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Abstract

Recent advancements in Chinese Spelling Cor-
rection (CSC) predominantly leverage pre-
trained language models (PLMs). However,
a notable challenge with fine-tuned PLM-based
CSC models is their tendency to over-correct,
leading to poor generalization for error patterns
outside the standard distribution. To address
this, we developed a teacher network guided
by prior knowledge for distillation learning
of CSC models. Unlike traditional teacher
networks, which depend on task-related pre-
training, our method infuses task-related prior
information into the teacher network, offering
guidance beyond mere labels to the student net-
work. This strategy significantly enhances the
CSC model’s language modeling capabilities,
crucial for minimizing over-correction. Im-
portantly, our approach is model-independent
and the teacher network does not require task-
related pre-training, making it broadly appli-
cable for enhancing various PLM-based CSC
models with minimal additional computational
resources. Extensive experiments on widely
used benchmarks demonstrate that our method
achieves new state-of-the-art results. Addition-
ally, we explored the potential of generalizing
our method to other non-autoregressive text-
generation tasks.

1 Introduction

The primary objective of Chinese Spelling Cor-
rection is to detect and correct spelling errors in
Chinese sentences, a task that holds substantial util-
ity in various applications. CSC can play a pivotal
role in enhancing tasks such as optical character
recognition, text editing, and speech recognition
(Afli et al., 2016; Gupta et al., 2021; Dong and
Zhang, 2016). Moreover, it acts as an invaluable
tool for individuals learning a new language, en-
abling quicker and more economical learning pro-
cesses. The importance of CSC spans numerous
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Figure 1: Examples of Chinese Spelling Correction.
We mark the input errors/ ground truth/

tokens in red/blue/ . Here, the model is trained
with edit pairs such as "AEf# — 5 &" (hard — voice)
and "W E — FFHE" (where — there). During testing,
the model overcorrected for "4 i — B " (hard —
voice) and "B B — BBHE" (where — there) because
the model tends to overfit to the training edit pairs.

fields within natural language processing (NLP),
underscoring its wide-ranging utility.

In recent years, CSC models based on pre-
trained language models (PLMs) have become in-
creasingly popular (Zhu et al., 2022; Ji et al., 2021;
Wu et al., 2023). However, the corpora used to
pre-train these PLMs consist exclusively of cor-
rect tokens, and the tasks designed for pre-training
do not account for spelling errors. As a result,
even advanced large language models (LLMs) like
GLM-130B (Du et al., 2022) face challenges in
fully covering the CSC task, as illustrated in Figure
1. These limitations underscores the importance
of fine-tuning CSC models, although this process
encounters its own set of challenges, such as the
tendency of fine-tuned BERT-based CSC models
to memorize training edit pairs, leading to over-
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correction problem shown in Figure 1 during the
prediction.

Driving from (Kernighan et al., 1990) and
the Bayes rule, the spelling correction model
P(y;|X) is formulated for an input sequence X =
{z1,%2,...,x,} and a corresponding output se-
quence Y = {y1,¥2, ..., Yn }- A CSC model makes
decisions through the collaboration of a language
model and an error model (Wu et al., 2023).

Py | X) o< P(yi|x—i) - P(x; | yi,x—i) (1)

language model

error model

Where z_; denotes all input characters except ;.
Empirical research by (Wu et al., 2023) points out
that the main reason for over-correction in PLM-
based CSC models is they typically over-fit the
error model and under-fit the language model.

Derived from this research finding, we argue that
relying exclusively on ground truth complicates
the task of avoiding over-correction, often lead-
ing to the development of less effective contextual
spelling correction (CSC) models. Therefore, this
paper employs a Prior-knowledge Guided Teacher
(PGT) network as the auxiliary training target of the
CSC model. The prior-knowledge Guided teacher
network, also based on PLM, masks all spelling
errors in input during training and outputs the distri-
bution of y; in a non-autoregressive manner. When
x; is the typo, the prior-teacher network can be
formalized as language model P(y;|z_;). which
enables the CSC model to circumvent over-fitting
to the error model by integrating an additional lan-
guage modeling goal.

Our approach does not require any structural
or input modifications to the CSC model. It em-
ploys the output distribution of the prior-knowledge
guided teacher network as soft tags, alongside the
ground truth, to establish a new training objective
for the CSC model. Contrary to methods that de-
pend on input data augmentation (Zhao and Wang,
2020; Liu et al., 2021), PGT does not impose any
error assumptions. Additionally, PGT does not re-
sult in any loss of input information for the CSC
model, unlike the case with input masking CSC
methods(Zhang et al., 2020; Li et al., 2021). There-
fore, PGT can learn an unbiased CSC model from
complete and real data. This exciting property al-
lows PGT to set new state-of-the-art results across
public CSC benchmarks.

