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Abstract

Large language models (LLMs) have presented
remarkable capabilities in the wide range of
natural language understanding and reasoning
tasks. Despite their success, a few works indi-
cate that LLMs suffer from the “reversal curse”,
in which LLMs can’t employ the inverted struc-
ture “B is A” when they are trained based on
“A is B”. To explore the effect of the “rever-
sal curse” for LLMs on complex mathemati-
cal reasoning tasks, we present two reversal
datasets upon GSM8K and MathQA and ver-
ify that LLMs also struggle to solve reversal
mathematical problems. We analyze the po-
tential reason and attribute it to the insufficient
modeling of the relationship between reason-
ing steps caused by the left-to-right objective.
Consequently, based on the characteristics of
multi-step reasoning, we design a novel train-
ing method to improve the general and rever-
sal reasoning abilities. Finally, we conduct ex-
periments on four mathematical datasets, and
the results demonstrate that our method sig-
nificantly improves the general reasoning ca-
pacities and alleviates the reversal problem.
Our datasets and codes are available at https:
//github.com/AllForward/ReversalMath.

1 Introduction

With the significant increase in data and model
scale, large language models (LLMs) (Brown et al.,
2020; Hoffmann et al., 2022; Touvron et al., 2023;
OpenAl, 2023) have emerged with their power-
ful multi-dimensional capabilities, such as long-
context open domain conversation, code assis-
tants (Chen et al., 2021b; Luo et al., 2023b; Wang
et al., 2023; Zheng et al., 2023b), instruction fol-
lowing (Ouyang et al., 2022; Taori et al., 2023),
particularly in the complex reasoning tasks solved
by chain-of-thought (CoT) methods (Wang et al.,
2022; Wei et al., 2022; Lightman et al., 2023).

* Equal Contribution

Models GSMS8K/Reversal MathQA/Reversal
GPT-3.5-Turbo 7741522 63.5/44.6
Flan-T5-3B 13.5/3.5 5.8/5.8
Flan-T5-11B 16.1/12.3 15.5/9.6
LLama2-7B 13.7/7.0 19.2/10.3
LLama2-13B 25.3/10.7 25.6/10.3
LLama2-70B 52.1/30.2 42.0/29.7

Table 1: The accuracy of different LLMs on GSMS8K,
MathQA, and their correlated reversal test datasets.

Nevertheless, a number of contemporary stud-
ies (Berglund et al., 2023; Grosse et al., 2023) high-
light the presence of the “reversal curse” predica-
ment in LLMs, where LLMs are trained based on
the structure “A is B” in a sentence, and they cannot
employ the inverted structure “B is A” to extrapo-
late and respond to queries effectively. Almost all
works merely explore the “reversal curse” based on
the name-to-description reversal task. It is worth
exploring whether complex multi-step reasoning
tasks also suffer from this predicament. If it ex-
ists, how should we alleviate it and improve the
performance of LLMs’ reasoning?

To explore this problem, we choose one of
the most challenging and representative reasoning
tasks, i.e., mathematical problems (Collins et al.,
2023; Imani et al., 2023; Luo et al., 2023a; Yuan
et al., 2023), as the testbed. Resembling with the
format of reversal curse problems, backward math-
ematical reasoning gives the answer to the original
question and reverses to infer one of the variables
in the question, which is first formalized by Yu et al.
(2024). They construct a backward test set upon
GSMSK (Cobbe et al., 2021) to evaluate the back-
ward reasoning capabilities of LLMs. Their prelim-
inary results on LLaMA-2-7B confirm that recent
LLM can struggle to solve mathematical problems
in backward rationales, leaving extensive verifica-
tion and in-depth understanding unexplored.

To fill this blank, we first propose two reversal
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mathematical test sets to further verify that LLMs
suffer from the “reversal curse” on mathematical
problems. Specifically, we employ GPT-4 to imi-
tate the format and style of original questions and
generate the reversal data based on the GSM8K
and MathQA (Amini et al., 2019) test sets. The
detailed construct process and data quality verifi-
cation are elaborated in Section 3. After construct-
ing two reversal test sets, we use them to evalu-
ate representative LLMs of different model scales.
As shown in Table 1, compared with original test
sets, LLMs with different scales and architectures
present a significant accuracy decline in the reversal
datasets except for Flan-T5-3B on MathQA. This
phenomenon sufficiently demonstrates that LLMs
actually face difficulties in reversal reasoning in
mathematical problems.

