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Abstract

Connecting text and visual modalities plays an
essential role in generative intelligence. For
this reason, inspired by the success of large
language models, significant research efforts
are being devoted to the development of Mul-
timodal Large Language Models (MLLMs).
These models can seamlessly integrate vi-
sual and textual modalities, while providing
a dialogue-based interface and instruction-
following capabilities. In this paper, we provide
a comprehensive review of recent visual-based
MLLMs, analyzing their architectural choices,
multimodal alignment strategies, and training
techniques. We also conduct a detailed analysis
of these models across a wide range of tasks,
including visual grounding, image generation
and editing, visual understanding, and domain-
specific applications. Additionally, we compile
and describe training datasets and evaluation
benchmarks, conducting comparisons among
existing models in terms of performance and
computational requirements. Overall, this sur-
vey offers a comprehensive overview of the
current state of the art, laying the groundwork
for future MLLMs.

1 Introduction

The introduction of the attention operation and the
Transformer architecture (Vaswani et al., 2017) has
enabled the creation of models capable of handling
various modalities on an increasingly large scale.
This advancement is largely attributed to the ver-
satility of the operator and the adaptability of the
architecture. Initially, this breakthrough was lever-
aged for language-specific models (Devlin et al.,
2018; Brown et al., 2020) but quickly extended to
support diverse modalities (Li et al., 2019; Lu et al.,
2019) and facilitate their integration within unified
embedding spaces (Radford et al., 2021).

The surge in sophisticated Large Language
Models (LLMs), particularly their capacity for
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Figure 1: General architecture of Multimodal Large
Language Models (MLLMs), composed of a visual en-
coder, a language model, and an adapter module that
connects visual inputs to the textual space.

in-context learning, has encouraged researchers
to broaden the scope of these models to encom-
pass multiple modalities, both as inputs and out-
puts. This expansion has led to the development
of cutting-edge models such as GPT-4V (Achiam
et al., 2023) and Gemini (Anil et al., 2023), show-
casing state-of-the-art performance.

The development of Multimodal Large Lan-
guage Models (MLLMs) entails merging single-
modality architectures for vision and language,
establishing effective connections between them
through vision-to-language adapters, and devising
innovative training approaches. These methodolo-
gies are crucial for ensuring modality alignment
and the ability to follow instructions accurately.

In a context marked by the rapid release of new
models, our goal is to offer an exhaustive overview
of the MLLM landscape, with a focus on mod-
els exploiting the visual modality. This overview
serves as both an update on the current state and a
source of inspiration for future developments. We
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identify three core aspects that define these models:
their architecture, training methodologies, and the
tasks they are designed to perform. We begin by
detailing the prevalent choices for vision encoders
and adapter modules that equip LLMs with cross-
modal capabilities. Following this, we delve into
the training processes and data utilized. We then
explore the range of tasks addressed by MLLMs.
The review concludes with a discussion of the per-
sisting challenges in the field and the promising
directions for future research. Further details on
training data, evaluation datasets, performance and
computational requirements are reported in the sup-
plementary material.

The motivation behind this survey stems from an
emerging scientific interest in the field of MLLMs,
as evidenced by the constant increase in published
works. In comparison with existing surveys on the
topic (Yin et al., 2023a; Wu et al., 2023b; Huang
et al., 2023a), our paper exhibits substantial dif-
ferences. Notably, it addresses several critical ar-
eas that were overlooked in prior works, includ-
ing visual grounding, image generation, and edit-
ing. Furthermore, our survey details the main com-
ponents utilized by each discussed MLLM, such
as the visual encoders and the specific LLM em-
ployed. Additionally, our analysis offers a compar-
ative perspective on the performance and hardware
requirements of the discussed papers, incorporating
both quantitative results and detailed information
on benchmarks. Through this comprehensive ap-
proach, our survey aims to fill the existing gaps
and provide a more nuanced understanding of the
current landscape in the field.

2 Empowering LLMs with Multimodal
Capabilities

2.1 Preliminaries

Large Language Models. Brown et al. (2020) dis-
covered that in-context learning, i.e., prepending
the prompt with a few examples demonstrating the
desired output of an LLM (Chowdhery et al., 2023;
Hoffmann et al., 2022; Tay et al., 2022), improves
its performance, especially over unseen tasks. Gen-
eralization can be further enhanced by providing
the LLM with the natural language description of
the desired task for each training sample. This
technique, called instruction-tuning (Chung et al.,
2022; Wang et al., 2022b,a; Jiang et al., 2024),
turns out to be critical for aligning the behavior of
an LLM with that of humans and currently empow-

ers the most advanced LLMs, eventually boosted
via reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022; Achiam et al., 2023;
Chen et al., 2023l; Bai et al., 2023a).

PEFT. When a pre-trained LLM needs to be
adapted to a specific domain or application,
parameter-efficient fine-tuning (PEFT) schemes
represent an important alternative to train the en-
tire LLM, since these strategies only introduce
a few new parameters. Among these, prompt-
tuning (Hambardzumyan et al., 2021; Lester et al.,
2021; Li and Liang, 2021; Liu et al., 2023j) learns
a small set of vectors to be fed to the model as
soft prompts before the input text. Differently,
LoRA (Hu et al., 2021) constrains the number of
new weights by learning low-rank matrices. This
technique is orthogonal to quantization methods
such as QLoRA (Dettmers et al., 2024), which fur-
ther decreases the memory footprint of the LLM
compared to the usual half-precision weights.

Towards Multimodal LLMs. The development
of MLLMs follows a similar path to that of LLMs,
with Flamingo (Alayrac et al., 2022) being the first
to explore in-context learning at scale in the vision-
language field. Then, visual instruction-tuning (Liu
et al., 2023e) quickly became the most prominent
training paradigm also in the multimodal domain,
as well as the use of PEFT techniques to fine-tune
the LLM. Any MLLM contains at least three com-
ponents (Fig. 1): an LLM backbone serving as an
interface with the user, one (or more) visual en-
coders, and one or more vision-to-language adapter
modules. Popular choices for the LLM backbone
often fall into the LLaMA family (Touvron et al.,
2023a,b), given that their weights are freely acces-
sible, they have been trained on public data solely,
and they boast different sizes to accommodate var-
ious use cases. In addition, their derivative ver-
sions are popular as well, such as Alpaca (Taori
et al., 2023) and Vicuna (Chiang et al., 2023). The
former fine-tunes LLaMA on instructions written
using GPT-3, while the latter exploits user-shared
conversations with ChatGPT (OpenAI, 2022). Al-
ternatives are OPT (Zhang et al., 2022b), Mag-
neto (Wang et al., 2023b), MPT (MosaicML, 2023),
and the instruction-tuned (Chung et al., 2022) or
multilingual (Xue et al., 2020) flavors of T5 (Raffel
et al., 2020), an encoder-decoder language model
pre-trained for multiple tasks.

Pre-Training of Model Components. The main
components of MLLMs are the visual encoder and
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the language model. The visual encoder is designed
to provide LLMs with visual information and the
most used ones are CLIP-based architectures (Rad-
ford et al., 2021; Wortsman et al., 2022) whose pre-
training objective is the alignment between CLIP
embeddings, obtained thanks to a contrastive loss
that aligns the correct image-text pairs. An excep-
tion is the EVA-CLIP models family (Fang et al.,
2023), which exploits a MAE pre-training strat-
egy (He et al., 2022) to reconstruct the masked-out
image-text aligned visual features, conditioned on
visible image patches. On the other hand, LLMs
primarily rely on the widely employed Transformer
model, although the Mamba architecture (Gu and
Dao, 2023) has also emerged in recent times. This
proposes to make a State-Space Model (SSM) time-
dependent, effectively creating a selective SSM
with favorable properties: (i) inference costs and
memory requirements that scale linearly with the
sequence length, and (ii) efficient parallel training
thanks to a smart GPU implementation of the al-
gorithm. Similar to Transformers, Mamba models
for language modeling are pre-trained using the
next token prediction task. Very recent studies pro-
pose MLLMs featuring Mamba as the language
backbone (Qiao et al., 2024; Zhao et al., 2024).

A summary of the MLLMs covered in this survey
is reported in Table 1, indicating for each model
the LLM on which it is based, the visual encoder,
the adapter used to connect visual and language
components, whether the MLLM is trained with
visual instruction tuning or not, and a short list of
the main tasks and capabilities.

2.2 Visual Encoder

In MLLMs, one of the key components is a visual
encoder, which is specifically designed to provide
the LLM with the visual extracted features. It is
common to employ a frozen pre-trained visual en-
coder while training only a learnable interface that
connects visual features with the underlying LLM.
While this is usually done using low-resolution im-
ages with fixed aspect ratios, some attempts (Xu
et al., 2024; Li et al., 2023l) involve adapting pre-
trained visual backbones to handle images of dif-
ferent resolutions and aspect ratios. Further details
on how to handle higher-resolution images are pro-
vided in the supplementary.

The most often employed visual encoders are
based on pre-trained Vision Transformer (ViT)
models with a CLIP-based objective to exploit the

inherent alignment of CLIP embeddings. Popu-
lar choices are the ViT-L model from CLIP (Rad-
ford et al., 2021), the ViT-H backbone from Open-
CLIP (Wortsman et al., 2022), and the ViT-g ver-
sion from EVA-CLIP (Fang et al., 2023).

As shown in (Li et al., 2023g), a stronger image
encoder leads to better performance. Building on
this insight, Lin et al. (2023b) and Gao et al. (2024)
propose an ensemble of frozen visual backbones to
capture robust visual representations and different
levels of information granularity. Concurrently,
PaLI models (Chen et al., 2023j,h), noticing an
imbalance between language and visual parameters,
propose scaling the visual backbone respectively
to a 4- and 22-billion parameter ViT.

The utilization of such large and powerful mod-
els is made feasible by the common practice of
maintaining the visual encoder frozen during train-
ing, as observed in (Li et al., 2023g; Huang et al.,
2023b; Gao et al., 2023; Chen et al., 2023f). How-
ever, employing a frozen visual encoder has some
limitations, primarily due to the constrained num-
ber of parameters, resulting in an inadequate align-
ment between the visual and language modalities.
Specifically, the dense features, extracted from the
visual model, may fragment the fine-grained im-
age information and bring large computation due
to the lengthy sequence when fed into the lan-
guage model. To mitigate this issue, other ap-
proaches (Ye et al., 2023c,d) employ a two-stage
training paradigm. In the first stage, they incorpo-
rate a trainable visual backbone while maintaining
the pre-trained LLM frozen. According to their
findings, enabling the vision encoder to be train-
able enhances performance on tasks such as visual
question answering or visual description. However,
it may lead to performance degradation in other
tasks, indicating a degree of forgetting and damage
to the general visual representation.