Another significant attribute of PGT is its poten-
tial for model compression, as it can be viewed as

a knowledge distillation (KD) method. However,
PGT’s effectiveness emanates from the incorpora-
tion of prior knowledge rather than task-related pre-
training, distinguishing it in the context of Large
Language Models (LLMs). Given the substantial
computational and time costs consumed in task-
related fine-tuning for LLMs, PGT stands out in
the era of LLMs. A comprehensive analysis of
PGT’s model compression effectiveness will be
presented in the experimental section.

In a word, our contributions are summarized
in four-fold. (1) We demonstrate a simple prior-
knowledge guided CSC training strategy signifi-
cantly enhances PLM-based CSC methods, lead-
ing to new state-of-the-art results in CSC bench-
marks. (2) We demonstrate that our method is
model-independent and capable of improving the
performance of various PLM-based CSC meth-
ods. (3) We perform empirical analyses that show
PGT possesses significant model compression ca-
pabilities in CSC task, surpassing traditional KD
schemes in both performance and efficiency. (4) A
preliminary experiment has validated the potential
of our approach to be generalized to other non-
autoregressive generation tasks.

2 Related Work

2.1 Chinese Spelling Correction

In spelling correction, initial approaches used RNN
and Bi-LSTM (Huang et al., 2015) networks (Wang
et al., 2018), later enhanced by (Duan et al., 2019)
with CREF layers for improved output. The tran-
sition to Lattice-LSTM by (Wang et al., 2021)
marked a significant shift, as it integrated char-
acters and token features in ways that went beyond
the capabilities of Bi-LSTM.

The introduction of BERT (Devlin et al., 2019)
led to new CSC models like deep denoising autoen-
coder for CSC based on BERT (Hong et al., 2019)
and a combination model of BERT with GCN for
CSC (Cheng et al., 2020). Addressing the impact
of typos on context, the BERT-based detection-
correction model emerged (Li et al., 2021; Zhu
etal., 2022; Zhang et al., 2020). Furthermore, some
works have enhanced BERT for spelling correction
by integrating Chinese glyph, pronunciation, and
character features (Huang et al., 2021; Liu et al.,
2022; Xu et al., 2021).

However, the focus on model architecture and
feature fusion has overshadowed the research on
training strategies. Innovations like ECOPO by (Li
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et al., 2022), which employs a contrastive learning
training strategy using prediction errors as nega-
tive examples, the random input mask strategy pro-
posed by(Wu et al., 2023), and the training strategy
of Chinese spelling correction model as a rewrit-
ten language model (Liu et al., 2023) have both
significantly enhanced BERT-based CSC models.
This underscores the need to explore more effective
learning strategies to fully develop BERT’s poten-
tial in spelling correction tasks, which is also the
focus of this paper.

2.2 Knowledge Distillation

Recent knowledge distillation in natural language
processing leverages large-scale pre-trained lan-
guage models for task-specific learning. (Sun et al.,
2019) proposed a method to distill multiple interme-
diate layers of the teacher network into the student
network. TinyBERT (Jiao et al., 2020) employs
a two-stage framework with BERT, initially using
general corpora, and then fine-tuning for specific
tasks. BERT-EMD (L. et al., 2020) introduced a
versatile layer mapping distillation, enabling com-
prehensive learning from teacher networks. LAD
(Lin et al., 2023) developed a hierarchical adaptive
distillation method, iterative aggregating knowl-
edge through multiple gate blocks. In a different
approach, DynaBERT(Hou et al., 2020) created an
adaptive student network that adjusts its size for
varied tasks, while (Sun et al., 2020) added a bottle-
neck structure to student Transformer models for
compactness.

However, these methods require specially de-
signed or task-related fine-tuned teacher networks
to achieve knowledge distillation and model com-
pression. Different from them, we adopt a teacher
network with prior knowledge, achieving better
performance while incurring lower costs.