From this discovery, we analyze the potential rea-
sons and speculate that it’s related to the traditional
left-to-right training objective. In the process of
mathematical multi-step reasoning, LLMs strictly
follow the order of deductions from left to right,
which solely focuses on acquiring the association
from conditions to conclusions. This shortcoming
is essentially the lack of context modeling for rea-
soning steps, which causes the difficulty of reversal
reasoning and affects the general reasoning perfor-
mance. To sufficiently model the relationship of
different reasoning steps, and enhance the reversal
and overall reasoning ability of LLMs, we propose
a simple and effective training framework, which
introduces an additional bidirectional training ob-
jective based on the characteristics of multi-step
deduction. In particular, we choose the partial steps
as the context which employs the bidirectional at-
tention mechanism, while utilizing the causal at-
tention mechanism to predict the remaining unse-
lected steps. By employing this approach, LLMs
are trained to extrapolate the preceding steps in
a reverse manner, drawing upon the information
from the succeeding steps.

To validate the effectiveness of our method,
we fine-tune Flan-T5-XL and Llama2-7B on the
GSMSK dataset. Subsequently, we evaluate the
performance of these models on four benchmarks
and two reversal mathematical datasets. The re-
sults show that the models’ general and reversal
reasoning ability is superior to the latest methods
that use additional training skills, and even some
data augmentation strategies. Our contributions are
listed below:

* We construct two reversal mathematical
datasets to further explore the reversal rea-
soning ability of LLMs, and prove that LLMs
actually suffer from the “reversal curse” on
mathematical problems.

* We analyze the potential reason and attribute it
to the insufficient modeling of the relationship
between reasoning steps. Consequently, based
on the characteristics of multi-step deduction
tasks, the bidirectional training objective is
designed to alleviate this problem.

* Whether on four benchmarks or two reversal
datasets, applying our approach to different
settings all achieves significant improvements,
and even close to GPT-3.5-Turbo on the parts
of benchmarks.

2 Related Work

2.1 Large Language Models

LLMs have shown impressive multi-dimensional
capabilities, significantly affecting the natural lan-
guage processing community (Brown et al., 2020;
Hoffmann et al., 2022; Touvron et al., 2023; Ope-
nAl, 2023). Recently, Wei et al. (2022); Wang
et al. (2022) uncovered the broad prospects of CoT
reasoning capabilities within LLMs. Given a few
augmenting few-shot examples with multiple rea-
soning steps, LLMs can generate multi-step deduc-
tion toward the answer of solving complex tasks,
e.g., this approach has been widely used on GPT-
3.5 (OpenAl, 2022), GPT-4 (OpenAl, 2023) and
LLaMA (Touvron et al., 2023) to tackle various rea-
soning tasks (Fu et al., 2023b; Zhang et al., 2023).

2.2 Reversal Curse

Though LLMs show impressive performance on
various tasks, a number of current works (Berglund
et al., 2023; Grosse et al., 2023) clarify that LLMs
suffer from the reversal curse. Specifically, the
autoregressive LLMs are trained on the logical
sentence structure "A is B" and fail to infer "B
is A". This phenomenon suggests that LLMs don’t
grasp the relationship of knowledge presented in
the training data adequately. Lv et al. (2023) further
explore this problem and contend that the reversal
curse arises partly due to the specific training ob-
jectives pursued by models, mostly evident in the
widespread adoption of next-token prediction tech-
niques in causal language models. Besides, Wu
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Prompt: Please follow the examples that modify the question by adding the original question and answer
as a new condition, only hiding one condition that appeared in the question, must keeping other conditions
unchanged, and making the hiding condition as a new question. Finally, provide the modified question and
the hiding number, and follow the format as: Modified question: \n Hiding number:

Example 1:

Original question: If Ann is 9 years old and her brother is twice her age, how old will her brother be in 3
years? (The answer is 21)

Modified question: Ann's brother is twice as old as she is. In 3 years, her brother will be 27 years old. Ho
w old is Ann now?

Hiding number: 9

Example 2:

Original question: Morisette and Kael were asked to bring fruits. Morisette brought 5 apples and 8 orange
s, while Kael brought twice the amount of apples and half the number of oranges than Morisette. How man
y fruits do they have in total? (The answer is 27)

Modified question: Morisette and Kael were asked to bring fruits. Morisette brings 5 apples and some ora
nges, and Kael brings twice the apples and half the oranges that Morisette brings, they have 27 fruits in tot

al. How many oranges does Morisette bring?
Hiding number: 8

Original question: {Q}

Figure 1: The prompt for obtaining reversal data. “Modified question” and “Hiding number” denote the generated

reversal question and the corresponding answer.

et al. (2023) find that BERT is immune to the re-
versal curse. At the same time, a few bidirectional

modeling approaches are proposed to mitigate the
curse (Lv et al., 2023; Ma et al., 2023).

