,1,: = [0.16, 0.14, 0.12, 0.11],
P2(a2) = X2,2,: = [0.5, 0.7, 0.2, 0.1] and the pre-
dicted answers

I(P1(a1),P2(a2)) = [0.08, 0.098, 0.024, 0.011]

Then the largest entry in I(P1(a1),P2(a2)) is the
second entry.

While the aforementioned transformation does
not alter the ranking metrics of KGC models, it
can affect the ranking metrics of CLQA models.
Hence, it is imperative to calibrate the KGC models
to acquire a calibrated KG tensor X for the CLQA
task.

We get a calibrated KG tensor X in the follow-
ing steps:

1. We train a KGC model to get a scoring func-
tion f(h, r, t).

2. We use softmax function to normalize
f(h, r, t) and denote the new scoring function
as f̂(h, r, t).

f̂(h, r, t) = min(N
exp(f(h, r, t))

∑|V|
t′=1

exp(f(h, r, t′))
, 1)

N =

{
M, M > 0

α, M = 0

M = |{(h′
, r

′
, t

′
) ∈ Gtrain|h

′
= h, r

′
= r}|

where Gtrain denotes the training set of a KG.
and α ≥ 0 is a hyper-parameter.
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Figure 2: Fourteen types of queries used in the datasets, where "p" denotes relation projection, "i" denotes
intersection, "u" denotes union, and "n" denotes negation.

3. We adapt the KGC models to complex queries
datasets.

f̃(h, r, t) = min(Wh,rf̂(h, r, t), 1)

where W ∈ (0,+ inf)|V|×|R| is a parame-
ter matrix. For a query-answer pair (q, [[q]]),
where [[q]] denotes the set of answers of query
q, we optimize W by the following loss func-
tion:

L = − 1

|[[q]]|
∑

i∈[[q]]
logai−

1

|[[q]]|
∑

i∈[[q]]

log(1−ai)

where a is the vector representation of pre-
dicted answers.

4. We replace the values of f̃(h, r, t) with 1 for
triplets (h, r, t) ∈ Gtrain ∪ Gvalidation to get the
calibrated tensor X , i.e.,

Xh,r,t ={
1 (h, r, t) ∈ Gtrain ∪ Gvalidation

f̃(h, r, t) (h, r, t) /∈ Gtrain ∪ Gvalidation

where Gvalidation denotes the validation set of a
KG.

The first step is to get a pre-train KGC model,
which lays the foundation for subsequent steps.
Although any KGC model is allowed, it is better to
choose a KGC model with good performance.

The second step is to normalize the scoring func-
tion f(h, r, t) provided by the first step, which
can make the values of f̂(h, r, t) between 0 and
1, and the larger the value of f(h, r, t), the larger
the value of f̂(h, r, t). A good property of soft-
max function is that it is invariant under translation
transformation, i.e., softmax(x+ c) = softmax(x)

for any c ∈ R. The meaning of N is the number
of answer tail entities for a query (h, r, ?). As
there can be multiple answer tail entities for a
query (h, r, ?), each of their corresponding pre-
dicted values should be close to 1. Thus, we mul-
tiply softmax(f(h, r, t)) by N to make it close to
1. The operation of taking the minimum value is
to prevent the value from exceeding 1. The hyper-
parameter α is to prevent f̂(h, r, t) from becoming
0 for the case where M = 0.

The third step adapts the KGC models to CLQA
datasets. Since the adaptation function, linear func-
tion, is a monotonically increasing function, the
new scoring function f̃(h, r, t) have the same re-
sults of KGC ranking metrics as f(h, r, t). Thus,
our method can improve the performance of CLQA
while maintaining the evaluation results of KGC.
This step is lightweight because the adaptation
function is simple and only the parameter matrix
W is optimized.

The fourth step replaces the value of f̃(h, r, t)
with 1 for known true triplets to get a calibrated
KG tensor X . While evaluating KGC models, the
known true triplets are not typically taken into ac-
count. Nonetheless, this step is crucial for CLQA
as it ensures the calibration of the tensor X for
better performance.