3 Methodology

In this section, we provide a comprehensive de-
scription of our proposed Prior-knowledge Guided
Teachers network (PGT), as depicted in Figure
2. PGT adopts a teacher network guided by task-
related prior knowledge instead of task-related pre-
trained teacher networks. PGT offers several key
advantages. Firstly, our approach does not necessi-
tate any alterations to the input or structure of the
CSC model, allowing for the training of an unbi-
ased CSC model from real human data. Secondly,
the model-independent of PGT facilitates superior

Label: & |Loss C
—
(beautiful) Loss KL

Teacher Network

Student Network

Output Layer Output Layer
hy  hy hs hy hs hs hi  hy hs hy hs hg
f f
PLM PLM

A A
cs) & P E & sEn s & P OE [M] sE

1 2 3 4 5 6 1 2 3 4 5 6

Original Input: Prior-Guide Mask :
The sunset is gone & —[Mask]
ZIPREE (gone —»[Mask])
Token embedding Position embedding  ([M] [Mask]
Figure 2: Overview of PGT. The Prior-knowledge

Guided Teacher network processes the same input as
the CSC model except masks spelling errors under the
guidance of prior-knowledge.

performance across various PLM-based CSC mod-
els. Finally, compared with other KD schemes,
PGT does not require task-related pre-training and
fine-tuning of the teacher network, resulting in a
significant reduction in its computational cost.

3.1 Prior-knowledge Guided Teacher

PGT is compatible with various PLMs-based CSC
models, and this section uses BERT as an exam-
ple to provide a detailed description of the PGT
framework. The prior-knowledge guided teacher
network, requiring no task-related pre-training and
its parameters are frozen during the fine-tuning.
It is important to note that to prevent label infor-
mation leakage, the output of the teacher network
is employed solely as a soft label and is not used
during the prediction.

The input of the teacher is a natural language
sequence X = {x1,x2,...,2,}, consisting of n
characters. Its output is a sequence of probabil-
ity distributions P = {p1, pa, ..., pn }, where each
p; represents the probability distribution of the cor-
rection characters predicted by the teacher network.

For any given input sequence X, the teacher net-
work first embeds it by Equation 2

E = BertEmbedding(X) )

Then, the teacher network masks E =
{e1, €2, ..., e, } based on the error position labels
as Equation 3:

6’2 =b; - €mask 1 (1 - bz) © € 3)

Where b; is the error position label whose value
range is {0, 1}. When z; and golden character are
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equal, b; = 0, Otherwise b; = 1. e,,4s denotes
the embedding of ’[MASK]’.

Then feed E' = {e},é},---,€l,} to the
BERT model, and use the hidden states H =
{h1, ha,- -, h,} of the last layer of BERT to pre-
dict the output probability distribution as Equation
4:

Pei = pe (i | X) = softmax (Wh; +b) (4

Where W and b are trainable parameters. P, =
{Pec1; e, +, Pen } 18 the output of the teacher net-
work.

3.2 Learning

The loss function used in this study consists of two
terms. Contrasted with the traditional CSC train-
ing strategy that solely relies on cross-entropy loss,
our method incorporates an additional Kullback-
Leibler (KL) losses. This is designed to steer
the CSC model towards a greater focus on lan-
guage modeling capabilities, thereby mitigating
over-correction issues that arise from memorizing
training edit pairs. For a training sample (X,Y),
equations 5 and 6 define these two loss function
terms, respectively.

Lrr =Y Drr(pe(yi | X)llp (i | X)) 5
=1

Lo=—=> log(p(y | X)) (6)
=1

Where p. (y; | X) represents the probability distri-
bution modeled by the teacher network, p (y; | X)
denotes the probability distribution predicted by
the CSC model and Dk, denotes the KL loss. Fi-
nally, we use the linear combination of the two loss
functions as the overall objective, as Equation 7.

L=p3-Lc+(1-78) LkL (N

Where [ is the hyperparameter that balances the
two loss functions.

4 Experiments

This section will give a comprehensive overview of
the data, settings, and outcomes of the experiments
in this paper. Moreover, we will perform essential
analysis and discussion to show the merits of our
approach.

4.1 Baselines

In order to demonstrate the superiority of this
method, we selected different types of strong base-
line methods, which represent different CSC model
paradigms. BERT (Devlin et al., 2019) is the
cornerstone of existing PLMs-based CSC models,
and we fine-tune BERT directly on the training
set. Soft-Masked BERT' (Zhang et al., 2020) is a
detection-correction CSC model, it masks the de-
tected error characters and fed the masked input
into the BERT-based model for correction. Spell-
GCN (Cheng et al., 2020) promotes the perfor-
mance of CSC with additional information, which
integrates confusing characters into CSC models
via GCNs. MDCSpell® (Zhu et al., 2022) is a
detection-correction CSC model too, which fuses
the hidden states of the detection module and the
correction module to predict the correct charac-
ters. ECOPO(Li et al., 2022) is a competitive train-
ing strategy designed for the CSC task driven by
past predict errors. Masked-FT (Wu et al., 2023)
achieved start-of-the-art work on SIGHAN14/15
by randomly masking 20% non-error tokens from
the input sequence during fine-tuning.