2.3 Vision-to-Language Adapters
The simultaneous presence of inputs from differ-
ent modalities emphasizes the need to incorporate
a module capable of delineating latent correspon-
dences within these unimodal domains. These mod-
ules, termed as “adapters”, are intended to facilitate
interoperability between the visual and textual do-
mains. A spectrum of different adapters are used in
common MLLMs, ranging from elementary archi-
tectures such as linear layers or MLP to advanced
methodologies such as Transformer-based solu-
tions, exemplified by the Q-Former model, and con-

13592



Visual V2L VInstr.
Model LLM Encoder Adapter Tuning Main Tasks & Capabilities

BLIP-2 (Li et al., 2023g) FlanT5-XXL-11B⋆ EVA ViT-g Q-Former ✗ Visual Dialogue, VQA, Captioning, Retrieval
FROMAGe (Koh et al., 2023b) OPT-6.7B⋆ CLIP ViT-L Linear ✗ Visual Dialogue, Captioning, Retrieval
Kosmos-1 (Huang et al., 2023b) Magneto-1.3B♢ CLIP ViT-L Q-Former✻ ✗ Visual Dialogue, VQA, Captioning
LLaMA-Adapter V2 (Gao et al., 2023) LLaMA-7B▲ CLIP ViT-L Linear ✗ VQA, Captioning
OpenFlamingo (Awadalla et al., 2023) MPT-7B⋆ CLIP ViT-L XAttn LLM ✗ VQA, Captioning
Flamingo (Alayrac et al., 2022) Chinchilla-70B⋆ NFNet-F6 XAttn LLM ✗ Visual Dialogue, VQA, Captioning
PaLI (Chen et al., 2023j) mT5-XXL-13B♦ ViT-e XAttn LLM ✗ Multilingual, VQA, Captioning, Retrieval
PaLI-X (Chen et al., 2023h) UL2-32B♦ ViT-22B XAttn LLM ✗ Multilingual, VQA, Captioning

LLaVA (Liu et al., 2023e) Vicuna-13B♦ CLIP ViT-L Linear ✓ Visual Dialogue, VQA, Captioning
MiniGPT-4 (Zhu et al., 2023a) Vicuna-13B⋆ EVA ViT-g Linear ✓ VQA, Captioning
mPLUG-Owl (Ye et al., 2023c) LLaMA-7B▲ CLIP ViT-L Q-Former✻ ✓ Visual Dialogue, VQA
InstructBLIP (Dai et al., 2023) Vicuna-13B⋆ EVA ViT-g Q-Former ✓ Visual Dialogue, VQA, Captioning
MultiModal-GPT (Gong et al., 2023) LLaMA-7B▲ CLIP ViT-L XAttn LLM ✓ Visual Dialogue, VQA, Captioning
LaVIN (Luo et al., 2023) LLaMA-13B▲ CLIP ViT-L MLP ✓ Visual Dialogue, VQA, Captioning
Otter (Li et al., 2023b) LLaMA-7B⋆ CLIP ViT-L XAttn LLM ✓ VQA, Captioning
Kosmos-2 (Peng et al., 2023) Magneto-1.3B♢ CLIP ViT-L Q-Former✻ ✓ Visual Dialogue, VQA, Captioning, Referring, REC
Shikra (Chen et al., 2023f) Vicuna-13B♦ CLIP ViT-L Linear ✓ Visual Dialogue, VQA, Captioning, Referring, REC, GroundCap
Clever Flamingo (Chen et al., 2023b) LLaMA-7B▲ CLIP ViT-L XAttn LLM ✓ Visual Dialogue, VQA, Captioning
SVIT (Zhao et al., 2023a) Vicuna-13B♦ CLIP ViT-L MLP ✓ Visual Dialogue, VQA, Captioning
BLIVA (Hu et al., 2024) Vicuna-7B⋆ EVA ViT-g Q-Former+Linear ✓ Visual Dialogue, VQA, Captioning
IDEFICS (Laurençon et al., 2024) LLaMA-65B⋆ OpenCLIP ViT-H XAttn LLM ✓ Visual Dialogue, VQA, Captioning
Qwen-VL (Bai et al., 2023b) Qwen-7B♦ OpenCLIP ViT-bigG Q-Former✻ ✓ Visual Dialogue, Multilingual, VQA, Captioning, REC
StableLLaVA (Li et al., 2023i) Vicuna-13B♦ CLIP ViT-L Linear ✓ Visual Dialogue, VQA, Captioning
Ferret (You et al., 2023) Vicuna-13B♦ CLIP ViT-L Linear ✓ Visual Dialogue, Captioning, Referring, REC, GroundCap
LLaVA-1.5 (Liu et al., 2023d) Vicuna-13B♦ CLIP ViT-L MLP ✓ Visual Dialogue, VQA, Captioning
MiniGPT-v2 (Chen et al., 2023e) LLaMA-2-7B▲ EVA ViT-g Linear ✓ Visual Dialogue, VQA, Captioning, Referring, REC, GroundCap
Pink (Xuan et al., 2023) Vicuna-7B▲ CLIP ViT-L Linear ✓ Visual Dialogue, VQA, Captioning, Referring, REC, GroundCap
CogVLM (Wang et al., 2023c) Vicuna-7B♦ EVA ViT-E MLP ✓ Visual Dialogue, VQA, Captioning, REC
DRESS (Chen et al., 2023l) Vicuna-13B▲ EVA ViT-g Linear ✓ Visual Dialogue, VQA, Captioning
LION (Chen et al., 2023d) FlanT5-XXL-11B⋆ EVA ViT-g Q-Former+MLP ✓ Visual Dialogue, VQA, Captioning, REC
mPLUG-Owl2 (Ye et al., 2023d) LLaMA-2-7B♦ CLIP ViT-L Q-Former✻ ✓ Visual Dialogue, VQA, Captioning
SPHINX (Lin et al., 2023b) LLaMA-2-13B♦ Mixture Linear ✓ Visual Dialogue, VQA, Captioning, Referring, REC, GroundCap
Honeybee (Cha et al., 2023) Vicuna-13B♦ CLIP ViT-L ResNet blocks ✓ Visual Dialogue, VQA, Captioning
VILA (Lin et al., 2023a) LLaMA-2-13B♦ CLIP ViT-L Linear ✓ Visual Dialogue, VQA, Captioning
SPHINX-X (Gao et al., 2024) Mixtral-8×7B♦ Mixture Linear ✓ Visual Dialogue, Multilingual, VQA, Captioning, Referring, REC

Table 1: Summary of generalist MLLMs for vision-to-language tasks. For each model, we indicate the LLM
used in its best configuration as shown in the original paper (♢: LLM training from scratch; ♦: LLM fine-tuning;
▲: LLM fine-tuning with PEFT techniques; ⋆: frozen LLM). The ✻ marker indicates variants to the reported
vision-to-language adapter, while gray color indicates models not publicly available.

ditioned cross-attention layers added to the LLM.

Linear and MLP Projections. The most straight-
forward approach for projecting visual inputs into
textual embeddings involves learning a linear map-
ping, which translates visual features to the same
dimensionality as the textual counterpart. Some
approaches like LLaMA-Adapter (Gao et al., 2023)
and FROMAGe (Koh et al., 2023b) only employ
a single linear layer to perform the multimodal
connection, while LLaVA-1.5 (Liu et al., 2023d)
adopts a two-layer MLP, showing improved mul-
timodal capabilities. Despite its widespread adop-
tion in early MLLMs, the use of linear projections
has proven highly effective even in recent methods
with a more advanced understanding of the visual
input (Chen et al., 2023f; Lin et al., 2023a; Wang
et al., 2023c; You et al., 2023; Zhao et al., 2023a).
It is, therefore, a simple yet effective technique for
aligning visual features with textual counterparts.
A different approach (Cha et al., 2023) proposes
to replace linear layers with convolutional ones,
demonstrating moderate improvements.

Q-Former. It is a Transformer-based model pro-
posed in BLIP-2 (Li et al., 2023g) and then used

in several other approaches (Chen et al., 2023d;
Dai et al., 2023; Hu et al., 2024). It is character-
ized by its adaptable architecture, which consists
of two Transformer blocks that share mutual self-
attention layers, facilitating the alignment process
between visual and textual representations. It in-
volves a set of learnable queries that interact within
the self-attention layers and interface with visual
features via a cross-attention mechanism. Textual
and visual elements communicate via shared self-
attention within the modules.

Drawing inspiration from the Q-Former, various
modified versions have been introduced. In this
regard, mPLUG-Owl models (Ye et al., 2023c,d)
simplify the Q-Former architecture and propose a
visual abstractor component that operates by con-
densing visual information into distinct learnable
tokens to derive more semantically enriched visual
representations. On the same line, Qwen-VL (Bai
et al., 2023b) compresses visual features using a
single-layer cross-attention module with learnable
queries also incorporating 2D positional encodings.

Additional Cross-Attention Layers. This ap-
proach has been proposed in Flamingo (Alayrac
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et al., 2022) with the integration of dense cross-
attention blocks among the existing pre-trained
layers of the LLM. The newly added layers are
often combined with a zero-initialized tanh-gating
mechanism to ensure that, upon initialization, the
conditioned model acts as its original version. The
use of additional cross-attention layers imposes
the need to train them from scratch, increasing the
number of trainable parameters compared to other
alternatives. To reduce computational complex-
ity, this strategy is usually paired with a Perceiver-
based component (Jaegle et al., 2021) that reduces
the number of visual tokens before they are fed
to the LLM. Since its introduction, several mod-
els (Awadalla et al., 2023; Chen et al., 2023b; Lau-
rençon et al., 2024; Li et al., 2023b) employ this
technique to connect the visual modality with the
underlying LLM, demonstrating enhanced training
stability and improved performance.

2.4 Multimodal Training

Starting from a pre-trained LLM, the training of
an MLLM undergoes a single-stage or a two-stage
process. In both cases, a standard cross-entropy
loss is utilized for predicting the next token, serving
as an auto-regressive objective.

Single-Stage Training. This possibility is explored
by LLaMA-Adapter (Gao et al., 2023) which intro-
duces additional trainable parameters to encapsu-
late the visual knowledge and manage text-only in-
struction learning at the same time. To achieve this,
the model undergoes joint training using image-text
pairs and instructions, operating on separate param-
eters. Concurrently, the model proposed in (Koh
et al., 2023b) adapts the final loss function by in-
corporating two contrastive losses for image-text
retrieval. During the training, only three linear
layers are updated. On a different line, Kosmos-
1 (Huang et al., 2023b) considers a frozen visual
backbone and trains the language model of 1.3B
parameters from scratch.

Flamingo (Alayrac et al., 2022) and its open
source variants (Awadalla et al., 2023; Laurençon
et al., 2024), instead, train the cross-attention layers
and the Perceiver-based component to connect the
visual features with the frozen LLM blocks. Addi-
tionally, Otter (Li et al., 2023b) extends Flamingo’s
training to increment its in-context capabilities.
Given the amount of training data currently avail-
able, approaches like SPHINX-X (Gao et al., 2024)
opt to perform a single all-in-one training stage in

which to update all model components, possibly
also using text-only data to preserve the conversa-
tional capabilities of the LLM.

Two-Stage Training. In the first of the two training
stages, the objective is to align the image features
with the text embedding space. After this stage,
the outputs tend to be fragmented and not coherent.
Therefore, a second step is done to improve mul-
timodal conversational capabilities. LLaVA (Liu
et al., 2023e,d) is among the first to introduce a vi-
sual instruction-following training scheme, which
is performed as a second training stage updating
the parameters of both the multimodal adapter and
LLM. During the first stage, instead, only the mul-
timodal adapter is trainable. Differently, MiniGPT-
4 (Zhu et al., 2023a) is notable for training solely
the linear layer responsible for multimodal align-
ment across both stages. In the second stage, it
uses filtered data, collected and refined through the
model itself after the first stage.

Another approach, as demonstrated in Instruct-
BLIP (Dai et al., 2023), involves the freezing
of the visual encoder and LLM. In both train-
ing stages, only the Q-Former and the connec-
tion module are trainable. In contrast to previ-
ous approaches where the visual backbone remains
frozen, mPLUG-Owl (Ye et al., 2023c,d) updates it
in the initial stage, facilitating the capture of both
low- and high-level visual information. Also, in
the second stage text-only and multimodal data
are used jointly to increase alignment. Differently,
Shikra (Chen et al., 2023f) updates all weights in
both stages, with the only exception of the visual
backbone which is kept frozen.