2.3 Mathematical Reasoning

Mathematical multi-step reasoning, one of the most
challenging problems, has attracted widespread at-
tention. We divide the related work into two cat-
egories. One category is the prompt-based meth-
ods, another is finetuning-based. For the first one,
a few approaches (Narang et al., 2023; Fu et al.,
2023c; Zheng et al., 2023a; Diao et al., 2023; Li
et al., 2023b) provide multiple reasoning exam-
ples to LLMs, and leverage the excellent in-context
capability of LLMs to generate high-quality rea-
soning paths. For instance, Narang et al. (2023)
entail generating various reasoning chains, poten-
tially yielding multiple candidate answers. Among
these, the answer that garners the most votes is
subsequently chosen as the ultimate response. An-
other category is obtaining the CoT paths from
closed-source LLMs (e.g., GPT-3.5, GPT-4) by em-
ploying knowledge distillation and utilizing the
knowledge to fine-tune open-source models (e.g.,
Flan-T5, LLaMA). Yuan et al. (2023) propose the
rejection sampling fine-tuning (RFT) to improve

the performance through collecting more reasoning
paths as augmented datasets. WizardMath (Luo
et al., 2023a) applies reinforcement learning from
the evol-instruct feedback method to enhance rea-
soning ability. MetaMath (Yu et al., 2024) adopts
four data augmentation strategies to generate high-
diversity data and obtain excellent performance. Li
et al. (2023a) explore the effect of augmented data
from multiple perspectives and put forward query
and response augmentations approaches. An et al.
(2023) demonstrate the effectiveness of learning
from mistakes.

Besides, the potential of smaller language mod-
els (SLMs) reasoning has been verified (Magister
etal., 2022; Ho et al., 2023; Fu et al., 2023a). Shrid-
har et al. (2023), Han et al. (2023) and Junbing et al.
(2023) decompose the complex questions into a se-
ries of simpler problems. Liu et al. (2023) further
distill the self-evaluation capability of LLMs into
SLM to improve the performance.

3 Reversal Mathematical Datasets
Construction

Different levels of mathematical word problems
have been proposed to evaluate LLMs’ gen-
eral mathematical reasoning ability, such as
AddSub (Hosseini et al., 2014), MultiArith (Roy

13673



Question:

Morisette and Kael were asked to bring fruits. Morisette brought 5 apples and 8 oranges, while Kael brou
ght twice the amount of apples and half the number of oranges than Morisette. How many fruits do they

have in total? (The correct answer is 27)

CoT Reasoning:

Step 1: Morisette brought 5 apples and 8 oranges, totaling 13 fruits.
Step 2: Kael brought twice the amount of apples, so 2 * 5 = 10 apples, and half the number of oranges

than Morisette, which is 8 / 2 = 4 oranges.
Step 3: Kael brought a total of 10 + 4 = 14 fruits.

Step 4: Thus, the total number of fruits they have is 13 + 14 =27 fruits.

Figure 2: An example of the mathematical question and the corresponding CoT reasoning steps.

and Roth, 2015), MathQA (Amini et al., 2019), As-
div (Miao et al., 2020), SVAMP (Patel et al., 2021),
GSMSK (Cobbe et al., 2021), Math (Hendrycks
et al., 2021) and so on. Moreover, Yu et al. (2024)
design a reversal GSM8K dataset to evaluate the
backward reasoning ability of LLMs, but the for-
mat and style of questions are different from the
original, which could affect the performance of
LLMs. Consequently, we construct two reversal
datasets upon the GSM8K and MathQA datasets
following the original format and style to further
explore the reversal reasoning ability of LLMs.
Specifically, we first follow SpecialFT (Fu et al.,
2023a) to use 800 instances as the GSM8K test
set, and artificially extract 600 medium difficulty
questions from the MathQA (Amini et al., 2019).
It’s noticed that we change the type of MathQA
from multiple-choice to answer questions. To keep
the format and style of the original questions un-
changed, we design a few-shot prompt (shown in
Figure 1) for GPT-4 to imitate the provided exam-
ples and generate the reversal question denoted as
"Modified question" and its corresponding answer
denoted as "Hiding number".