5 Experiments

5.1 Experimental Settings

Datasets We evaluate our method on three pop-
ular knowledge graph datasets, including FB15k
(Bordes et al., 2013), FB15k-237 (Toutanova
et al., 2015), NELL995 (Xiong et al., 2017). We
use the standard FOL queries generated in Be-
taE (Ren and Leskovec, 2020), consisting of 9
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Models avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15k

GQE 28.0 - 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6 - - - - -
Q2B 38.0 - 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7 - - - - -
BetaE 41.6 11.8 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 14.3 14.7 11.5 6.5 12.4
ConE 49.8 14.8 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 17.9 18.7 12.5 9.8 15.1
GNN-QE 72.8 38.6 88.5 69.3 58.7 79.7 83.5 69.9 70.4 74.1 61.0 44.7 41.7 42.0 30.1 34.3
CQD-CO 46.9 - 89.2 25.3 13.4 74.4 78.3 44.1 33.2 41.8 21.9 - - - - -
CQD-Beam 58.2 - 89.2 54.3 28.6 74.4 78.3 58.2 67.7 42.4 30.9 - - - - -
CQDA 70.4 42.8 89.2 64.5 57.9 76.1 79.4 70.0 70.6 68.4 57.9 54.7 47.1 37.6 35.3 24.6
QTO 74.0 49.2 89.5 67.4 58.8 80.3 83.6 75.2 74.0 76.7 61.3 61.1 61.2 47.6 48.9 27.5
CKGR 80.6 71.0 89.9 76.5 72.8 84.6 88.1 82.1 80.4 78.7 72.1 75.0 74.3 62.6 70.7 72.5

FB15k-237

GQE 16.3 - 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 - - - - -
Q2B 20.1 - 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 - - - - -
BetaE 20.9 5.5 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.5 3.4
ConE 23.4 5.9 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 5.4 8.6 7.8 4.0 3.6
FuzzQE 24.0 7.8 42.8 12.9 10.3 33.3 46.9 26.9 17.8 14.6 10.3 8.5 11.6 7.8 5.2 5.8
GNN-QE 26.8 10.2 42.8 14.7 11.8 38.3 54.1 31.1 18.9 16.2 13.4 10.0 16.8 9.3 7.2 7.8
CQD-CO 21.8 - 46.7 9.5 6.3 31.2 40.6 23.6 16.0 14.5 8.2 - - - - -
CQD-Beam 22.3 - 46.7 11.6 8.0 31.2 40.6 21.2 18.7 14.6 8.4 - - - - -
CQDA 25.7 10.7 46.7 13.6 11.4 34.5 48.3 27.4 20.9 17.6 11.4 13.6 16.8 7.9 8.9 5.8
QTO 33.5 15.5 49.0 21.4 21.2 43.1 56.8 38.1 28.0 22.7 21.4 16.8 26.7 15.1 13.6 5.4
CKGR 34.8 25.3 49.2 22.3 22.3 45.1 60.3 40.3 29.1 22.9 22.0 23.9 37.5 21.0 23.2 21.2

NELL995

GQE 18.6 - 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 - - - - -
Q2B 22.9 - 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 - - - - -
BetaE 24.6 5.9 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5
ConE 27.2 6.4 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9
FuzzQE 27.0 7.8 47.4 17.2 14.6 39.5 49.2 26.2 20.6 15.3 12.6 7.8 9.8 11.1 4.9 5.5
GNN-QE 28.9 9.7 53.3 18.9 14.9 42.4 52.5 30.8 18.9 15.9 12.6 9.9 14.6 11.4 6.3 6.3
CQD-CO 28.8 - 60.4 17.8 12.7 39.3 46.6 30.1 22.0 17.3 13.2 - - - - -
CQD-Beam 28.6 - 60.4 20.6 11.6 39.3 46.6 25.4 23.9 17.5 12.2 - - - - -
CQDA 32.3 13.3 60.4 22.9 16.7 43.4 52.6 32.1 26.4 20.0 17.0 15.1 18.6 15.8 10.7 6.5
QTO 32.9 12.9 60.7 24.1 21.6 42.5 50.6 31.3 26.5 20.4 17.9 13.8 17.9 16.9 9.9 5.9
CKGR 35.3 19.9 61.4 25.7 24.1 45.8 58.8 33.9 29.2 20.5 18.7 19.8 27.5 20.4 17.4 14.6