4.2 Experiments Setup

According to the work of (Li et al., 2022), these
evaluation metrics were computed by different al-
gorithms, which could be grouped into two groups:
character-level scores evaluated based on the algo-
rithms from (Cheng et al., 2020; Wang et al., 2019),
sentence-level scores evaluated based on the algo-
rithms from (Hong et al., 2019; Liu et al., 2021)3.
We report the sentence-level metrics for evaluation,
which are more challenging.

Our code is based on BERT*. More detail experi-
mental settings are in the Appendix A. Source code
are available at this URL.

4.3 Experimental Results on SIGHAN

Following existing works, our training data consists
of two group samples. The first group samples
come from the SIGHAN13/14/15° (Tseng et al.,
2015; Wu et al., 2013; Yu and Li, 2014) training set
and were written by humans, and the other is 271k

"https://github.com/hiyoung 123/SoftMaskedBert
Zhttps://github.com/iioSnail/MDCSpell_pytorch
3https://github.com/liushulinle/PLOME
*https://huggingface.co/bert-base-chinese
Shttp://nlp.ee.ncu.edu.tw/resource/csc.html
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Detection Correction
Test set Method P R Fi P R Fi

Spell GCN(Li et al., 2021) 65.1 69.5 67.2 63.1 67.2 65.3
ECOPO (REALISE) (Li et al., 2022) 68.8 72.1 70.4 67.5 71.0 69.2
BERT (Xu et al., 2021) 64.5 68.6 66.5 62.4 66.3 64.3

SIGHAN14 ECOPO (BERT) (Li et al., 2022) 65.8 69.0 67.4 63.7 66.9 65.3
PGT (BERT) 7041  67.7 69.07 68.67 66.0 67.37
MDCSpell (Zhu et al., 2022) 70.2 68.8 69.5 69.0 67.7 68.3
PGT (MDCSpell) 7041 7131 7097 69.17  70.07  69.57
SpellGCN (Li et al., 2021) 74.8 80.7 77.7 72.1 77.7 75.9
ECOPO (REALISE) (Li et al., 2022) 7175 82.6 80.0 76.1 81.2 78.5
BERT (Xu et al., 2021) 74.2 78.0 76.1 71.6 75.3 73.4
Masked-FT (BERT) (Wu et al., 2023) - - - 76.7 79.1 77.9

SIGHANIS ECOPO (BERT) (Li et al., 2022) 78.2 82.3 80.2 76.6 80.4 78.4
PGT(BERT) 81.61 804 81.07 80.11  79.0 79.67
Soft-Masked BERT (Zhang et al., 2020) 78.1 82.1 80.0 74.9 78.8 76.8
Masked-FT (Soft-Maked) (Wu et al., 2023) - - - 76.3 81.8 79.0
PGT (Soft-Masked) 80.41  81.7 81.11 78.017 79.3 78.7
MDCSpell (Zhu et al., 2022) 80.8 80.6 80.7 78.4 78.2 78.3
PGT (MDCSpell) 80.4 81.77 81.17 783 80.17  79.27

Table 1: The performance of PGT and baselines on SIGHAN test sets. The baseline results are from published
papers, except Soft-Masked BERT (The training set of the original Soft-Masked BERT is different from other
works, so we reproduced it by the same training set with other works). PGT (Models_X) denotes applying PGT to
Models_X. The best results are in bold. “1” signifies that the corresponding baseline method achieves a performance

improvement after optimization by PGT.

public augmented training samples®. The data style
of the two group samples is consistent.

In order to test the effectiveness of the methods,
the widely used SIGHAN14/15 (Tseng et al., 2015;
Yu and Li, 2014) test set is used as the evaluation
benchmark. The example of data samples, training
data statistics, and testing data statistics are shown
in the Appendix B.

We report the experimental results in Table 1.
From the experimental results, we draw the follow-
ing conclusions through observation.

For the BERT model, PGT (BERT) outperforms
the original BERT in both detection and correction
performance on all test sets. Compared to BERT,
PGT (BERT) achieved a 6% absolute improvement
in correction F1 on the SIGHAN 15 test set, reach-
ing state-of-the-art levels. Note that we did not
change the structure of the BERT model or use
any features other than the token feature. Such ex-
perimental results demonstrate the capabilities of
PGT. Although PGT (BERT) achieved a 3% abso-
lute improvement in BERT correction F1 on the
SIGHAN 14 test set, it has not yet achieved state-
of-the-art results. The current best on the SIGHAN
14 test set is PGT (MDCSpell), highlighting the
model-independent advantage of PGT.