Training Data. During the first (or single) train-
ing stage, the datasets predominantly consist of
large-scale, publicly available, and uncurated data.
For instance, the Conceptual Captions 3M (CC3M)
dataset (Sharma et al., 2018) is composed of 3M
images paired with textual captions specifically de-
signed for image captioning systems. Unlike the
widely-used and curated MS-COCO (Lin et al.,
2014) dataset, which serves similar purposes, im-
ages and captions in CC3M are gathered from the
web, showcasing a broader spectrum of styles and
content. Similarly, the LAION family (Schuh-
mann et al., 2021, 2022) represents an extended
collection of non-curated image-text pairs sourced
from web pages, providing a rich resource for pre-
training multimodal language models. Addition-
ally, the COYO-700M (Byeon et al., 2022) dataset
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stands out as a significant resource, containing
747M image-text pairs. Notably, each alt-text in
COYO-700M is linked to an image within HTML
documents. Furthermore, DataComp (Gadre et al.,
2023) presents an extensive pool of 12.8B filtered
image-text pairs sourced from common crawl.

It is important to highlight the distinction be-
tween datasets used in the initial phase of train-
ing, which typically comprise large-scale, uncu-
rated data, and those selected for refinement in
subsequent stages. While the former emphasizes
diversity and scale, the latter focuses on speci-
ficity and task relevance, facilitating a more tai-
lored approach to model optimization. Especially
in single-training stage approaches, certain meth-
ods (Alayrac et al., 2022; Laurençon et al., 2024)
also leverage interleaved datasets, which contain
images interleaved with text coming from the web,
aiming to augment the dataset size for large mod-
els (Hoffmann et al., 2022). Images within these
datasets can be positioned at the beginning or in
the middle of a sentence, allowing models to sup-
port arbitrarily interleaved sequences of images
and text as input, thereby enhancing flexibility in
input formats by blending textual and visual ele-
ments. Among these datasets, the most used are
WebLI (Chen et al., 2023j), composed of 10B im-
ages and image-text pairs, and MMC4 (Zhu et al.,
2023d), an extension of the text-only C4 (Raffel
et al., 2020) dataset composed of 365M documents
and 156B tokens relatives to different concepts, and
OBELICS (Laurençon et al., 2024), an open and cu-
rated collection of interleaved image-text web doc-
uments, containing 141M documents, 115B text
tokens, and 353M images.

In the context of visual instruction tuning, which
constitutes the second training stage for MLLMs,
the available amount of data is limited. This limi-
tation is mainly due to the creation process which
is time-consuming and less well-defined. In this
phase, different datasets are used to improve perfor-
mances on a series of downstream tasks. Among
them, LLaVA-Instruct (Liu et al., 2023e) is a col-
lection of GPT-4 generated multimodal instruction-
following data. It comprises 158k unique language-
image descriptions, spanning various types of tasks
including 58k conversations, 23k detailed descrip-
tions, and 77k complex reasoning. Similarly, LRV-
Instruction (Liu et al., 2023c) initially consisted of
400k visual instructions generated by GPT-4, and
more recently, it has been updated with an addi-
tional set of 300k visual instructions. To enhance

robustness in instruction tuning, LRV-Instruct also
includes negative instructions organized across
three semantic levels, showing that instruct-tuned
MLLMs on this dataset suffer less from hallucina-
tion compared to the original versions. Moreover,
LLaVAR (Zhang et al., 2023i) considers publicly
available OCR tools to collect results on 422k text-
rich images from the LAION dataset. The pipeline
first collects 422k noisy text-rich images and then
extracts the text through OCR models. With the
help of GPT-4, the results and captions are used to
create 16k conversations, also including specific
questions to create complex instructions which can
be helpful to boost performance on new tasks.

3 Tackling Visual Tasks with MLLMs

Standard MLLMs can tackle visual understanding
tasks, such as VQA, captioning and multi-turn con-
versation. However, recently there has been an in-
terest in addressing more fine-grained visual tasks,
such as visual grounding and image generation.

3.1 Visual Grounding

The visual grounding capabilities of an MLLM
correspond to the ability to carry a dialogue with
the user that includes the positioning of the content,
also referred to as a referential dialogue (Chen et al.,
2023f). In particular, You et al. (2023) introduce
referring as the ability to understand the content of
an input region and can be evaluated on tasks such
as region captioning and referring expression gen-
eration. Conversely, grounding is associated with
localizing regions of a given textual description and
corresponds to tasks such as referring expression
comprehension (REC), referring expression seg-
mentation (RES), phrase grounding, and grounded
captioning. Two main components are required to
equip MLLMs with these capabilities: a region-to-
sequence method to process input regions and a
sequence-to-region method to ground nouns and
phrases. A summary of the MLLMs with visual
grounding capabilities is reported in Table 2.

Region-as-Text. The most common way to out-
put regions is to directly insert them into gener-
ated text as a series of coordinates, represented
as numbers or as special tokens dedicated to lo-
cation bins. Shikra (Chen et al., 2023f), Kosmos-
2 (Peng et al., 2023), MiniGPT-v2 (Chen et al.,
2023e), Ferret (You et al., 2023), CogVLM (Wang
et al., 2023c), SPHINX (Lin et al., 2023b), Qwen-
VL (Bai et al., 2023b), and Griffon (Zhan et al.,
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Model LLM Visual Encoder Supporting Model Main Tasks & Capabilities

ContextDET (Zang et al., 2023) OPT-6.7B⋆ Swin-B - Visual Dialogue, VQA, Captioning, Detection, REC, RES
DetGPT (Pi et al., 2023) Vicuna-13B⋆ EVA ViT-g G-DINO⋆ Visual Dialogue, Detection
VisionLLM (Wang et al., 2023e) Alpaca-7B▲ Intern-H Deformable-DETR▲ VQA, Captioning, Detection, Segmentation, REC
BuboGPT (Zhao et al., 2023c) Vicuna-7B⋆ EVA ViT-g RAM, G-DINO, SAM⋆ Visual Dialogue, Audio Understanding, Captioning, GroundCap
ChatSpot (Zhao et al., 2023b) Vicuna-7B♦ CLIP ViT-L - Visual Dialogue, VQA, Captioning, Referring
GPT4RoI (Zhang et al., 2023g) LLaVA-7B♦ OpenCLIP ViT-H - Visual Dialogue, VQA, Captioning, Referring
ASM (Wang et al., 2023d) Husky-7B▲ EVA ViT-g - VQA, Captioning, Referring
LISA (Lai et al., 2023) LLaVA-13B▲ CLIP ViT-L SAM♦ Visual Dialogue, Captioning, RES
PVIT (Chen et al., 2023a) LLaVA-7B♦ CLIP ViT-L RegionCLIP⋆ Visual Dialogue, VQA, Captioning, Referring
GLaMM (Rasheed et al., 2023) Vicuna-7B▲ OpenCLIP ViT-H SAM♦ Visual Dialogue, Captioning, Referring, REC, RES, GroundCap
Griffon (Zhan et al., 2023) LLaVA-13B♦ CLIP ViT-L - REC, Detection, Phrase Grounding
LLaFS (Zhu et al., 2023c) CodeLLaMA-7B▲ CLIP RN50 - Few-Shot Segmentation
NExT-Chat (Zhang et al., 2023a) Vicuna-7B♦ CLIP ViT-L SAM♦ Visual Dialogue, Captioning, Referring, REC, RES, GroundCap
GSVA (Xia et al., 2023b) LLaVA-13B▲ CLIP ViT-L SAM♦ VQA, Segmentation, REC, RES
Lenna (Wei et al., 2023) LLaVA-7B▲ CLIP ViT-L G-DINO♦ VQA, Captioning, REC
LISA++ (Yang et al., 2023b) LLaVA-13B▲ CLIP ViT-L SAM♦ Visual Dialogue, Captioning, RES
LLaVA-G (Zhang et al., 2023d) Vicuna-13B♦ CLIP ViT-L OpenSeeD, S-SAM♦ Visual Dialogue, REC, RES, Grounding
PixelLLM (Xu et al., 2023a) FlanT5-XL-3B▲ EVA ViT-L SAM⋆ Referring, REC, RES, GroundCap
PixelLM (Ren et al., 2023b) LLaVA-7B▲ CLIP ViT-L - Visual Dialogue, RES
VistaLLM (Pramanick et al., 2023) Vicuna-13B♦ EVA - Visual Dialogue, VQA, Referring, REC, RES, GroundCap
ChatterBox (Tian et al., 2024b) LLaVA-13B▲ CLIP ViT-L iTPN-B⋆, DINO♦ Visual Dialogue, Referring, REC, GroundCap
GELLA (Qi et al., 2024) LLaVA-13B▲ CLIP ViT-L Mask2Former♦ Segmentation, RES, GroundCap
PaLI-3 (Chen et al., 2023i) UL2-3B♦ SigLIP ViT-g VQ-VAE♦ VQA, Captioning, Retrieval, RES

Table 2: Summary of MLLMs with components specifically designed for visual grounding and region-level
understanding. For each model, we indicate the LLM used in its best configuration, in some cases initialized with the
weights of a pre-trained MLLM, and any supporting models used to perform the task (♦: fine-tuning; ▲: fine-tuning
with PEFT techniques; ⋆: frozen). Gray color indicates models not publicly available.

2023) convert bounding boxes into text by indicat-
ing two points. VisionLLM (Wang et al., 2023e),
VistaLLM (Pramanick et al., 2023), LLaFS (Zhu
et al., 2023c), and ChatSpot (Zhao et al., 2023b) al-
low the MLLM to handle polygons by representing
them as a series of points.
Embedding-as-Region. Another solution is to
read input regions through region encoders and
provide the output regions as embeddings ex-
tracted from the last layer of the MLLM to a
decoder. For input regions, GLaMM (Rasheed
et al., 2023), GPT4RoI (Zhang et al., 2023g),
ASM (Wang et al., 2023d) and ChatterBox (Tian
et al., 2024b) leverage features of the image en-
coder to perform ROI align on the bounding box,
whereas PVIT (Chen et al., 2023a) exploits Re-
gionCLIP (Zhong et al., 2022). PixelLLM (Xu
et al., 2023a) and LLaVA-G (Zhang et al., 2023d)
use the prompt encoder of SAM (Kirillov et al.,
2023) and Semantic-SAM (Li et al., 2023e) re-
spectively. For output regions, LISA (Lai et al.,
2023), GLaMM, GSVA (Xia et al., 2023b), NeXt-
Chat (Zhang et al., 2023a), and LISA++ (Yang
et al., 2023b) send the embedding corresponding
to special tokens to the mask decoder of SAM,
LLaVA-G to OpenSeeD (Zhang et al., 2023c),
Lenna (Wei et al., 2023) to Grounding-DINO (Liu
et al., 2023i), and PixelLM (Ren et al., 2023b) to a
custom lightweight pixel decoder.

Differently, ContextDET (Zang et al., 2023) in-
troduces a decoder that receives the latent embed-
ding of the noun with learnable queries, performs

a cross-attention with image features, and then
uses a segmentation head. ChatterBox (Tian et al.,
2024b) combines features from the iTPN-B en-
coder (Tian et al., 2023) and the MLLM and pro-
vides them to the DINO detector (Zhang et al.,
2022a). GELLA (Qi et al., 2024) presents a fusion
module in Mask2Former (Cheng et al., 2022) to
propose masks based on multi-modal image fea-
tures and an association module to assign latent em-
beddings to them. PaLI-3 (Chen et al., 2023i) con-
verts embeddings into segmentation masks through
a VQ-VAE (Van Den Oord et al., 2017) decoder.