Table 1: Complex Query Answering results on FB15k, FB15k-237 and NELL995 test sets with MRR metrics. avgp
is the average on existential positive first-order queries. avgn is the average on queries with negation.

types of existential positive first-order queries
(1p/2p/3p/2i/3i/pi/ip/2u/up) and 5 types of queries
with negation (2in/3in/inp/pin/pni). Specifically,
"p", "i", "u", and "n" stand for "projection", "in-
tersection", "union", and ‘negation’ in the query
structure, respectively. The query types are shown
in Figure 2. During adaptation, we only use queries
of type 1p, 2i, 3i, 2in and 3in of the training dataset
to reduce computation.

Baselines We compare our method with state-
of-the-art methods on complex query answering,
query embedding methods, including GQE (Hamil-
ton et al., 2018), Q2B (Ren et al., 2020), BetaE
(Ren and Leskovec, 2020)), ConE (Zhang et al.,
2021), FuzzQE (Chen et al., 2022), GNN-QE
(Zhu et al., 2022), complex query decomposition
methods, including CQD-CO (Arakelyan et al.,
2020), CQD-beam (Arakelyan et al., 2020) CQD
(Arakelyan et al., 2023) and QTO (Bai et al., 2023).

Evaluation Metrics We adopt the evaluation
framework introduced in BetaE (Ren and Leskovec,
2020), which involves categorizing the answers
to each complex query into two distinct groups:
easy answers and hard answers. For validation/test

queries, easy answers refer to entities that can
be reached by edges in training/validation graph,
while hard answers are those that can only be in-
ferred by predicting missing edges in the valida-
tion/test graph. We evaluate the method on com-
plex queries by calculating the rank for each hard
answer against non-answers and computing the
mean reciprocal rank (MRR) (Bordes et al., 2013).

Implementation Details For pre-train, our
method can be incorporated with any KGC model.
We select a state-of-the-art KGC model, ComplEx
(Trouillon et al., 2017) trained with N3 regulariza-
tion (Lacroix et al., 2018) and auxiliary relation
prediction task (Chen et al., 2021). We choose
the hyper-parameters with the best MRR on the
validation set.

For training of CLQA, we train at most 5 epochs.
For testing of CLQA, we pre-compute the KG
tensor X to make our method achieve higher ef-
ficiency compared to previous query embedding
methods (Bai et al., 2023). To save the memory us-
age of X , we select an appropriate ϵ such that after
filtering all entries that less than ϵ can be stored on
a single GPU.
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Models avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15k

S12 78.1 29.5 89.9 73.9 68.0 82.2 84.9 78.0 77.0 78.7 70.0 33.8 34.3 31.7 23.7 23.8
S123 78.7 45.6 89.9 74.0 68.7 83.3 86.3 79.4 77.9 78.7 69.9 51.4 50.3 45.4 39.5 41.3
S1234 80.6 71.0 89.9 76.5 72.8 84.6 88.1 82.1 80.4 78.7 72.1 75.0 74.3 62.6 70.7 72.5

FB15k-237

S12 32.3 9.6 49.2 20.5 19.8 41.4 54.8 35.9 26.6 22.7 19.9 9.8 16.4 10.0 7.1 4.7
S123 32.9 15.7 49.2 20.9 20.4 42.2 56.5 37.1 26.9 22.4 20.2 15.8 25.4 14.1 12.9 10.2
S1234 34.8 25.3 49.2 22.3 22.3 45.1 60.3 40.3 29.1 22.9 22.0 23.9 37.5 21.0 23.2 21.2

NELL995

S12 32.8 7.3 61.4 23.4 20.9 42.5 51.0 31.8 26.4 20.4 17.6 7.4 9.9 9.9 4.6 4.4
S123 33.2 11.3 61.4 23.8 21.4 43.3 52.5 32.0 26.7 20.4 17.8 12.2 16.6 13.5 8.0 6.3
S1234 35.3 19.9 61.4 25.7 24.1 45.8 58.8 33.9 29.2 20.5 18.7 19.8 27.5 20.4 17.4 14.6

Table 2: Complex Query Answering results on FB15k, FB15k-237 and NELL995 test sets with different settings.