Verifying the correctness of generated reversal
instances is also important. To ensure the quality of
generated data, we utilize GPT-4 to generate multi-
ple reasoning results for every reversal instance and
judge the consistency of results. If multiple results
remain consistent, we suggest that this instance is
correct. On the contrary, we manually verify the
quality of the question. Specifically, If the corre-
sponding answer could be obtained based on the
description of the question, we keep it. Otherwise,
we artificially construct this instance following the
examples in Figure 1.

4 Methodology

In this section, we first introduce the training ob-
jective of causal mechanisms widely utilized in
LLMs. After that, we analyze the shortcomings
of this objective in multi-step reasoning tasks like
mathematical problems and design an additional
training objective to alleviate this problem.

4.1 Unidirectional Modeling of Reasoning

The causal attention mechanism is widely applied
to LLMs to fine-tune various downstream tasks,
including multi-step mathematical reasoning prob-
lems. Formally, we denote a mathematical dataset
as D = (a4, yl)zj\; | Where z; is a question, y; rep-
resents the CoT reasoning steps to solve question
x;, N stands for the number of samples in D. For
each sample, LLMs are trained to maximize the
following likelihood:

T
['causal = ZIOgP(yf‘yft7$i;0) (1)
t

where yft denotes the previous tokens before token
yf, T denotes the length of y;, and 6 denotes the
model parameters.

4.2 Bidirectional Modeling of Reasoning

Through applying Equation 1, LLMs strictly fol-
low the order of deductions from left to right in the
mathematical problems. Nevertheless, this training
objective solely focuses on acquiring the associa-
tion from conditions to conclusions, disregarding
the reciprocal relationship. For example, as shown
in Figure 2, LLMs are trained to predict the ul-
timate answer even the intermediate answer with
preceding conditions, namely inferring step 4 from
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Figure 3: The left part (a) presents the decoder block with a modified attention algorithm. Steps 1 and 3 need to be
predicted, which keep every token following a left-to-right order. Steps 2 and 4 are the observation steps that adopt
bidirectional modeling. Sub-figure (b) is a specifical attention mask matrix for (a). [B] is a special token “BOS”.

steps 1 to 3 and inferring step 3 from step 2, while
disregarding the process of deducing preceding con-
ditions from the conclusions, such as how to infer
the deductions of numbers "13" and "14" appeared
in the conclusion based on step 4. This shortcoming
is essentially the lack of context modeling for rea-
soning steps, which causes insufficient dependency
between different steps and affects the general rea-
soning performance. Struggling with the reversal
questions is one of the typical manifestations.

To sufficiently model the relationship between
different reasoning steps and improve their over-
all performance, especially the reversal reasoning
ability, we propose a simple and effective training
framework, which introduces an additional bidi-
rectional training objective based on the charac-
teristics of multi-step deduction. In particular, for
each CoT explanation y;, combined with n steps
y; = {s1,52,...., Sn}, we randomly sample parts
of the steps that need to be predicted, denoted as
s""*? and the rest steps denoted as s?*. Given
that LLMs leverage the causal attention mecha-
nism throughout the pre-training even fine-tuning
phases, it proves challenging to directly transition
the attention mechanism from unidirectional to
bidirectional. To maintain the original capabilities
of LLMs and better stimulate the ability of reversal
reasoning, we keep each token in s” red following a

left-to-right order, which is shown in Figure 3 (b).
Besides, siObS could be observed by each token in
5?4 which achieves the bidirectional modeling
of the preceding and following steps. At the same
time, s? 7“4 are not visible in s in order to pre-
vent information leakage. For instance, in Figure 3,
if step 2 can obtain the information of step 1, it
would lead to a potential information leakage that
could impact the prediction of step 1. Formally, the
proposed new training objective could be described
as follows:
Tpred ,
Lua= Y log PylySt U= 2i30) ()

pred
tes;

pred
i .

where TP"¢4 denotes the number of tokens in s

4.3 Training and Inference

The causal and proposed bidirectional training ob-
jectives have been described in the previous section.
Now, we clarify the final objective and the details
of training and inference. In the training stage,
we combine L4, 547 and Ly;q as the final objective.
Not only can it maintain the original capacity of
LLMs, but it also improves the reversal reason-
ing ability. The corresponding computation can be
formulated as follows:

L = Leausal + aLyid 3)
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where « is a customized parameter. As shown in
Figure 3 (b), to satisfy the autoregressive genera-
tion for each step in s? " the special token [BOS]
is padded at the beginning of the input. At the stage
of inference, LLMs still adopt the causal attention
algorithm as usual to perform reasoning autoregres-
sively.