Text-to-Grounding. Other approaches are based
on open-vocabulary models that accept textual cat-
egories as input. DetGPT (Pi et al., 2023) gen-
erates a list of categories for Grounding-DINO.
BuboGPT (Zhao et al., 2023c) leverages a combi-
nation of RAM, Grounding-DINO, and SAM and
matches tags with nouns in the output sequence.

3.2 Image Generation and Editing
While initial MLLMs excelled in extracting infor-
mation from visual data, recent research included
the generation of visual outputs. This advance-
ment is realized through integrating MLLMs with
image generation mechanisms, predominantly em-
bodied by the Stable Diffusion (SD) (Rombach
et al., 2022) models. These models feature a de-
noising U-Net (Ronneberger et al., 2015) architec-
ture conditioned on textual or visual embeddings,
through cross-attention layers. A complete list of
the analyzed models is presented in Table 3.
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Model LLM Visual Encoder Supporting Model Main Tasks & Capabilities

GILL (Koh et al., 2023a) OPT-6.7B⋆ CLIP ViT-L SD v1.5⋆ Visual Dialogue, Retrieval, Image Generation
Emu (Sun et al., 2023b) LLaMA-13B♦ EVA ViT-g SD v1.5♦ Visual Dialogue, VQA, Captioning, Image Generation
SEED (Ge et al., 2023a) OPT-2.7B▲ EVA ViT-g SD v1.4⋆ VQA, Captioning, Image Generation
DreamLLM (Dong et al., 2023) Vicuna-7B♦ CLIP ViT-L SD v2.1⋆ Visual Dialogue, VQA, Captioning, Image Generation, Interleaved Generation
LaVIT (Jin et al., 2023) LLaMA-7B♦ EVA ViT-g SD v1.5♦ VQA, Captioning, Image Generation
MGIE (Fu et al., 2024) LLaVA-7B⋆ CLIP ViT-L SD v1.5♦ Image Editing
TextBind (Li et al., 2023f) LLaMA-2-7B♦ EVA ViT-g SD XL⋆ Visual Dialogue, VQA, Captioning, Image Generation
Kosmos-G (Pan et al., 2023) Magneto-1.3B♢ CLIP ViT-L SD v1.5⋆ Image Generation, Compositional Image Generation
MiniGPT-5 (Zheng et al., 2023) Vicuna-7B▲ EVA ViT-g SD v2.1⋆ Visual Dialogue, Image Generation, Interleaved Generation
SEED-LLaMA (Ge et al., 2023b) LLaMA-2-13B♦ EVA ViT-g SD unCLIP⋆ Visual Dialogue, VQA, Captioning, Image Generation, Interleaved Generation
CoDi-2 (Tang et al., 2023) LLaMA-2-7B▲ ImageBind SD unCLIP⋆ Visual Dialogue, Audio Understanding, Image Generation, Image Editing
Emu2 (Sun et al., 2023a) LLaMA-33B♦ EVA ViT-E SD XL♦ Visual Dialogue, VQA, Captioning, Image Generation, Image Editing
LLMGA (Xia et al., 2023a) LLaVA-13B♦ CLIP ViT-L SD XL♦ Visual Dialogue, VQA, Image Generation, Image Editing
SmartEdit (Huang et al., 2023c) LLaVA-13B▲ CLIP ViT-L SD♦ Image Editing
VL-GPT (Zhu et al., 2023b) LLaMA-7B▲ CLIP ViT-L SD v1.5⋆ Visual Dialogue, VQA, Captioning, Image Generation, Image Editing
MM-Interleaved (Tian et al., 2024a) Vicuna-13B♦ CLIP ViT-L SD v2.1♦ VQA, Captioning, REC, Image Generation, Interleaved Generation
JAM (Aiello et al., 2024) LLaMA✻-7B♦ - CM3Leon♦ Image Generation, Interleaved Generation

Table 3: Summary of MLLMs with components specifically designed for image generation and editing. For each
model, we indicate the LLM (✻: LLM variants) used in its best configuration, in some cases initialized with the
weights of a pre-trained MLLM, and any supporting models used to perform the task (♢: training from scratch; ♦:
fine-tuning; ▲: fine-tuning with PEFT techniques; ⋆: frozen). Gray color indicates models not publicly available.

Connecting MLLMs with Diffusion Models.
GILL (Koh et al., 2023a) is the pioneer in map-
ping the output embedding space of a frozen LLM
to that of a frozen diffusion model. Specifically, in-
spired by Q-Former, a mapper component is trained
by minimizing the ℓ2 distance between the image
output representation of the language model and
the expected conditioning embedding of SD.

While GILL refrains from fine-tuning both the
LLM and the diffusion U-Net, alternative method-
ologies fine-tune the language model to expand its
multimodal generation capabilities. In this vein,
Kosmos-G (Pan et al., 2023) is developed through
a training regime that integrates the output of the
LLM with an encoder-decoder structure, leverag-
ing a reconstruction loss and the minimization of
the distance within a CLIP-text embedding. Sim-
ilarly, MiniGPT-5 (Zheng et al., 2023) includes
the reconstruction loss of diffusion models in ad-
dition to the alignment loss of GILL. Moreover, it
divides the overall training process into two dis-
tinct phases: the initial phase concentrates on text-
to-image generation, while the subsequent is fo-
cused on interleaved vision-and-language genera-
tion. Distinctly, researchers have studied the align-
ment of discrete (Jin et al., 2023; Ge et al., 2023a,b)
and continuous visual tokens (Zhu et al., 2023b)
extracted from input images with the SD condi-
tioning embedding. This is usually achieved by
fine-tuning the textual model (Zhu et al., 2023b;
Ge et al., 2023a,b). Conversely, Jin et al. (2023)
fine-tune both the LLM and the SD U-Net.

A different approach has been studied by Li
et al. (2023f) which proposes to fine-tune the LLM
by adding two special tokens (i.e., <start> and
<end>), and directly encode the generated text be-

tween these two tokens using the text encoder in the
SD model. Similarly, in (Xia et al., 2023a) the LLM
is trained to output detailed language-based genera-
tion prompts which are employed for generation or
editing tasks. The U-Net is fine-tuned with longer
and more detailed textual captions. Furthermore,
in DreamLLM (Dong et al., 2023) an alignment
loss is eschewed in favor of a score distillation loss
while keeping the U-Net frozen. Additional re-
search endeavors have been conducted to introduce
MLLMs in the field of image editing (Fu et al.,
2024; Huang et al., 2023c; Tang et al., 2023).

End-to-End Pipelines. A different direction is
the development of end-to-end training strategies.
Specifically, in (Sun et al., 2023b,a) the SD U-Net
is directly fine-tuned with the continuous visual em-
beddings generated by the LLM. Tian et al. (2024a)
employ a feature synchronizer, that intervenes in
intermediate layers of the LLM and diffusion de-
coder to cross-attend multi-scale high-resolution
image features. Furthermore, end-to-end training
approaches have been employed for non-diffusion-
based generators, such as VQ-GAN (Esser et al.,
2021), as demonstrated in the study by Lu et al.
(2023a). Differently, Aiello et al. (2024) propose
a methodology to mix an LLM architecture with
an autoregressive generator, CM3Leon (Yu et al.,
2023a), via bi-directional cross-attention across the
architectures of both models.

3.3 Other Modalities and Applications

Video Understanding. Although much of the re-
search focuses on images, some works propose
MLLMs specifically designed to handle video se-
quences. These models process video frames inde-
pendently, using CLIP-based backbones to extract
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frame-level features which are then combined us-
ing pooling mechanisms (Li et al., 2023j; Maaz
et al., 2023) or Q-Former based solutions (Li et al.,
2023h; Ren et al., 2023a). The connection between
visual features and the language model mainly fol-
lows the same trend as image-based MLLMs, with
linear projections being the most common choice.
However, there are also some attempts to develop
video-specific adapters (Liu et al., 2023g; Ma et al.,
2023a) that can capture fine-grained temporal in-
formation. In addition to encoding video frames,
some works (Munasinghe et al., 2023; Zhang et al.,
2023b) also employ audio features to enrich the rep-
resentation of input video sequences. Furthermore,
effective strategies for visual instruction tuning are
also designed in the video domain (Song et al.,
2024), enabling more effective understanding of
long video sequences.

Any-Modality Models. Almost all models de-
scribed so far treat a single modality as input to the
LLM. However, a significant body of work focuses
on designing effective solutions that can handle
multiple modalities. This is usually achieved by
aligning multimodal features through Transformer
blocks such as Q-Former (Chen et al., 2023c;
Panagopoulou et al., 2023) and Perceiver (Zhao
et al., 2023d), or by utilizing ImageBind to ef-
fectively extract features that are inherently mul-
timodal (Su et al., 2023). Images, videos, and
audio are the most commonly treated modalities.
Additionally, some works also effectively encode
3D data (Yin et al., 2023d) and IMU sensor sig-
nals (Moon et al., 2023). While all these solutions
can manage multimodal inputs, approaches like
NExT-GPT (Wu et al., 2023c) and Unified-IO 2 (Lu
et al., 2023a) are also capable of generating outputs
of different modalities.

Domain-Specific MLLMs. In addition to dealing
with generic visual inputs, some research efforts
are dedicated to developing MLLMs for specific
domains and applications, either training the model
starting from a pre-trained LLM or fine-tuning an
existing MLLM with domain-specific data. Some
examples are MLLMs designed for document anal-
ysis and text-intensive visual inputs (Lv et al., 2023;
Ye et al., 2023a), those proposed for embodied AI
and robotics (Driess et al., 2023; Mu et al., 2023),
and those tailored for specific domains such as
medicine (Li et al., 2023d) and autonomous driv-
ing (Xu et al., 2023c). A complete list of domain-
specific MLLMs is reported in the supplementary.

4 Conclusion and Future Directions
In this survey, we have provided a comprehensive
overview of the recent evolution of MLLMs, first
focusing on how to equip LLMs with multimodal
capabilities and then exploring the main tasks ad-
dressed by these models. Based on the analysis
presented, in the following, we outline important
open challenges and promising future research di-
rections to further empower MLLMs.
Multimodal Retrieval-Augmented Generation.
While retrieval-augmented generation (RAG) is
a consolidated technique in LLMs (Lewis et al.,
2020; Asai et al., 2023), its application in MLLMs
is still under-explored. We believe that the emer-
gence of VQA datasets that require external re-
trieved knowledge (Chen et al., 2023k; Mensink
et al., 2023) may enable the development of
MLLMs with RAG capabilities (Hu et al., 2023b;
Caffagni et al., 2024).
Correction of Hallucinations. Several stud-
ies (Liu et al., 2023b; Zhu et al., 2023a) show that
MLLMs tend to exhibit high hallucination rates,
especially when generating longer captions. While
some solutions are emerging to mitigate this prob-
lem (Liu et al., 2023b; Wang et al., 2023a; Wu
et al., 2023d; Yin et al., 2023b; Jing et al., 2023),
understanding and correcting the underlying causes
of hallucinations remains an important open chal-
lenge that is worth addressing to allow the appli-
cation of these models in more critical contexts
(e.g., medicine) and guarantee their accuracy and
trustworthiness.
Prevent Harmful and Biased Generation. En-
suring the safety and fairness of large-scale mod-
els is of fundamental interest in the community.
Recent works show that models trained on web-
crawled data are prone to generate inappropriate
and biased content. Although recent efforts are
being made to reduce this phenomenon in text-
to-image generative models (Schramowski et al.,
2023; Friedrich et al., 2023; Poppi et al., 2024),
further exploration is needed to prevent the same
behavior in MLLMs (Pi et al., 2024).
Reduce Computational Load. As shown in the
supplementary, MLLMs are highly computation-
ally demanding. Effective strategies (Chu et al.,
2024) are needed to reduce computational require-
ments and enable more accessible development of
MLLMs. Possible directions entail reducing train-
ing requirements both in terms of model scale and
data quantity and optimizing the inference stage.
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Limitations

This survey provides a comprehensive review of
visual-based MLLMs. Although we have made a
significant effort to include all relevant works avail-
able to the date of submission, the review might
have missed some minor works, and might not have
a complete coverage of MLLMs treating modalities
that are different from the visual one. Additionally,
given the space constraints required by the submis-
sion venue, we have restricted our explanations of
existing approaches so as to include only the most
relevant novelty points. We encourage the reader
to refer to the original papers for further technical
details and implementation notes.
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A Handling Images of Different
Resolutions and Aspect Ratios

Most existing MLLMs perceive images in a low
resolution and a fixed squared aspect ratio. Some
works (Liu et al., 2023d; You et al., 2023; Chen
et al., 2023j) have demonstrated that adopting vi-
sual backbones trained on higher resolutions leads
to fewer hallucinations and improved multimodal
understanding abilities, translating into better per-
formance over tasks that require fine-grained de-
tails. However, scaling an MLLM to arbitrary input
resolutions and aspect ratios raises two important
concerns: (i) the adaptation issue of switching from
small images seen during training to larger ones
at inference time and (ii) computational costs pro-
vided by the increased number of tokens in both the
visual encoder and the LLM, given by the quadratic
complexity of the attention-based architectures. In
the following, we distinguish three different ap-
proaches to address these problems.