ϵ 0.05 0.01 0.005 0.001 0.0005 0.0001 0.00005 0.00001

Memory Usage 22M 60M 103M 383M 676M 2.77G 5.99G Out of Memory
Sparsity Level 99.999% 99.997% 99.995% 99.980% 99.965% 99.851% 99.678% -
Running Time 290s 311s 314s 348s 373s 482s 558s -
avgp 27.9 32.0 32.9 34.0 34.3 34.7 34.8 -
avgn 24.5 25.2 25.3 25.3 25.3 25.3 25.3 -

Table 3: Effect of ϵ on memory usage, sparsity level, and avgp and avgn. The experiments are conducted on
FB15K-237 datasets. The time is the running time on one NVIDIA A40 GPU.

5.2 Results

See Table 1 for the results. avgp is the average on
existential positive first-order queries. avgn is the
average on queries with negation. GQE, Q2B, CK-
GCO, and CQD-Beam do not support queries with
negation, so the corresponding entries are empty.
We observe that our model significantly outper-
forms baseline methods across all datasets. Our
model yields a relative gain of 6.8% and 52.3%
on avgp and avgn compared to previous state-of-
the-art model QTO. This shows that our method
has better reasoning skills and superior adaptabil-
ity when tackling complex query answering tasks.
We attribute this improvement to our calibration
method, which can adapt the KGC models to an-
swering complex queries very well.

The adaptation function of CKGC is simple,
making the model quickly converge during the
adaptation process. We next show the training
time. The running time for FB15k dataset is an
average of 67 seconds per epoch, the running time
for FB15k -237 dataset is an average of 32 sec-
onds per epoch, the running time for NELL995
dataset is an average of 83 seconds per epoch. All
models can converge within 5 epochs, resulting in
a very short training time. In contrast, previous
embedding-based models, such as BetaE, ConE,
FuzzQE, GNN-QE and so on, often require hun-
dreds of epochs to converge. For instance, BetaE

takes 105 epochs to converge and has an average
training running time of 63 seconds per epoch on
the FB15k-237 dataset. Compared to our model
(32 seconds x 2 epoch = 64 seconds), these models
require significantly more runtime for training. The
running time is the running time on one NVIDIA
A40 GPU.

5.3 Ablation Studies

As stated in Section 4.2, we obtain a calibrated
knowledge graph completion model by executing
four steps. To analyze the impact of each step, we
obtain calibrated models by performing only a few
steps. We denote the calibrated model with steps 1
and 2 as S12, the model with steps 1, step 2, and
step 3 as S123, and the model with steps 1, step 2,
step 3, and step 4 as S1234. S12 primarily serves as
a baseline. S123 is mainly used to study the impact
of adaptation (step 3). S1234 is mainly used to
study the impact of calibrating the predicted values
corresponding to true triplets (step 4).

See Table 2 for the results. S123 has an average
relative improvement of 1.3% on avgp metric com-
pared to S12, and S1234 has an average relative
improvement of 4.8% on avgp metric compared to
S123. S123 has an average relative improvement of
64.8% on avgn metric compared to S12, and S1234
has an average relative improvement of 64.3% on
avgn metric compared to S123.
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The results show that the avgn metric has been
significantly improved. Since step 3 calibrates both
predicted values corresponding to true triplets and
predicted values corresponding to false triplets, we
cannot determine from this step whether the main
improvement on avgn comes from the calibration
for true triplets or false triplets. Since step 4 only
changes the predicted values corresponding to the
true triplets, this indicates that the significant im-
provement on avgn is primarily due to the more
accurate calibration of the predicted values corre-
sponding to the true triplets.