5 Experiments

In this section, we evaluate the effectiveness of our
method by employing it on mathematical datasets.
To compare with current works (Fu et al., 2023a;
Han et al., 2023; Yu et al., 2024), we follow them
and adopt the original test set to present the gen-
eral reasoning ability. The discussion about the
reversal reasoning capacity will be introduced in
Section 6.1.

5.1 Datasets

To evaluate LLMs’ reasoning ability and gen-
eral ability, we utilize four mathematical datasets,
namely GSM8K (Cobbe et al., 2021), Multi-
Arith (Roy and Roth, 2015), ASDiv (Miao et al.,
2020), and SVAMP (Patel et al., 2021). Except for
LLama2 (MetaMath) with and without our method,
which uses the MetaMath training dataset, we only
fine-tune Flan-T5 and LLama2 on the GSM8K
training set, which contains 7,473 examples. It’s
noticed that for each GSMS8K training instance, we
employ GPT-3.5-Turbo-1106 to generate multiple
related reasoning paths and choose the correct one
as the final solution (specifical prompt could be
seen in Appendix A). The remaining three datasets
are adopted to evaluate the out-of-distribution abil-
ity of models. Moreover, following the previous
work (Fu et al., 2023a; Han et al., 2023), we adopt
500 examples for each dataset as the validation set,
and the remaining examples as the test set (800 for
GSMBK, 400 for MultiArith, 18K for ASDiv, 500
for SVAMP).

5.2 Baselines

For the baseline models, we divide them into
three categories: (i) Closed-sourced models: GPT-
3.5-Turbo-1106 (OpenAl, 2022), Code-Davinci-
002 (Chen et al., 2021a), LaMDA-137B (Kojima
et al., 2022), PaLM-60B (Chowdhery et al., 2022),
each of them presents strong reasoning ability. (ii)
Open-sourced generic models: Flan-T5 (Chung
et al., 2022) and LLama?2 (Touvron et al., 2023),
which are widely applied to various tasks. (iii)

Specialized models: For Flan-T5 models, Spe-
cialFT (Fu et al., 2023a) and DialCoT (Han et al.,
2023) respectively employ knowledge transfer and
questions decomposition to enhance models’ math-
ematical reasoning ability. For LLama2 models,
Rejection sampling Fine-Tuning (RFT) (Yuan et al.,
2023) collects multiple correct reasoning paths as
augmented data for fine-tuning. WizardMath (Luo
et al., 2023a) applies reinforcement learning from
the evol-instruct feedback method to the math do-
main. MetaMath (Yu et al., 2024) proposes four
data augmentation methods, significantly improv-
ing performance. Besides, we apply the supervised
fine-tuning (SFT) method on our designed GSM8K
training dataset for both models.

5.3 Implementation

We implement our method on two model archi-
tectures, namely Encoder-Decoder (Flan-T5) and
Decoder-only (LLama2). Due to the limited
computing resources, we chose Flan-T5-3B and
LLama2-7B as backbones and fully fine-tuned
them. The greedy search algorithm is utilized to
execute inference processes for all the specialized
models. More experimental details can be seen in
Appendix A.1. We follow the previous works to
use statistical significance tests (Koehn, 2004) to
detect if the difference in accuracy score between
our approach and base settings is significant.

5.4 Results

The overall results are shown in Table 2 and can be
summarized as follows:

Results on Flan-TS backbone. The SFT 3B model
trained on GPT-3.5-Turbo-1106 generated dataset
is better than SpecialFT and DialCoT-S-PPO, even
better than their 11B on parts of datasets, pre-
senting the importance of data quality. Moreover,
SFT and our method outperform LaMDA-137B
on four datasets, and are superior to PaLM-60B,
LLama2 7B to 13B on parts of datasets, show-
ing the reasoning potential of the smaller models.
Compared with the SFT method, which employs
the causal attention mechanism, our method effec-
tively improves the general reasoning ability of
models, which achieves an improvement of 7.3%
on GSMB8K in testing accuracy. Besides, on three
out-of-distribution datasets, applying our method
also obtains significant improvements.