Positional-Encoding Interpolation. These mod-
els interpolate the positional encoding of their vi-
sual backbones, trained at low resolutions, to han-
dle high-resolution images. While being simple,
these methods are prone to adaptation issues. As
a consequence, they partially mitigate this issue
by performing at least one high-resolution training
stage. To reduce the input sequence length to the
LLM, and thus the computational cost, MiniGPT-
v2 (Chen et al., 2023e) and VILA (Lin et al., 2023a)
propose to project multiple visual tokens together
into the same token within the embedding space of
the LLM. For the same reason, mPLUG-Owl2 (Ye
et al., 2023d) and Qwen-VL (Bai et al., 2023b)
compress the visual features into fixed-length se-
quences, independent of the resolution, using learn-
able queries. The latter further saves computation
in most layers of the ViT backbone due to a window
attention mechanism.

Sub-Images Slicing. To avoid the adaptation issue,
some methods propose to slice a high-resolution im-
age into multiple sub-images of fixed size accord-

ing to the native resolution of their visual encoder.
Then, each sub-image is processed independently
by the visual backbone, along with the whole image
downsized at the same resolution, and the features
are concatenated to obtain the global representa-
tion. SPHINX (Lin et al., 2023b) divides the input
image in a squared grid of sub-images (i.e., 2× 2
or 3 × 3) at the training resolution of the visual
backbone. Moreover, to handle rectangular aspect
ratios, SPHINX pads the image to reach the desired
square size. For extreme aspect ratios, the padding
leads to sub-images which are only composed of
padding. Hence, in SPHINX-X (Gao et al., 2024)
a skip token is introduced to replace noisy tokens
associated with only padding sub-images and re-
duce the sequence length provided to the LLM, in-
creasing efficiency. Similarly, LLaVA-NeXT (Liu
et al., 2024b) ignores sub-images composed only of
padding and handles different shapes of grids, by in-
troducing a special token that indicates when a row
of sub-images ends. Monkey (Li et al., 2023l) uses
a Perceiver-like resampler to extract fixed-length
sequences from each sub-image and trains on an
image-text dataset curated by several vision expert
models integrated by ChatGPT. InfiMM-HD (Liu
et al., 2024a) proposes a dynamic resolution adap-
tation training stage to increase the image size up to
1,344 pixels. It employs gated cross-attention lay-
ers (as in Flamingo) to inject the visual features into
the LLM, without increasing the input sequence
length. LLaVA-UHD (Xu et al., 2024) finds the
optimal partitioning scheme leading to sub-images
that most resemble the native resolution and as-
pect ratio of the visual encoder. The number of
visual tokens is compressed through a Perceiver-
like adapter and employs a spatial schema in such
a way that the LLM can understand the grid of
sub-images.

Others. Another solution, namely OtterHD (Li
et al., 2023a), can seamlessly deal with any resolu-
tion or aspect ratio, as it directly feeds large image
patches of 30 × 30 pixels to the LLM, without
the need for a visual encoder. LLaVA-HR (Luo
et al., 2024), instead, introduces a mixture-of-
resolution adaptation to fuse into the ViT layers
high-resolution features extracted with a CNN and
low-resolution ones produced by the ViT itself.

B Additional Training Data

Specific training datasets are required to empower
MLLMs with visual grounding and image gener-
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ation capabilities. Here we briefly describe the
common choices in this domain.

Visual Grounding. To enable visual grounding,
MLLMs can be trained directly on task-specific
data using predetermined instruction templates.
For instance, CoinIt (Pramanick et al., 2023) is
a unified set of 14 benchmarks converted into an
instruction-tuning format, spanning from single-
image coarse-level to multi-image region-level
tasks. An additional training step is usually per-
formed on an instruction-tuning dataset, such as
LLaVa-Instruct (Liu et al., 2023h), to preserve the
conversational capabilities of the MLLM. However,
some methods create their custom datasets to si-
multaneously improve the grounding and conversa-
tional capabilities. Specifically, Shikra (Chen et al.,
2023f), DetGPT (Pi et al., 2023), ChatSpot (Zhao
et al., 2023b), and PVIT (Chen et al., 2023a) lever-
age LLMs (Achiam et al., 2023; OpenAI, 2022) to
combine regions and captions from datasets that
present both annotations (e.g., COCO). Differently,
Kosmos-2 (Peng et al., 2023) and Ferret (You et al.,
2023) exploit an open-vocabulary detector (Li et al.,
2022) to ground noun chunks parsed from cap-
tions and then reconstruct referring expressions.
ASM (Wang et al., 2023d), GLaMM (Rasheed
et al., 2023), and LLaVA-G (Zhang et al., 2023d)
propose automated pipelines comprising multiple
steps based on off-the-shelf models for generating
large corpora of conversations grounded in their
corresponding images.

Image Generation and Editing. To perform
image generation, datasets containing both tex-
tual captions and images are required, as the
one mentioned in Sec. 2.4 (e.g., LAION-400M,
COYO-700M, and COCO). To enable interleaved
text-image generation, MMC4, OBELICS, and
VIST (Huang et al., 2016) are popular choices. In-
stead, for image editing tasks, additional datasets
like the one introduced in InstructPix2Pix (Brooks
et al., 2023) and MagicBrush (Zhang et al., 2023e)
are typically used.

C Evaluation

MLLMs are evaluated across different bench-
marks, taking into account both more classic vi-
sual comprehension and recognition skills and ad-
vanced multimodal conversation capabilities. Ta-
ble 4 shows the performance of the most common
MLLMs on both standard VQA and captioning
datasets and benchmarks specifically designed for

evaluating MLLMs. In the following, we detail the
datasets reported in the table and other benchmarks
typically used for the evaluation of MLLMs.

C.1 Standard Benchmarks
One of the most important skills of MLLMs is
their ability to effectively answer questions based
on the given input image. This ability is quanti-
tatively evaluated across several visual question-
answering datasets, measuring the accuracy (Antol
et al., 2015) of the answers provided by the MLLM.
VQAv2 (Goyal et al., 2017) is an extended and bal-
anced version of VQA (Antol et al., 2015) built by
collecting similar images for the same question, but
whose answer is different compared to the original
one. This makes it difficult to perform favorably
for those models that ignore visual information
and only rely on language priors while answering
questions. The reported results are related to the
test-dev split.
GQA (Hudson and Manning, 2019) is based on
Visual Genome scene graph annotations (Krishna
et al., 2017) and comprises 113k images and 22M
questions focusing on scene understanding and
compositionality. We report the results over the
test split, which contains 10% of the total images.
OKVQA (Marino et al., 2019) is a benchmark to
study how vision-and-language models can address
visual questions whose answers cannot be com-
pletely found in the image, encouraging systems
that also rely on external knowledge. The test set
has 14,055 open-ended questions.
VizWiz (Gurari et al., 2018) originates from au-
thentic situations involving individuals with visual
impairments who have taken images and articu-
lated accompanying inquiries about them, together
with 10 responses. The validation split consists
of 4,319 images paired with their corresponding
questions, while the test split encompasses roughly
8,000 instances.
ScienceQA (SQA) (Lu et al., 2022) evaluates mod-
els over challenging multimodal multiple-choice
questions about 3 subjects (i.e., natural science, lan-
guage science, and social science), 26 topics, 127
categories, and 379 skills. Each question is anno-
tated with explanations linked to relevant lectures.
The test set includes 4,241 examples.
Visual Spatial Reasoning (VSR) (Liu et al.,
2023a) contains images from COCO, each paired
with a caption mentioning two concepts and the spa-
tial relation between them. Models have to choose
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VQA Captioning MLLM Evaluation

Model VQAv2 GQA VizWiz SQA VQAT COCO Flickr POPE MME MMB SEED LLaVAW MM-Vet MathV

Flamingo (Alayrac et al., 2022) 82.0 - 65.7 - 57.1 138.1 75.4 - - - - - - -
BLIP-2 (Li et al., 2023g) 65.0 41.0 19.6 61.0 42.5 144.5 - 85.3 1293.8 - 46.4 38.1 22.4 -
OpenFlamingo (Awadalla et al., 2023) 52.7 - 27.5 - 24.2 75.9 59.5 - - - - - - -
MiniGPT-4 (Zhu et al., 2023a) 53.7 32.2 - - - - - - 581.7 23.0 42.8 45.1 22.1 23.1
mPLUG-Owl (Ye et al., 2023c) 59.5 40.9 - - - - - - 967.3 46.6 34.0 - - -
ChatBridge (Zhao et al., 2023d) - 41.8 - - - - 82.5 - - - - - - -
InstructBLIP (Dai et al., 2023) 69.4 49.5 33.4 63.1 50.7 102.2 82.8 78.9 1212.8 36.0 53.4 58.2 25.6 25.3
Shikra (Chen et al., 2023f) 77.4 - - - - 117.5 - - - 58.8 - 79.9 - -
Emu (Sun et al., 2023b) 62.0 46.0 38.3 - - 117.7 - - - - - - 36.3 -
SVIT (Zhao et al., 2023a) 80.3 64.1 56.4 70.0 60.8 - - - 1565.8 69.1 61.9 - - -
BLIVA (Hu et al., 2024) - - 42.9 - 58.0 - 87.1 - 1669.2 - - - - -
IDEFICS (Laurençon et al., 2024) 60.0 45.2 36.0 - 30.9 - - - - 54.5 - - -
Qwen-VL (Bai et al., 2023b) 78.2 57.5 38.9 68.2 61.5 120.2 81.0 - 1487.6 60.6 58.2 56.7 - -
DreamLLM (Dong et al., 2023) 56.6 - 38.1 - 34.9 115.4 - - - 49.9 - - 35.9 -
LLaVA-1.5 (Liu et al., 2023d) 80.0 63.3 53.6 71.6 61.3 - - 85.9 1531.3 67.7 61.6 70.7 35.4 23.6
CogVLM (Wang et al., 2023c) 82.3 - - - - 148.7 94.9 87.9 - 77.6 72.5 77.8 51.1 34.5
LION (Chen et al., 2023d) - 51.6 - - - 139.3 87.1 88.9 - - - - - -
mPLUG-Owl2 (Ye et al., 2023d) 79.4 56.1 54.5 - - 137.3 - 86.2 1450.2 64.5 57.8 25.0 36.2 25.3
SPHINX (Lin et al., 2023b) 80.2 62.9 46.8 69.1 - - - 90.8 1560.2 67.1 71.6 74.3 36.6 27.5
Emu2 (Sun et al., 2023a) 84.9 65.1 54.9 - 66.6 - - - - - 62.8 - 48.5 -
Honeybee (Cha et al., 2023) - - - - - - - - 1632.0 73.6 68.6 77.5 - -
Unified-IO 2 (Lu et al., 2023a) 79.4 - - 88.7 - 125.4 - 87.7 - 71.5 61.8 - - -
VILA (Lin et al., 2023a) 80.8 63.3 60.6 73.7 66.6 115.7 74.2 84.2 1570.1 70.3 62.8 73.0 38.8
SPHINX-X (Gao et al., 2024) 81.1 63.8 61.9 74.5 - - - 89.6 1485.3 71.3 73.0 70.2 40.9 42.7

Table 4: Performance analysis on 14 evaluation benchmarks for VQA, image captioning, and MLLM evaluation.
Best scores are in bold, second best are underlined.

if a given caption is true or false according to the
picture. MLLMs are typically evaluated on the 616
samples from the zero-shot test split.