®https://github.com/wdimmy/Automatic-Corpus-
Generation

Compared to Masked-FT, which adopts a ran-
dom masking strategy on the input of the CSC
model, PGT (BERT) demonstrates superior per-
formance in terms of correction F1. Masked-FT
employs a strategy that randomly masks 20% non-
error tokens from the input during the fine-tuning
phase, yet it utilizes the complete input for pre-
diction. In contrast, the CSC model in PGT con-
sistently uses complete input throughout both the
fine-tuning and prediction stages. This consistency
may be a crucial factor in PGT’s superior perfor-
mance over Masked-FT.

The absolute improvement achieved by PGT
varies for different works. This is partly because
the basic performance of Soft-Masked BERT and
MDCSpell far exceeds that of BERT, making it dif-
ficult to improve them with a BERT-based prior
teacher network, and instead, a stronger PLM
should be used as the teacher network.

4.4 Experimental Results on ECSpell

The ECSpell benchmark consists of corpora from
three domains: LAW (1,960 training and 500 test
examples), MED (medical treatment, 3,000 train-
ing and 500 tests), and ODW (official document
writing, 1,728 training and 500 tests). Following
the setup of the (Wu et al., 2023), we divided the
test set of each domain into two subsets. One sub-
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Method INC-FI EXC-FI  FI

BERT 68.4 100 402
MASK-FT

(BERT) 84.9 659 768

LAW PGT(BERT) 81.9 662  76.6

MDCSpell 69.0 137 422
MASK-FT

(MDCSpell 86.1 732 8Ll

PGT (MDCSpell)  83.2 67.1 776

BERT 35.6 57 269
MASK-FT

(BERT) 46.7 432 638

MED PGT(BERT) 78.3 50.7  66.7

MDCSpell 32.1 74 257
MASK-FT

(MDCSpell 47.9 478 724

PGT (MDCSpell)  77.1 454 642

BERT 54.4 74 267
MASK-FT

(BERT) 71.3 24 629

ODW PGT(BERT) 80.9 725 633

MDCSpell 55.9 6.7 275
MASK-FT

(MDCSpoll) 75.1 512 72,0

PGT (MDCSpell)  79.2 61.0 704

Table 2: The performance of PGT on ECSpell test sets.

set contains editing pairs not seen in the training set
(EXC, shorthand for exclusive), and the remaining
data constitute another subset (INC, shorthand for
inclusive).

From Table 2, it can be observed that PGT
(BERT) and PGT (MDCSpell) got better perfor-
mance across most metrics in three domains, com-
pared to the baselines. PGT (BERT) and PGT (MD-
CSpell) are significantly better than their own basic
models on EXC-F1, INC-F1, and F1 scores.

Unlike SIGHAN, the test set of ECSpell con-
tains a high proportion (= 70%) of edit pairs that
are not seen in the training set. The performance
of PGT (BERT) and PGT(MDCSpell) on EC-
Spell demonstrates that although improving the
model’s performance on unseen edit pairs was
not the primary focus of this paper, PGT still
displayed impressive capabilities in this regard.
This is attributed to PGT’s ability to prevent over-
fitting of the student network to the training set,
thereby helping the student network to make more
contextual decisions.

4.5 Analysis and Discussion

In this section, a detailed analysis and discussion of
PGT will be conducted on the SIGHAN 15 test set,

Detection Correction

Method P R F1 P R F1
BERT 742 780 76.1 71.6 753 734
PGT_S 79.8 556 65.6 785 547 64.5
PGT_L 812 782 79.7 784 755 76.9
PGT 81.6 804 81.0 80.1 79.0 79.6
MDCSpell 80.8 80.6 80.7 784 782 783

PGT_S (MDCSpell) 794 655 718 781 644 70.6
PGT_L (MDCSpell) 782 812 79.6 757 78.6 77.1
PGT (MDCSpell) 804 81.7 8l1.1 783 80.1 792

Table 3: Evaluating the Contribution of Prior Knowl-
edge to the PGT.

chosen for its superior annotation quality compared
to other test sets.