5.4 Hyper-parameters Analysis

We analyze the experimental results of our method
with respect to the hyper-parameter ϵ. We study
the changes in memory usage, sparsity level (the
ratio of zero entries in the KG tensor X), avgp and
avgn as ϵ decreases.

We show the results in Table 3, which show that
as ϵ decreases, memory usage increases, sparsity
level decreases, running time increases, avgp in-
creases, and avgn increases. Thus, we can select
a proper ϵ to balance the computation or memory
usage and model performance.

6 Conclusion

CLQA is one of the crucial tasks associated with
KGs. In this paper, we introduce CKGC, a calibra-
tion method developed to enhance the adaptability
of KGC models for CLQA. Through experimen-
tal analysis, we illustrate that the implementation
of CKGC leads to a substantial improvement in
model performance for the CLQA task. Therefore,
the calibration of KGC models holds significant
importance for the optimization of CLQA mod-
els. Moving forward, we encourage the exploration
and proposal of additional calibration methods to
further enhance the performance of CLQA.

Limitations

One limitation of our method is the space complex-
ity and time complexity of projection operation.
We use an approach to make the predicted tensor
X sparse. This approach can make the model per-
formance decreases as shown in Table 3. We plan
to explore methods that can reduce the computa-
tional complexity and memory usage of the method
while maintaining good performance.
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A Appendix

A.1 Experimental Details
Datasets The detailed statistics for each dataset can be seen in Table 4.

Split Query Types FB15k FB15k-237 NELL995

Train 1p,2p,3p,2i,3i 273,710 149,689 107,982
2in, 3in, inp, pin, pni 27,371 14,968 10,798

Validation 1p 59,078 20,094 16,910
Others 8,000 5,000 4,000

Test 1p 66,990 22,804 17,021
Others 8,000 5,000 4,000

Table 4: Detailed statistics on the different types of query structures in FB15K, FB15K-237, and NELL995 datasets.

Hyper-parameters Settings Table 5 shows the best hyper-parameters we searched for pre-training
KGC models. Table 6 shows the best hyper-parameters we searched for CLQA.

Dataset Dimension Epoch Batch Size Learning Rate λ1 λ2

FB15k 2000 200 1000 0.01 0.0625 0.005
FB15k-237 2000 200 1000 0.1 4 0.05
NELL995 2000 200 1000 0.1 0.0625 0.05

Table 5: The hyper-parameters settings for pre-training KGC models, λ1 is the coefficient for relation prediction
loss, and λ2 is the coefficient for regularization.

Datset Dimension Epoch Batch Size Learning Rate α ϵ

FB15k 2000 5 1000 0.001 0.1 0.0005
FB15k-237 2000 5 1000 0.001 0.1 0.00005
NELL995 2000 5 1000 0.001 0.1 0.00001

Table 6: The hyper-parameters settings for CLQA.

Different KGC models Our proposed method CKGC is effective for any KGC model because it relies
solely on the results predicted by the KGC model. Although any KGC model is permissible, it is preferable
to select a KGC model with strong performance. In Table 7, we show the results of our method with
different KGC models. We select the DistMult (Yang et al., 2014), CP (Lacroix et al., 2018), SimplE
(Kazemi and Poole, 2018), and ComplEx (Trouillon et al., 2017) KGC models. The results demonstrate
that Step 3 (the adaptation step) can indeed enhance performance across various KGC models.
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Models 1p avgp(S12) avgp(S123) avgn(S12) avgn(S123)

DistMult 47.6 30.2 30.8 9.1 14.7
CP 46.5 29.4 30.1 8.7 13.8
SimplE 46.3 29.0 29.5 8.6 13.8
ComplEx 49.2 32.4 32.9 9.7 15.2

Table 7: The performance of complex logical quereis answering models with different KGC model, where 1p is the
KGC results, avgp is the average results of queries without negation operator, avgn is the average results of queries
with negation operator. S12 is the model using direct KGC scores. S123 is the model with adaptation.
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