IconQA (Lu et al., 2021) tests the visual reason-
ing abilities of vision-and-language models on
three types of questions: multiple-image-choice,
multiple-text-choice, and fill-in-the-blank. The
dataset stems from real-world problems found in
math textbooks and focuses on abstract images (i.e.,
icons). There are 107,439 questions, 20% of which
makes up for the test split.

TextVQA (VQAT) (Singh et al., 2019) is a dataset
based on pictures from Open Images (Kuznetsova
et al., 2020) and challenges OCR capabilities of
vision-and-language models. The test set com-
prises 5,734 examples.

OCR-VQA (Mishra et al., 2019) presents a new
task in visual question answering by interpreting
text within images and involves a collection of
207,572 images of book covers, accompanied by
more than 1M question-answer pairs.

Comprehensively describing the visual input is an-
other important skill desired in MLLMs. To eval-
uate this, various image captioning datasets are
commonly employed. As regards the evaluation
metric, the CIDEr score (Vedantam et al., 2015),
which is the reference metric for the task, is used to
compare generated image descriptions with ground-
truth captions.

COCO (Lin et al., 2014) contains more than 120k
images, each associated with five human-generated
captions. For captioning tasks, the splits defined
by Karpathy and Fei-Fei (2015) are typically em-
ployed, with 113k, 5k, and 5k images respectively
for train, validation and test.

Flickr30k (Young et al., 2014) comprises 31,783
images, depicting diverse everyday activities,
events, and scenes. Complementing these im-
ages are 158,915 captions, obtained through crowd-
sourcing techniques.

nocaps (Agrawal et al., 2019) represents a bench-
mark for novel object captioning, boasting an
extensive collection of almost 400 novel object
categories compared to the COCO dataset. The
validation and test sets include approximately
4.5k and 10.6k images, obtained from Open Im-
ages (Kuznetsova et al., 2020). Each image is an-
notated with 11 human-generated captions. Both
validation and test sets are further categorized into
in-domain, near-domain, and out-of-domain, where
images from the out-of-domain subset contain ob-
ject categories that are never present in COCO.

TextCaps (Sidorov et al., 2020) includes 145k cap-
tions aligned with 28k images. The goal is to recog-
nize and understand the text in images and provide
an effective caption that describes the entire visual
content. This requires the model to possess OCR
capabilities along with image description skills.
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C.2 MLLM-Specific Benchmarks

Thoroughly evaluating MLLMs is challenging and
remains an open frontier. While evaluating on stan-
dard datasets represents a valid choice, many bench-
marks designed for MLLMs have been recently
proposed. They require very strong perception and
cognitive skills to succeed, and often they query for
deep domain-specific knowledge. To facilitate the
evaluation, many works propose to leverage state-
of-the-art proprietary models (e.g., ChatGPT (Ope-
nAI, 2022), GPT-4 (Achiam et al., 2023)) to auto-
matically judge candidate answers. In Table 4, we
report the performance of some models on a subset
of these new benchmarks.

POPE (Li et al., 2023k) is a valuable bench-
mark for evaluating object hallucination challenges
within MLLMs. This dataset encompasses several
distinct subsets, namely random, popular, and ad-
versarial, which are generated utilizing a variety
of sampling methodologies. Cumulatively, it is a
binary classification query dataset that comprises
8,910 entries, facilitating comprehensive investiga-
tions into the phenomenon of object hallucination
within the context of MLLMs.

MME (Fu et al., 2023) is an evaluation benchmark
that aims to assess proficiency in various commu-
nication modalities through 14 tasks covering com-
prehension and manipulation across modalities like
quantification, spatial determination, color identifi-
cation, and others.

MMBench (MMB) (Liu et al., 2023k) includes ap-
proximately 3,000 multiple-choice questions, dis-
tributed across 20 distinct domains. Questions are
curated to evaluate the efficacy of MLLM across
diverse task paradigms. These competencies are
systematically arranged into a hierarchical taxon-
omy, delineating overarching categories such as
perception and reasoning, while also outlining gran-
ular capabilities including object localization and
attribute inference.

SEED-Bench (SEED) (Li et al., 2023c) is specif-
ically designed to evaluate LLMs and MLLMs
across 12 dimensions spanning from scene un-
derstanding to OCR and action recognition. The
benchmark consists of 19k multiple-choice ques-
tions written by human annotators.

LLaVA-Bench (LLaVAW) (Liu et al., 2023e) com-
prehends 24 images with 60 manually-curated ques-
tions, including indoor and outdoor scenes, memes,
paintings, and sketches. GPT-4 is used to generate

the reference solutions and score given answers.

MM-Vet (Yu et al., 2023b) evaluates MLLMs
over 16 tasks covering six fundamental vision-and-
language capabilities such as recognition, OCR,
knowledge, language generation, spatial awareness,
and math. The benchmark comprises 200 images
and 218 questions. The evaluation scores are ob-
tained from GPT-4 by few-shot prompting.

MathVista (MathV) (Lu et al., 2023b) probes the
mathematical reasoning skills of MLLMs for visual
question answering. There are 6,141 questions,
but only 5,141 are used for evaluation. Before
computing the accuracy, the authors propose to
parse the answers using an LLM such as GPT-4.

MMMU (Yue et al., 2023) is a challenging bench-
mark targeting domain-specific knowledge of mul-
timodal models. It consists of 10.5k test samples
drawn from university textbooks or online courses
spanning six main disciplines. Questions may con-
tain multiple images interleaved with text. Exact
matching and word matching are used to assess
the correctness of an answer for multiple-choice
and open-ended questions respectively. Models are
evaluated on zero or few-shot settings.

Tiny LVLM (Shao et al., 2023) focuses on six mul-
timodal capabilities distributed among 2.1k image-
question pairs. It introduces a new evaluation met-
ric called ChatGPT ensemble evaluation (CEE). In
practice, given the question and the ground-truth
solution, ChatGPT is queried with five different
prompts to assign the candidate answer either 0 or
1, and the scores are eventually ensembled.

TouchStone (Bai et al., 2023c) is a visual dialog
benchmark with manually annotated open-world
images, totaling 908 questions corresponding to
five major categories of abilities and 27 sub-tasks.
The evaluation score is computed by an LLM such
as GPT-4, which is asked to compare a candidate
answer with a reference one. The latter is computed
by GPT-4 itself, with fine-grained annotations of
the query image being part of the prompt.

C.3 Visual Grounding Evaluation
The assessment of visual grounding capabilities of
MLLMs comprises a variety of standard referring
tasks, including region captioning, referring ex-
pression generation (REG), and region-level ques-
tion answering, as well as grounding tasks like
referring expression comprehension (REC), refer-
ring expression segmentation (RES) and grounded
captioning. As regards evaluation metrics, for
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RefCOCO RefCOCO+ RefCOCOg

Model val testA testB val testA testB val(U) test(U)

Kosmos-2 (Peng et al., 2023) 52.3 57.4 47.3 45.5 50.7 42.2 60.6 61.7
Shikra (Chen et al., 2023f) 87.8 91.1 81.8 82.9 87.8 74.4 82.6 83.2
Qwen-VL (Bai et al., 2023b) 88.6 92.3 84.5 82.8 88.6 76.8 86.0 86.3
Ferret (You et al., 2023) 89.5 92.4 84.4 82.8 88.1 75.2 85.8 86.3
MiniGPT-v2 (Chen et al., 2023e) 88.7 91.7 85.3 80.0 85.1 74.5 84.4 84.7
CogVLM (Wang et al., 2023c) 92.8 94.8 89.0 88.7 92.9 83.4 89.8 90.8
Griffon (Zhan et al., 2023) 90.1 93.4 86.1 84.8 90.5 77.8 86.1 87.2
LION (Chen et al., 2023d) 89.8 93.0 85.6 84.0 89.2 78.1 85.5 85.7
NExT-Chat (Zhang et al., 2023a) 85.5 90.0 77.9 77.2 84.5 68.0 80.1 79.8
SPHINX (Lin et al., 2023b) 91.0 92.7 86.6 86.6 91.1 80.4 88.2 88.4
Lenna (Wei et al., 2023) 90.3 93.2 87.0 88.1 90.1 84.0 90.3 90.3
LLaVA-G (Zhang et al., 2023d) 89.2 - - 81.7 - - 84.8 -
Unified-IO 2 (Lu et al., 2023a) 90.7 - - 83.1 - - 86.6 -
MM-Interleaved (Tian et al., 2024a) 89.9 92.6 86.5 83.0 88.6 77.1 85.2 84.9
SPHINX-X (Gao et al., 2024) 90.6 93.7 86.9 85.5 90.5 79.9 88.3 88.5

Table 5: Performance analysis on the RefCOCO bench-
marks for referring expression comprehension (REC).
Best scores are in bold, second best are underlined.

REC the accuracy is computed by assuming as
correct predictions the ones that correspond to
an intersection over union with the ground-truth
above 0.5 (Acc@0.5). For referring expression seg-
mentation the cumulative intersection over union
(cIoU) is considered, while for region caption-
ing METEOR (Banerjee and Lavie, 2005) and
CIDEr (Vedantam et al., 2015) are commonly used.
However, few methods introduce their own bench-
marks to evaluate the performance in more realistic
scenarios, with grounded conversations that may
involve multiple rounds. Quantitative results on the
REC, RES, and region captioning tasks are respec-
tively reported in Table 5, Table 6, and Table 7.

RefCOCO and RefCOCO+ (Mao et al., 2016)
are collections of referring expressions based on
images from the COCO dataset. They were gath-
ered through the ReferItGame (Kazemzadeh et al.,
2014), a two-player game where the first player
examines an image featuring a segmented target
object and formulates a natural language descrip-
tion referring to that object. The second player,
who has access only to the image and the referring
expression, selects the corresponding object. Play-
ers swap roles if they perform correctly, otherwise
they receive a new object and image for descrip-
tion. The RefCOCO dataset has no constraints on
the natural language and consists of 142,209 ex-
pressions for 50,000 objects across 19,994 images.
Instead, in the RefCOCO+ players are disallowed
from using location words in their referring expres-
sions and it has 141,564 expressions for 49,856
objects in 19,992 images. Evaluation is performed
on 1,500, 750, and 750 images corresponding to the
validation, testA, and testB splits for both datasets.