Results on LLama2 7B backbone. Our approach
outperforms the RFT method, which collects more
reasoning paths as augmented data for fine-tuning,
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Math Word Problems

Methods Backbone  #Params. GSMSK MultiArith ASDiv SVAMP
Closed-sourced models
GPT-3.5-Turbo-1106 - - 77.4 97.2 90.4 79.2
Code-Davinci-002 175B 63.1 95.8 80.4 76.4
Kojima et al. (2022) LaMDA 137B 14.8 45.0 46.6 37.5
Chowdhery et al. (2022) PaLM 60B 29.9 75.0 61.9 46.7
Open-sourced models
Chung et al. (2022) Flan-T5 3B 13.5 24.0 20.7 17.7
Chung et al. (2022) Flan-T5 11B 16.1 51.7 36.5 39.7
Touvron et al. (2023) LLama2 7B 13.7 452 50.1 334
Touvron et al. (2023) LLama2 13B 25.3 64.8 59.0 43.2
Touvron et al. (2023) LLama2 70B 52.1 92.5 74.7 67.4
Specialized models with Flan-T5
SpecialFT (Fu et al., 2023a) Flan-T5 3B 22.4 42.3 28.4 23.8
SpecialFT (Fu et al., 2023a) Flan-T5 11B 27.1 63.0 37.6 35.6
DialCoT-S-PPO (Han et al., 2023) Flan-T5 3B 25.6 46.9 30.7 27.1
DialCoT-S-PPO (Han et al., 2023) Flan-T5 11B 37.1 68.1 40.9 41.7
SFT Flan-T5 3B 28.0 59.2 48.8 38.8
SFT w/ Ourst Flan-T5 3B 353 69.3 54.3 53.6
Specialized models with LLama2
RFT (Yuan et al., 2023) LLama2 7B 453 90.5 50.9 39.8
WizardMath (Luo et al., 2023a) LLama2 7B 56.7 89.0 61.1 61.4
SFT LLama2 7B 46.0 90.0 51.0 51.0
SFT w/ Ourst LLama2 7B 52.1 90.0 60.3 59.2
MetaMath (Yu et al., 2024) LLama2 7B 65.0 96.7 75.0 72.4
MetaMath w/ Ourst LLama2 7B 68.0 97.0 79.3 77.6

Table 2: The accuracy of various LLMs on four mathematical datasets. 1 denotes that the performance improvements
over standard SFT and MetaMath are statistically significant with p < 0.05.

and is close to WizardMath, which applies rein-
forcement learning and additional augmented data.
Besides, after adopting our method on the Meta-
Math dataset, the general reasoning ability of the
model is further enhanced, which obtains an aver-
age improvement of 3.2% in testing accuracy.
Overall results summary. The specialized mathe-
matical datasets are important for models to en-
hance reasoning ability because all specialized
models get significant improvements compared
with their backbones. Moreover, applying our
approach to different settings, such as the dif-
ferent backbones, they all achieve significant im-
provements. Finally, the above experiment results
demonstrate that our method is beneficial to mod-
eling the relationship of different CoT reasoning
steps and improving the general mathematical rea-
soning ability.

6 Analysis

6.1 Evaluation of the Reversal Ability

To further evaluate the effectiveness of our method
in improving the reversal reasoning ability, we con-

Models GSMS8K-Rev MathQA-Rev
GPT-3.5-Turbo 52.2 44.6
Flan-T5-38 35 58
Flan-T5-11B 12.3 9.6
Flan-T5-3B (SFT) 8.2 10.0
w /Ours 174 13.1
‘LLama2-7B. 70 103
LLama2-7B (RFT) 20.8 145
LLama2-7B (WizardMath) 25.9 24.1
LLama2-7B (SFT) 21.7 16.5
w /Ours 25.7 23.5
LLama2-7B (MetaMath) 50.0 37.0
w /Ours 55.7 40.3

Table 3: The accuracy of various LLMs on reversal

GSMB8K and MathQA test datasets.

duct experiments on two reversal mathematical
datasets designed previously. We directly adopt
the models described in Section 5 to perform infer-
ence. As shown in Table 3, all specialized models
tuned on the mathematical dataset, get improve-
ments compared with their backbones. Compared
with standard SFT, our method achieves obvious
improvements, even outperforming RFT and close
to WizardMath on LLama2-7B. It’s noticed that
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Figure 4: The effect of hyper-parameter « for LLama?2-
7B on GSM8K and SVAMP datasets.

MetaMath, using backward data augmentation, sig-
nificantly improves the reversal reasoning ability,
which presents the importance of reversal aug-
mented data. After training with our method on
the MetaMath dataset, LLama2-7B obtains higher
accuracy and outperforms the strong baseline GPT-
3.5-Turbo on GSM8K-Reversal. The above results
further evaluate that our method is able to model
the relationship between CoT reasoning steps better
and further improve the reversal reasoning ability.