4.5.1 The Contribution of Prior Knowledge

In this subsection, an ablation study will be con-
ducted to evaluate the contribution of prior knowl-
edge to the PGT. Given the unique nature of the
CSC task, where the input may contain spelling
errors, we experimented with two distinct types of
input schemes. PGT_S: The inputs of the teacher
and CSC networks both use original texts as in-
put. PGT_L: The student network uses the origi-
nal texts as input and the teacher network uses the
ground truth texts as input.

As shown in Table 3, we observed that PGT_S
significantly reduced model performance. This in-
dicates that the strength of PGT comes from the
prior knowledge added to the Prior teacher network.
PGT_L, which uses label text as the input to the
teacher network, can obtain completely correct in-
put information.

Additionally, experimental results using MDC-
Spell as the base model show that the performance
of both PGT_S and PGT_L settings is inferior to
MDCSpell, while the PGT setting can improve the
performance of MDCSpell. This indicates that us-
ing only PLM as the teacher network is insufficient;
the use of prior information about the position of
misspellings in the input is crucial. On the other
hand, this result also suggests that when combining
PGT with strong baseline CSC models, consider-
ation should be given to using a teacher network
larger than the student network (the setting in this
paper is that the sizes of the teacher and the stu-
dent network are the same, but general KD settings
typically uses a larger teacher than the student).

4.5.2 Over Correction

In the Introduction section, we explored the mo-
tivation behind PGT, which is primarily aimed at
addressing the over-correction issue in BERT-based
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Test set Method Over Total ratio Method Detection Correction
etho
ERT 189 371  50.9% R F1 P R F1
SIGHAN14
125 315 39.7% BERT 742 78.0 76.1 71.6 753 734
ERT 125 259  48.3% KD S 746 782 764 725 760 742
SIGHAN15
81 210 38.6% KD L 775 803 789 740 766 752
PGT 81.6 80.4 81.0 80.1 79.0 79.6

Table 4: Statistics results on over-correction characters.
In the table header, ’Over’ represents the number of over-
correction characters, and *Total’ refers to the overall
number of failed prediction characters.

CSC models. This subsection presents an analysis
that determines whether PGT achieves this objec-
tive.

Firstly, we clarify the definition of over-
correction and failed prediction. A failed predic-
tion refers to instances where the model’s predic-
tion does not align with the ground truth. An
over-correction refers to the model wrong predict-
ing a correct input character as another character.
The ’ratio’ is defined as the percentage of over-
correction characters relative to all failed predic-
tion characters. The statistics results are displayed
in Table 4.

The statistics results lend considerable support
to the argument of this paper. About half of
BERT’s failed predictions on two widely used
benchmarks are over-corrections, highlighting the
over-correcting propensity of BERT-based CSC
models. When we run PGT, both the number and
ratio of over-correction characters decrease signifi-
cantly. This demonstrates the efficacy of the PGT
in overcoming the over-correction challenge.

4.5.3 Comparison with General Knowledge
Distillation

In this section, we will conduct a comparative
analysis of PGT against the general two-stage KD
scheme. This two-stage KD involves an initial
teacher network fine-tuning stage, followed by
the KD stage. In Fine-Tuning Stage, training the
teacher network with the training set. During the
KD stage, the fine-tuned teacher network is em-
ployed to distill knowledge into the student net-
work, with the teacher network’s gradient being
frozen. Therefore, we tried two different types of
input schemes during the KD stage: KD_S: The in-
puts of the teacher network and the student network
are both using the original text as input. KD_L:
The student network uses the original texts as input,
while the teacher network uses the ground truth

Table 5: Results of different distillation methods on
SIGHAN15

texts as input.

Table 5 presents the performance of various KD
schemes, with each scheme employing BERT as
the student network. The experimental findings
indicate that, in comparison to PGT, KD_S has
limited improvement on the student network in the
CSC task. Both KD _L and KD_S utilize the same
teacher network, differing solely in their input. Yet,
KD_L exhibits a substantial performance improve-
ment over KD_S. This observation underscores
that a significant factor limiting the effectiveness
of classical knowledge distillation methods in spell
correction tasks is the disruption caused by typos
in the input. Furthermore, it is noteworthy that
PGT outperforms both KD_S and KD_L in terms
of detection and correction precision. This proves
from another perspective that PGT can avoid the
over-correction problem of the BERT-based CSC
model, and this is guided by prior knowledge.

4.5.4 The Contribution of PGT to Model
Compression

In previous experiments, the scales of the CSC
model and the teacher network in PGT were
aligned. To evaluate the model compression capa-
bilities of PGT, this section employs a CSC model
composed of Nx Transformer encoder blocks, re-
placing the BERT-based CSC model. The experi-
mental results are presented in Table 6.