RefCOCOg (Yu et al., 2016) was collected by a
set of annotators who wrote natural language refer-

RefCOCO RefCOCO+ RefCOCOg

Model val testA testB val testA testB val(U) test(U)

LISA (Lai et al., 2023) 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6
GLaMM (Rasheed et al., 2023) 79.5 83.2 76.9 72.6 78.7 64.6 74.2 74.9
NExT-Chat (Zhang et al., 2023a) 74.7 78.9 69.5 65.1 71.9 56.7 67.0 67.0
GSVA (Xia et al., 2023b) 79.2 81.7 77.1 70.3 73.8 63.6 75.7 77.0
LLaVA-G (Zhang et al., 2023d) 77.1 - - 68.8 - - 71.5 -
PixelLLM (Xu et al., 2023a) 76.9 78.5 74.4 69.2 72.1 64.5 70.7 72.4
GELLA (Qi et al., 2024) 76.7 80.5 73.6 67.0 73.2 60.6 70.4 71.5

Table 6: Performance analysis on the RefCOCO bench-
marks for referring expression segmentation (RES).
Best scores are in bold, second best are underlined.

RefCOCO Visual Genome

Model METEOR CIDEr METEOR CIDEr

Kosmos-2 (Peng et al., 2023) 14.1 62.3 - -
GPT4RoI (Zhang et al., 2023g) - - 17.4 145.2
ASM (Wang et al., 2023d) 20.8 103.0 18.0 145.1
GLaMM (Rasheed et al., 2023) 16.2 106.0 19.7 180.5
NExT-Chat (Zhang et al., 2023a) 13.6 79.6 - -
PixelLLM (Xu et al., 2023a) 14.3 82.3 19.9 148.9

Table 7: Performance analysis on the RefCOCO and
Visual Genome benchmarks for region captioning. Best
scores are in bold, second best are underlined.

ring expressions for objects in COCO images, and
another set of annotators who selected objects cor-
responding to given referring expressions. When
a selected object was correct, the corresponding
referring expression was inserted in the dataset. It
consists of 85,474 referring expressions for 54,822
objects in 26,711 images. Evaluation is carried out
on 1,300 and 2,600 images corresponding to the
validation and test splits.

Visual Genome (Krishna et al., 2017) connects
structured image concepts to language and com-
prises 108,077 images along with detailed descrip-
tions of all objects present in them, providing
5.4M region descriptions and 1.7M visual question-
answer pairs. This dataset is typically used for
region-level captioning and question-answering.

Visual7W (Zhu et al., 2016) is a visual question-
answering dataset that combines textual descrip-
tions with image regions through object-level
grounding. It comprises 328k question-answer
pairs on 47k COCO images, together with 1.3M
human-generated multiple-choice and more than
560k object groundings from 36,579 categories.

GRIT (Peng et al., 2023) is a large-scale dataset
of grounded image-text pairs (i.e., noun phrases
or referring expressions associated with regions of
the image) based on a subset of COYO-700M and
LAION-2B. The construction pipeline consists of
two steps: (i) extracting noun chunks from the cap-
tions and grounding them to bounding boxes with
an open-vocabulary detector (e.g., GLIP); (ii) ex-
panding the noun chunks to referring expressions
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by exploiting their dependency relations in the orig-
inal caption. The resulting dataset comprises 91M
images, 115M text spans, and 137M associated
bounding boxes.

ReasonSeg (Lai et al., 2023) is a benchmark intro-
duced for the reasoning segmentation task, which
consists of providing segmentation masks for com-
plex and implicit query texts. Images are from
OpenImages (Kuznetsova et al., 2020) and Scan-
Netv2 (Dai et al., 2017) and are annotated with
text instructions and corresponding segmentation
masks. The resulting dataset comprises 1,218
image-instruction pairs. Evaluation metrics are
the same as the RES standard benchmark. Two
extended variants, ReasonDet (Wei et al., 2023)
and ReasonSeg-Inst (Yang et al., 2023b), are re-
spectively introduced for reasoning detection and
reasoning instance segmentation tasks.

Grounding-anything Dataset (GranD) (Rasheed
et al., 2023) is a dataset designed for the grounded
conversation generation (GCG) task, which aims
to construct image-level captions with phrases as-
sociated with segmentation masks in the image.
This dataset was built with an automated annotation
pipeline composed of four stages: (i) object local-
ization with the corresponding semantic label, seg-
mentation mask, attributes, and depth information,
(ii) extracting relationships between detected ob-
jects, (iii) combining previously collected relations
to produce dense captions, (iv) enriching captions
with contextual information. It comprises annota-
tions for 11M SAM (Kirillov et al., 2023) images.
Another dataset, GranDf , is introduced for further
fine-tuning and evaluating over the GCG task. It
was gathered by extending Flickr30k (Young et al.,
2014), RefCOCOg, and PSG (Yang et al., 2022)
through GPT-4 and by manually annotating a set
of samples. It comprises 214k image-grounded
text pairs with 2.5k validation and 5k test samples.
Evaluation metrics include METEOR and CIDEr
for captioning, class-agnostic mask AP for ground-
ing, intersection over union for segmentation, and
mask recall for grounded captioning.

Grounded-Bench (Zhang et al., 2023d) is a bench-
mark introduced to assess the capabilities of an
MLLM in carrying a grounded visual chat. It
is built on top of the LLaVA-Bench (Liu et al.,
2023h), comprising conversational data generated
with GPT-4 and instance annotations from COCO.
It is expanded using 1,000 images with 7,000 enti-
ties from COCO annotated through an automated

COCO

Model FID CLIP-I CLIP-T

Stable Diffusion (Rombach et al., 2022) 9.22 0.667 0.302
Stable Diffusion XL (Podell et al., 2023) - 0.674 0.310

GILL (Koh et al., 2023a) 12.20 0.684 -
Emu (Sun et al., 2023b) 11.66 0.656 0.286
SEED (Ge et al., 2023a) - 0.682 -
DreamLLM (Dong et al., 2023) 8.46 - -
LaVIT (Jin et al., 2023) 7.40 - -
NExT-GPT (Wu et al., 2023c) 11.28 - -
Kosmos-G (Pan et al., 2023) 10.99 - -
SEED-LLaMa (Ge et al., 2023b) - 0.707 -
Emu2 (Sun et al., 2023a) - 0.686 0.297
VL-GPT (Zhu et al., 2023b) 11.53 - -
Unified-IO 2 (Lu et al., 2023a) 13.39 - -
MM-Interleaved (Tian et al., 2024a) 7.90 - -

Table 8: Image generation results on the COCO dataset.
Best scores are in bold, second best are underlined.

MagicBrush

Model DINO CLIP-I CLIP-T

InstructPix2Pix (Brooks et al., 2023) 0.698 0.854 0.292
MagicBrush (Zhang et al., 2023e) 0.868 0.934 0.302

MGIE (Fu et al., 2024) 0.903 0.943 0.317
SmartEdit (Huang et al., 2023c) 0.815 0.914 0.305

Table 9: Image editing results on the MagicBrush
benchmark.

pipeline that involves GPT-4 to associate noun
phrases from captions to ground-truth instances.

MUSE (Ren et al., 2023b) is a multi-target reason-
ing segmentation dataset. It was created with an
automated pipeline on top of 910k instance segmen-
tation masks from the LVIS dataset (Gupta et al.,
2019) by exploiting GPT-4V to combine instance
categories with natural language descriptions. The
resulting dataset comprises 246k question-answer
pairs, averaging 3.7 targets per answer.

ChatterBox-300k (Tian et al., 2024b) is a bench-
mark established to evaluate models on multi-
modal dialogue systems in multi-round referring
and grounding. The dataset is built on images from
Visual Genome (Krishna et al., 2017) providing
bounding boxes, object relationships, and object at-
tributes information to GPT-4 to generate question-
answer pairs.

C.4 Image Generation and Editing Evaluation

To evaluate image generation and editing results, a
set of different benchmarks is usually utilized. In
terms of evaluation metrics, Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) is the reference
metric to evaluate generated images. It quantita-
tively assesses the congruence between the distri-
bution of synthetically generated images and the
distribution of real ones. A diminution in the FID
score indicates an enhanced alignment between the
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DreamBench

Model DINO CLIP-I CLIP-T

DreamBooth (Ruiz et al., 2023) 0.668 0.803 0.305

Kosmos-G (Pan et al., 2023) 0.694 0.847 0.287
CoDi-2 (Tang et al., 2023) 0.703 0.852 0.311
Emu2 (Sun et al., 2023a) 0.766 0.850 0.287

Table 10: Subject-driven image generation results on
the DreamBench dataset.

two distributions, denoting a superior visual quality
and realism within the generated images.

Other metrics measure the coherence of the gen-
erated image with the input prompt and the real
ground-truth image corresponding to it. Specif-
ically, CLIP-I and DINO scores consist of com-
puting the cosine similarity between generated
and ground-truth images leveraging CLIP (Rad-
ford et al., 2021) and DINO (Caron et al., 2021)
as visual backbones. CLIP-T, instead, measures
image-text alignment through cosine similarity be-
tween input captions and generated images, using
CLIP to encode both images and textual prompts.
COCO is employed for evaluating text-to-image
generation. The evaluation is conducted using
either the original validation set comprising 41k
samples or a subset of 30k samples randomly se-
lected from the same set. Results on this dataset
of MLLMs with image generation capabilities are
reported in Table 8.
VIST (Huang et al., 2016) is specifically curated
for the task of interleaved image-text generation.
It includes 34k and 5k samples for training and
evaluation. Each sample is a sequence consisting
of 5 images accompanied by 5 textual narratives
that collectively form a coherent story.
MagicBrush (Zhang et al., 2023e) is a benchmark
in the area of image editing and contains a collec-
tion of 10,000 manually annotated triplets, each
consisting of a source image, an editing instruction,
and the corresponding target image. Performances
on this benchmark are reported in Table 9.
DreamBench (Ruiz et al., 2023) is a benchmark
that evaluates the generative capabilities of the
models on subject-driven generation. Specifically,
it contains 30 subjects, each illustrated with 4 to 6
images, and 25 template prompts enabling modi-
fication and accessorization of the given subjects.
Results on this benchmark are shown in Table 10.

D Computational Requirements

To provide a quantification of the computational
requirements necessary to train an MLLM, we com-

Model Hardware Type #

Flamingo(Alayrac et al., 2022) TPUv4 1,535
PaLI (Chen et al., 2023j) TPUv4 1,024
IDEFICS (Laurençon et al., 2024) A100 512
SPHINX (Lin et al., 2023b) A100 32
Emu (Sun et al., 2023b) A100 128
VILA (Lin et al., 2023a) A100 128
BLIP-2 (Li et al., 2023g) A100 16
SEED-LLaMA (Ge et al., 2023b) A100 64
Shikra (Chen et al., 2023f) A100 8
MiniGPT-v2 (Chen et al., 2023e) A100 8
InstructBLIP (Dai et al., 2023) A100 16
BLIVA (Hu et al., 2024) A6000 8
CleverFlamingo (Chen et al., 2023b) A100 8
LLaVA 1.5 (Liu et al., 2023d) A100 8
LLaVA (Liu et al., 2023e) A100 8
MiniGPT-4 (Zhu et al., 2023a) A100 4
FROMAGe (Koh et al., 2023b) A100 1
LaVIN (Luo et al., 2023) A100 8

Table 11: Summary of the hardware required to train
common MLLMs.