6.2 Effect of Hyper-parameter «

As described in Section 4.3, we introduce an ad-
ditional training objective and combine it with the
causal objective. To explore the effect of Ly;q
weight, we set the pre-defined hyper-parameter o
from 0.2 to 0.8, train LLama2-7B on the GSM8K
dataset, and evaluate it on the GSM8K and SVAMP
datasets. As shown in Figure 4, our method
achieves the best performance when «a is 0.4. If o
is too large, Ly;q could damage the original causal
paradigm and reduce the performance. On the con-
trary, once o becomes too small, the L;;q has no
effect on training and can’t provide effective con-
text modeling.

6.3 Extensibility of Method

To evaluate the extensibility of our method, we
conduct experiments on two commonsense rea-
soning datasets: CQA (Talmor et al., 2019) and
QASC (Khot et al., 2020), which are respectively
five-choice and eight-choice question-answering
datasets. We denote each instance in datasets
as (z,y,r), where = is a commonsense question

Models Method QASC CQA
GPT-3.5-Turbo - 62.1 77.2
2y 71.2 79.0

T5-XL-3B (x2y) + (x2r) 73.0  79.6
(x2y) + (x2(y +7)) 748  8l.1

Ours 76.0  82.6

Table 4: The accuracy of T5-XL with different training
methods on QASC and CQA datasets.

with multiple choices, y is its corresponding la-
bel, namely one of the correct choices, and r is a
rationale that describes the knowledge of correct
label with multi-step. We also leverage GPT-3.5-
Turbo-1106 to generate a related rationale r for
every sample. The specific prompt is shown in
Appendix A.3.

Following Hsieh et al. (2023) and Li et al.
(2022), we set the TS5 model as the backbone, and
denote the training method [f(z) — y] as z2y,
[f(z) =yl + [f(z) =y +r]as (22y) + (22(y +
r)) (Lietal., 2022), [f(x) — y| + [f(x) — 7] as
(x2y) + (z2r) (Hsieh et al., 2023), where f is the
training model. The above training methods are
utilized as strong baselines. To sufficiently model
the relationships between y and every step in r,
we adopt the (22(y + r) + (22(y + r)") method,
where (y + )’ denotes that employ our bidirec-
tional modeling on (y + 7). Table 4 illustrates
that r is beneficial to provide more knowledge to
improve the performance. Besides, our method
outperforms all the baselines, which demonstrates
the effectiveness and generalization of our method.

7 Conclusion

In this paper, we discussed the “reversal curse” in
mathematical problems and proposed two rever-
sal datasets based on the GSM8K and MathQA to
evaluate whether LLMs face challenges in reversal
mathematical reasoning. We analyzed the potential
reason and attributed it to the insufficient modeling
of the relationship between reasoning steps. Conse-
quently, based on the characteristics of multi-step
deduction tasks, a bidirectional training objective
is designed to alleviate this problem. Finally, we
conducted experiments on four mathematical rea-
soning benchmarks to evaluate the effectiveness of
our method and also verify the benefit of our ap-
proach on two reversal datasets we constructed. In
the future, we will explore other enhanced methods
and explore how to apply them in the pre-training
stage to improve the general reasoning ability.
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8 Limitation

In this section, we present several of the limita-
tions of this paper. Firstly, the process of reversal
data construction needs to be further refined, such
as utilizing GPT-3.5 or GPT-4 to generate higher-
quality data and verify their accuracy. Besides,
our method designs an additional training objec-
tive which could increase the cost of computational
resources. Finally, we have not yet applied our
method to larger-scale models, such as LLama2-
13B and LLama2-70B, due to the limitation of com-
putational resources. We will further explore the
performance of our method on these larger-scale
models.
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A Appendix

A.1 Experiment Details

We adopt the AdamW (Kingma and Ba, 2014) op-
timizer to train all the models. Following Chung
et al. (2022) and Yuan et al. (2023), we respec-
tively fine-tune Flan-T5 and LLama2 models for
50 and 3 epochs, and set batch size as 64 and 128,
learning rate S5e-5 and le-5. For LLama?2 with dif-
ferent enhanced methods, we directly adopt the
checkpoints provided in huggingface to perform
inference. We run all the experiments on eight
NVIDIA A100-PCIE-40GB.

A.2  Prompts for CoT Reasoning Paths

The specific prompts for GPT-3.5-Turbo-1106 to
obtain CoT reasoning paths are shown in Figure 5.

A.3 Prompts for QA Reasoning

The specific prompts for GPT-3.5-Turbo-1106 to
obtain QA rationales are shown in Figure 6.