The results presented in Table 6 demonstrate the
efficient model compression capabilities of PGT.
The experiments indicate that when the student
network’s scale is increased to 66.6% of BERT’s,
PGT surpasses BERT’s performance and outper-
forms the general KD approach. Furthermore,
even when the student network consists of only
4 x Transformer encoder blocks, PGT’s detection
and correction precision exceed those of both the
BERT model. This finding implies that PGT con-
sistently avoids over-corrections of correct input
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Method P R F1 P R F1 Detection Correction
4 x Transformer 76.8 66.7 71.4 74.9 65.1 69.6 Method R F1 P R F1
6xTransformer 79.3 70.6 74.7 77.4 68.9 72.9 BERT 742 780 76.1 71.6 753 734
8 x Transformer 79.7 77.8 78.8 77.7 75.8 76.7 PGT_L 81.2 782 79.7 784 1755 1769
10x Transformer80.3 79.9 80.1 78.4 78.0 78.2 PGT 81.6 804 81.0 80.1 79.0 79.6
BERT 74.2 78.0 76.1 71.6 75.3 73.4 PGT_F 799 813 80.6 76.6 78.0 773
KD_S 74.6 78.2 76.4 72.5 76.0 74.2

Table 6: The results of PGT in model compression
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Figure 3: The impact of 5

tokens, a trait that remains unaffected by the scale
of the student network.

4.5.5 Parameter Analysis

There is an important hyperparameter  in this
paper. In order to evaluate the impact of the hyper-
parameter (3, we assigned different values to 3 and
observed its impact.

Figure 3 shows the changes in the correction F1
values of three models. We found that when S is
around 0.5, the model is more likely to achieve
better results. This indicates that the CSC model
has roughly equal requirements for the two types
of labels. On the other hand, SoftMasked BERT
and MDCSpell are more dependent on ground truth
than teacher networks. This is because the struc-
ture of Soft-Masked BERT and MDCSpell is more
complex and requires clearer labels to prevent un-
derfitting.

4.6 Generalize

The core of the PGT method proposed in this
paper is the prior-knowledge guided teacher net-
work. However, the error position information is
a task-specific prior knowledge for CSC, which
may raise concerns about the generality of the PGT
method. Therefore, in this subsection, we will ex-

Table 7: The results of the generalization experiment

plore whether we can generalize the PGT method
to other non-autoregressive text generation tasks.
To generalize PGT, we use a random masking strat-
egy, which randomly masks 15% tokens from the
input of the teacher network, and we call this set-
ting as PGT_F. The experimental results are shown
in Table 7.

As shown in Table 7, PGT_F performs between
PGT and PGT_L (the definition of PGT_L is de-
tailed in Section 4.5.1) on the detection and cor-
rection level. This result indicates that PGT can
still improve the model performance without task-
related prior knowledge. Therefore, the implica-
tions of the PGT proposed in this paper are not
limited to the CSC task. PGT has the potential to
generalize to other non-autoregressive text gener-
ation tasks. However, when viewed from another
perspective, the performance of PGT_F falls short
compared to PGT. This suggests that a crucial fac-
tor in the generalization of PGT lies in the utiliza-
tion of task-related prior knowledge.

5 Conclusion

Building on the idea of augmenting the language
modeling capabilities of the CSC model, this paper
proposes to use a Prior-knowledge Guided Teacher
(PGT) network to distill the CSC model. Extensive
experiments conducted on widely used benchmarks
affirm that our method achieves new state-of-the-art
results on the CSC task. Furthermore, the experi-
ment results validate that PGT indeed enhances the
language modeling capabilities of the CSC model.

In terms of knowledge distillation, PGT outper-
forms general KD schemes in both performance
and training efficiency for CSC tasks, while also
demonstrating notable model compression effi-
ciency. Lastly, we verify the potential of PGT
to generalize to other non-autoregressive text-
generation tasks through a simple experiment.
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Limitations

Our method uses an additional teacher network.
While this teacher network does not require task-
related pre-training and parameter updates, it still
incurs an additional computational overhead of ap-
proximately 25% during the fine-tuning. Although
the focus of this work is on the Chinese, it does not
utilize any Chinese-specific features. Therefore,
in theory, other languages, such as English could
also benefit from the same technique. However,
empirical studies in these languages have not been
conducted in this paper.
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A Experiments Details

When fine-tuning, we used the AdamW optimizer
with default hyper-parameters. Unless otherwise
stated, all experimental results reported in this pa-
per are the average of four experiments. Follow-
ing the MDCSpell, we first use all training data
to fine-tune the model, where the learning rate is
2e-5. Then, we use the SIGHAN training data to
fine-tune the model, where the learning rate is le-5.
The detailed experimental settings are as follows:

* We do not use the dynamic learning rate strat-
egy.