101 102 103 104 105 106 107

GPU Hours

LaVIN
FROMAGe
MiniGPT-4

LLaVA
LLaVA 1.5

Clever Flamingo
BLIVA

InstructBLIP
MiniGPT-v2

Shikra
SEED-LLaMA

BLIP-2
VILA
Emu

SPHINX
IDEFICS

PaLI
Flamingo

M
od

el
s

12
24

44
128

192
320

432
576

840
960
1.1k

3.4k
5.1k
6.4k
8.0k

172.0k
258.0k

828.9k

Figure 2: Number of GPU training hours for various
MLLMs. Here 1 TPU hour is approximated as 1.5 GPU
hours following public benchmarks.

pare some of the most common models in Table 11
and indicate for each of them the type and number
of GPUs/TPUs employed during training. Except
for Flamingo and PaLI, which are trained on a large
amount of TPUs, all other models employ A100
or A6000 GPUs. As it can be seen, most MLLMs
distribute training across 8 A100s.

Moreover, in Figure 2 we show for each MLLM
the total amount of GPU training hours, approxi-
mating 1 TPU hour as 1.5 GPU hours. Notably,
models like Flamingo, PaLI, and IDEFICS require
a significant amount of GPU time (in the order of
magnitude of a few hundred thousand GPU hours).
Instead, lighter models like LLaVA only require a
few hundred GPU hours to complete training.

E Additional Details on Other Modalities
and Applications

Video Understanding. As a complement of
Sec. 3.3, we report in Table 12 a summary of the
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Model LLM Visual Encoder Main Tasks & Capabilities

VideoChat (Li et al., 2023h) StableVicuna-13B⋆ EVA ViT-g Visual Dialogue, VQA, Captioning
Video-ChatGPT (Maaz et al., 2023) Vicuna-7B⋆ CLIP ViT-L Visual Dialogue, VQA, Captioning
Video-LLaMA (Zhang et al., 2023b) Vicuna-7B⋆ EVA ViT-g Visual Dialogue, Captioning, VQA, Audio Understanding
BT-Adapter (Liu et al., 2023g) Vicuna-7B⋆ CLIP ViT-L Visual Dialogue, Captioning, VQA, Retrieval
LLaMA-VID (Li et al., 2023j) Vicuna-13B♦ EVA ViT-g Visual Dialogue, VQA, Captioning
PG-Video-LLaVA (Munasinghe et al., 2023) LLaVA-1.5-13B⋆ CLIP ViT-L Visual Dialogue, Captioning, VQA, Grounding
TimeChat (Ren et al., 2023a) LLaMA-2-7B▲ EVA ViT-g Visual Dialogue, Captioning, Temporal Grounding, Highlight Detection
Vista-LLaMA (Ma et al., 2023a) Vicuna-7B⋆ EVA ViT-g Visual Dialogue, VQA, Captioning

Table 12: Summary of video-based MLLMs. For each model, we indicate the LLM used in its best configuration,
in some cases initialized with the weights of a pre-trained MLLM (⋆: frozen LLM; ♦: LLM fine-tuning; ▲: LLM
fine-tuning with PEFT techniques).

main characteristics of video-based MLLMs. For
each model, we indicate the LLM used as starting
point, which in some cases is initialized with the
parameters of a pre-trained MLLM, the visual en-
coder, and the main tasks and capabilities of the
MLLM. Additionally, we specify whether the LLM
is kept frozen, is entirely fine-tuned, or is fine-tuned
with PEFT-based strategies.

3D Understanding. MLLMs are also applied to
3D data for solving complex tasks like 3D VQA,
3D conversation, and 3D dense captioning. Differ-
ently from standard visual encodings which exploit
2D pre-trained embeddings, in the context of 3D
data, appropriate strategies are designed to project
them to the LLM space. In 3D-LLM (Hong et al.,
2023), 3D scenes are rendered in different views
and 3D features are built using an EVA-CLIP back-
bone connected to a fine-tuned BLIP-2 model. Sim-
ilarly, Xu et al. (2023b) employ a pre-trained Point-
BERT (Yu et al., 2022) as 3D encoder and conducts
a two-stage training that initially aligns the input
features via an MLP projection layer, and then per-
forms an instruction tuning phase of the model.
Differently, in Point-Bind (Guo et al., 2023), 3D
point-clouds are aligned with ImageBind (Girdhar
et al., 2023) and by leveraging I2P-MAE (Zhang
et al., 2023f) as 3D encoder. This alignment al-
lows the introduction of new tasks such as any-to-
3D generation and 3D embedding-space arithmetic.
Recently, LL3DA (Chen et al., 2023g) introduces
the Interactor3D module, which consists of a frozen
3D scene encoder, a visual prompt encoder, and a
Q-Former to address 3D captioning and VQA.

Any-Modality Models. Several studies focus on
extending the reasoning capabilities of the MLLMs
by including multiple modalities, such as video, 3D,
and audio. A line of research investigates the usage
of dedicated pathways to input the different modal-
ities to the LLM. UniVAL (Shukor et al., 2023)
maps the features from each modality encoder into
the shared representation space of the LLM through

dedicated linear projections. X-LLM (Chen et al.,
2023c) leverages Q-Former interfaces for the im-
age and video modalities, interpreting the video
as a sequence of independent frames, each one en-
coded as an image. For the speech modality, it uses
a C-Former interface that compresses the feature
sequence from the speech encoder into token-level
embeddings. X-InstructBLIP (Panagopoulou et al.,
2023) and ChatBridge (Zhao et al., 2023d) propose
to freeze both the modality encoders and the LLM
and to leverage, respectively, dedicated Q-Former
or Perceiver adapters for each modality. To maxi-
mize feature compatibility, AnyMAL (Moon et al.,
2023) uses an encoder that has already been aligned
to a text embedding space for each modality, in-
cluding also IMU signals, and a dedicated adapter,
which is a Perceiver for the visual modality and
linear layers for the others. On the other hand,
PandaGPT (Su et al., 2023) and NExT-GPT (Wu
et al., 2023c) exploit a single frozen multimodal
encoder (i.e., ImageBind) to extract features from
different modalities. OneLLM (Han et al., 2024)
builds a unified universal encoder and a universal
projection module by mixing multiple image pro-
jection modules and a modality router to align input
signals with language. CAT (Ye et al., 2024) adds a
clue aggregator to aggregate question-aware audio-
visual hidden features and produce clue tokens that
are provided to the LLM.

In addition to handling different modalities in
input to the LLM, some works investigate the gen-
eration of outputs of different modalities. For ex-
ample, NExT-GPT (Wu et al., 2023c) introduces
signal tokens in the LLM that indicate whether
the diffusion-based decoder for a specific modal-
ity has to be activated. Moreover, the signal to-
kens are provided to a transformer-based output
projector to condition the generation. Similarly,
M2UGen (Hussain et al., 2023) handles the music
modality by using the LLM output corresponding
to signal tokens, along with unimodal music fea-
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Model LLM Visual Encoder Main Tasks & Capabilities

Document Analysis
mPLUG-DocOwl (Ye et al., 2023a) mPLUG-Owl-7B▲ CLIP ViT-L Visual Dialogue, Captioning, VQA
Kosmos-2.5 (Lv et al., 2023) Magneto-1.3B♦ Pix2Struct ViT-L Text Recognition, Image-to-Markdown Generation
UReader (Ye et al., 2023b) mPLUG-Owl-7B▲ CLIP VIT-L Visual Dialogue, VQA, Captioning, Information Extraction
mPLUG-PaperOwl (Hu et al., 2023a) mPLUG-Owl-7B▲ CLIP ViT-L Visual Dialogue, VQA, Captioning, Diagram Analysis
LLaMA-SciTune (Horawalavithana et al., 2023) LLaMA-13B♦ CLIP ViT-L Visual Dialogue, VQA, Captioning, Diagram Analysis
DocPedia (Feng et al., 2023) Vicuna-7B♦ Swin-B Visual Dialogue, VQA, Information Extraction

Embodied AI
EmbodiedGPT (Mu et al., 2023) LLaMA-7B⋆ EVA ViT/g, RN50 Visual Dialogue, VQA, Captioning, Task Planning
PaLM-E (Driess et al., 2023) PaLM-540B♦ ViT-22B Visual Dialogue, VQA, Captioning, Task Planning, Manipulation

Medical Vision Learning
PMC-VQA (Zhang et al., 2023h) PMC-LLaMA-7B⋆ PMC-CLIP RN50 VQA
LLaVA-Med (Li et al., 2023d) LLaVA-7B♦ CLIP ViT-L Visual Dialogue, VQA
Qilin-Med-VL (Liu et al., 2023f) CN-LLaMA2-13B♦ CLIP ViT-L Visual Dialogue, VQA

Autonomous Driving
Dolphins (Ma et al., 2023b) OpenFlamingo-7B▲ CLIP ViT-L Visual Dialogue, VQA, Captioning, Traffic Condition Understanding
DriveGPT4 (Xu et al., 2023c) LLaMA-2-7B♦ CLIP ViT-L Visual Dialogue, VQA, Captioning

Food Understanding
FoodLLM (Yin et al., 2023c) LISA-7B▲ CLIP ViT-L Visual Dialogue, VQA, Nutrition Estimation, RES

Table 13: Summary of MLLMs designed for domain-specific applications. For each model, we indicate the LLM
used in its best configuration, in some cases initialized with the weights of a pre-trained MLLM (⋆: frozen LLM; ♦:
LLM fine-tuning; ▲: LLM fine-tuning with PEFT techniques). Gray color indicates models not publicly available.

tures from a music encoder, to condition the gen-
eration of an audio encoder. LLMBind (Zhu et al.,
2024) indicates the conditioning text to generate
image, video, or audio by wrapping it in special to-
kens. Thus, this text is provided to the correspond-
ing modality-specific diffusion model. Unified-
IO2 (Lu et al., 2023a) uses VQ-GAN decoders for
both image and audio modalities to decode output
discrete tokens and can generate surface normals,
depth, and segmentation masks for the input im-
ages. AnyGPT (Zhan et al., 2024) interprets all the
continuous non-text modalities as discrete tokens
in both input and output, using, respectively, multi-
modal tokenizers and de-tokenizers. To enable the
3D modality, LAMM (Yin et al., 2023d) introduces
a novel instruction tuning dataset and benchmark
that comprise both image-text and point cloud-text
instruction-response pairs, covering a wide range
of 2D and 3D tasks.

Interactive and Compositional Systems. A dif-
ferent trend is to build systems that can combine
multiple tools (i.e., existing vision-only or vision-
and-language models), usually through ChatGPT
or another LLM. In particular, these approaches
aim to let the user interact with the LLM which
is in charge of selecting the useful tools to carry
out complex tasks. In this context, some solutions
study how to prompt ChatGPT (Wu et al., 2023a;
Yang et al., 2023c) to invoke visual foundation
models. GPT4Tools (Yang et al., 2023a), instead,
employs open-source LLMs such as LLaMA and
OPT, that are fine-tuned with PEFT techniques to
use tools for performing a wide range of visual

tasks. Differently, Liu et al. (2023l) introduce more
sophisticated user-chatbot interactions, through the
incorporation of mouse-based pointing instructions
on images or videos.

While in all these approaches the LLM does not
directly handle the visual input which is instead pro-
cessed by other external tools, in LLaVA-Plus (Liu
et al., 2023h) the query image is directly input to
the MLLM (i.e., LLaVA) and is therefore involved
during the selection and invocation of the most
helpful tool according to the user needs. This is
achieved also thanks to the introduction of a new
instruction-following use tool dataset, which is em-
ployed to fine-tune the MLLM.

Domain-Specific MLLMs. Finally, in Table 13
we summarize the main characteristics of domain-
specific MLLMs, also in this case indicating for
each model the LLM used as starting point.
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