A4 Case study

To understand the effectiveness of our approach
better, we provide an example of LLama2-7B with
SFT and our approach on the GSM8K dataset. As
shown in Figure 7, SFT doesn’t sufficiently under-
stand the relationships of different conditions in
the question, which causes the wrong reasoning
process. On the contrary, benefiting from the bidi-
rectional modeling, our method understands the
context and infers the correct answer.
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Prompt:
You are a helpful and precise assistant, please follow the examples and answer the question with reasonin
g procession, finally give that "The answer is ' with calculating expressions.

Question: Paige was helping her mom plant flowers and together they planted some seeds. They put 10
seeds in each flower bed. If there are 45 flowerbeds\nHow many seeds did they plant?

Answer: They put 10 seeds in each flower bed. There are 45 flower beds. So they planted 10 * 45 seeds.
10 * 45 is 450. The answer is 450.

Question: Jack received 3 emails in the afternoon, 6 emails in the morning and some more in the evening
. If he received a total of 10 emails in the day\nHow many emails did jack receive in the evening?
Answer: Jack received 3 emails in the afternoon, 6 emails in the morning and some more in the evening.
If he received a total of 10 emails in the day, then he received 10 - (3 + 6) = 1 emails in the evening. The
answer is (10 - (3 + 6)).

Question: At the arcade Dave had won 14 tickets and lost 2 tickets. If he used 10 to buy some toys\nHow
many tickets did Dave have left?

Answer: Dave started with 14 tickets. He lost 2 tickets. So he had 14 - 2 = 12 tickets. He used 10 tickets
to buy toys. So he had 12 - 10 = 2 tickets left. The answer is ((14 - 2) - 10).

Question: {O}

Figure 5: The prompt for obtaining CoT reasoning steps with a conclusion that “The answer is”.

Prompt:
You are a helpful and precise assistant, following the examples and just explaining the reason given the
question and answer.

Question: How do you reduce pollution\nAnswer choices:\n(a) igniting fuel and oxidiser\n(b) transporta
tion technology\n(c) wasting\n(d) not recycling\n(e) burning fossil fuels\n(f) converting electricity to he
at\n(g) water conservation\n(h) using less resources\nThe answer is using less resources. Why?

Answer: Conserving resources has a positive impact on the environment. Use of resources affects the en
vironment such as pollution.

Question: What will move to another area if their habitat will no longer support them?

\nAnswer choices:\n(a) density\n(b) Birds\n(c) squids\n(d) humans\n(e) clouds\n(f) gravity\n(g) cows\n(
h) Whales\nThe answer is cows. Why?

Answer: If a habitat can no longer support animals then those animals will move to another area. Cows
are social animals.

Question: With the exception of allergies, what may cause a person to seek medical attention?
\nAnswer choices:\n(a) Contact with latex\n(b) a tree falling\n(c) Organs within the body.\n(d) Contact
with baby chicks\n(e) prolactin release\n(f) Contact with peanut butter\n(g) hypothyroidism\n(h) Contac
t with microorganisms\nThe answer is Contact with microorganisms. Why?

Answer: Microorganisms can cause infections. Infections usually require medical treatment.

Question: {Q}\nThe answer is {Answer}. Why?
Answer:

Figure 6: The prompt for obtaining the commonsense reasoning steps based on the correct choice.
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Question:

Below is an instruction that describes a task. Write a response that appropriately completes the request.
Instruction: Carlos, Jim and Carrey were at the beach playing and they decided to gather some seashells.
Jim collected 27 seashells, which was 5 more than what Carlos collected. Carlos collected twice as many a
s Carrey. They gathered all their seashells and divided them equally between themselves. How many did e
ach person get? (The correct answer is 20)

SFT Answer:

First, we know that Carlos collected twice as many seashells as Carrey. So, if Carlos collected 27 seashells
, then Carrey collected 27 / 2 = 13.5 seashells. Next, we know that Jim collected 5 more seashells than Carl
0s, so he collected 27 + 5 = 32 seashells. Now, we have the total number of seashells collected by all of the
m: 27 (Carlos) + 13.5 (Carrey) + 32 (Jim) = 72 seashells. Finally, we divide the total number of seashells
equally between themselves: 72 / 3 = 24 seashells for each person. The answer is 24.

Ours Answer:

We know that Jim collected 27 seashells, which was 5 more than what Carlos collected. So, Carlos collecte
d 27 -5 = 22 seashells. Carlos collected twice as many as Carrey, so Carrey collected 22 / 2 = 11 seashells.
When they gathered all their seashells, they had a total of 27 + 22 + 11 = 60 seashells. If they divided them
equally between themselves, each person would get 60 / 3 = 20 seashells. So, each person got 20 seashells
. The answer is (60 / 3).

Figure 7: A case study about the reasoning procession on the GSM8K dataset.
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