* We always freeze the gradient of the teacher
network during fine-tuning.

¢ The batch size is set to 32.

* The training epochs are set to 30, and use an
early stopping strategy.

* For baselines, we use the best hyperparame-
ters reported by the author.

» Using RTX3090 GPU for training.

B Datasets Details

A data sample is shown in Table 8. Where ‘id’
represents the sample number of the data, ‘origi-
nal_text’ represents the original text needs to be
corrected, ‘wrong_ids’ represents location labels of
spelling errors in the original text, and if there are
no typos in the original text, ‘wrong_ids’ is empty.
‘correct_text’ represents the ground truth text.

id:  A2-0023-1
original_text: N TER, FERATHTE R ZEE
wrong_ids: [9]
Correct_text: NTEH, IR /ATHEEEE

Table 8: Example of Sample.

Table 10 shows the detailed statistics of the
datasets that we use. We report the number of

sentences in the datasets (Line), the average sen-
tence length of the datasets (Avg. Length), and the
number of typos the datasets contain (Errors).

Train and Val Line Avg. Errors
Data Length
(Wangetal.,, 271,329 44.4 382,704
2018)
SIGHAN13 350 49.2 350
SIGHAN14 6,526 49.7 5284
SIGHAN15 3,174 30.0 3143
Test Data Line Avg. Errors
Length
SIGHAN14  1062(531) 50.1 782
SIGHAN15  1100(550)  30.5 715

Table 9: Statistics of the datasets that we use.

C Case Study

The correction results of PGT and baseline are
shown in Table 10, and the cases we use are the
same as ECOPO. In Table 10, we mark the input er-
ror/confusion/golden/wrong correction characters
in red/green/blue/yellow.

S5EERET G NIEFLE -

Input:  It’s better to think for the good than
to be angry (give up).
BERT: [ s , ]
ECOPO: [F(give up), , ]
ORPO:  [F(give up), R ]
g, BTG ORI -
I try to beat the enter (endless) storms.
BERT: | , , ]
ECOPO: [Rl(endless), , ]
ORPO: [R(endless), , ]

Table 10: Examples of spelling errors and correspond-
ing output (Top 3 candidates) of different methods. We
mark the input error/confusion/golden/wrong correction
characters in red/green/blue/yellow.

BERT fails in two cases. For the first case, BERT
assigns the most predicted probability to the com-
mon character “C.” instead of the golden charac-
ter “7+”. The statistics of the pre-training corpus
Wiki2019ZH show that “H . appears 136,318
times, and *“ 5 7 only appears 119 times. For the
second case, the output of BERT such as “#”, “_f”
and “45” all are far away from the golden character
in terms of pronunciation and glyph. This supports
the core motivation of this paper that there is a gap
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Method CAR ENC GAM MEC NEW NOV coT AVG
BERT 15.1 13.6 14.3 12.6 16.6 15.1 17.3 14.9
PGT(BERT) 32.8 32.8 255 30.5 333 24.3 45.0 32.0

Table 11: The performance of PGT and baseline on LEMON.

between the knowledge representation of BERT
and the knowledge required by spelling correction.

ECOPO (BERT) and PGT (BERT) make correct
corrections in both cases. However, the other two
of the top three candidate characters for ECOPO
(BERT) are not confusing characters. In compari-
son, the top three candidate characters for PGT are
all confusing characters, with the same phonics as
the golden characters “7¥(qi)” and “/X(Jin)”. This
result shows that PGT can not only accurately as-
sign the maximum probability to the golden charac-
ter and make correct corrections, but also pay more
attention to confusing characters rather than com-
mon characters. This supports the central argument
of this paper that PGT can bridge the gap between
PLMs and spelling correction task by teaching the
PLMs model how to fully utilize the learned knowl-
edge for spelling correction task.

D Experimental Results on LEMON

For the LEMON benchmark (Wu et al., 2023), we
opted to directly test on the LEMON dataset using
the model without benchmark-specific fine-tuning.
(The model was fine-tuned on the training set de-
scribed in Section 4.1)

LEMON consists of corpora from seven different
domains. As shown in the table mentioned earlier,
PGT (BERT) achieved significant improvements in
each domain, even without domain-specific adap-
tation. This experiment conducted on the high-
quality benchmark revalidated the effectiveness of
PGT.
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